【摘 要】為解決神經(jīng)網(wǎng)絡(luò)在沉降預(yù)報(bào)應(yīng)用中的局限性,結(jié)合灰色理論等維信息策略和BP神經(jīng)網(wǎng)絡(luò)建模思想,利用數(shù)據(jù)序列本身構(gòu)建訓(xùn)練樣本,建立BP神經(jīng)網(wǎng)絡(luò)預(yù)報(bào)模型,并利用數(shù)學(xué)工具M(jìn)ATLAB編程實(shí)現(xiàn),進(jìn)行模擬的變形預(yù)測(cè),通過(guò)與灰色理論GM(1,1)模型的預(yù)報(bào)效果進(jìn)行比較,表明該BP神經(jīng)網(wǎng)絡(luò)模型具有更高的預(yù)報(bào)精度,可以達(dá)到更好的預(yù)報(bào)效果。
【關(guān)鍵詞】BP神經(jīng)網(wǎng)絡(luò);變形檢測(cè);沉降預(yù)報(bào)最佳值為7;輸入層和隱層的傳遞函數(shù)(Tfi)用缺省的正切S形函數(shù)(tansig),輸出層用線形函數(shù)(purelin);網(wǎng)絡(luò)訓(xùn)練函數(shù)(BTF)使用動(dòng)量批梯度下降函數(shù)(traingdm),它具有更快的收斂速度,而且引入了一個(gè)動(dòng)量項(xiàng)mc,避免了局部最小問(wèn)題的出現(xiàn);網(wǎng)絡(luò)權(quán)值、閾值學(xué)習(xí)函數(shù)(BLF)和性能函數(shù)(PF)采用MATLAB缺省值;對(duì)輸入數(shù)據(jù)、目標(biāo)數(shù)據(jù)、輸出數(shù)據(jù)的處理,使用MATLAB提供的歸一化函數(shù)(premnmx)和反歸一化函數(shù)(postmnmx)。運(yùn)行程序時(shí)先用訓(xùn)練樣本對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,然后利用訓(xùn)練好的網(wǎng)絡(luò)對(duì)預(yù)報(bào)樣本進(jìn)行預(yù)報(bào)?;疑碚揋M(1,1)模型同樣利用MATLAB編程實(shí)現(xiàn)。
2.3結(jié)果分析
首先用MATLAB編寫(xiě)的灰色理論GM(1,1)模型和BP神經(jīng)網(wǎng)絡(luò)模型分別處理訓(xùn)練樣本,得到相應(yīng)的擬合誤差。其中GM(1,1)相對(duì)模型擬合誤差主要為18.97、4.48、9.07、33.71、7.63、4.08、9.50等,等維BP網(wǎng)絡(luò)模型擬合誤差主要為6.66、0.97、0.29、6.16、2.06、4.44.并且通過(guò)之前得到的模擬數(shù)據(jù)可以得出BP神經(jīng)網(wǎng)絡(luò)模型擬合的平均誤差以及GM(1,1)模型擬合的平均誤差為11.82%。BP神經(jīng)網(wǎng)絡(luò)模型擬合的誤差小于GM(1,1)模型擬合的誤差為3.10%,其擬合精度高于灰色理論GM(1,1)模型。為了進(jìn)一步檢測(cè)灰色理論GM(1,1)模型和BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)報(bào)精度,再分別用兩種模型對(duì)監(jiān)測(cè)點(diǎn)的沉降數(shù)據(jù)的預(yù)報(bào)樣本進(jìn)行預(yù)報(bào),并可從中得出BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)報(bào)精度遠(yuǎn)高于灰色GM(1,1)模型的結(jié)果。
三、結(jié)論
本文引入灰色理論中新陳代謝思想構(gòu)造神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)樣本,建立BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,并用該模型進(jìn)行了實(shí)際的沉降預(yù)測(cè)。工程模擬實(shí)例表明:用等維BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行沉降預(yù)測(cè)是可行的,預(yù)報(bào)精度遠(yuǎn)高于灰色GM(1,1)模型。為了提高BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)精度,一方面需要有足夠的觀測(cè)數(shù)據(jù)序列,以保證神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)所需的樣本數(shù)。另一方面需要恰當(dāng)?shù)卮_定輸入層神經(jīng)元的個(gè)數(shù),目前尚無(wú)據(jù)可依,只能通過(guò)根據(jù)試算確定。
參考文獻(xiàn)
[1] 趙全.地面沉降數(shù)學(xué)模擬及其應(yīng)用的研究[D].天津: 天津大學(xué),2011.
[2] 于先文,胡伍生,王繼剛.神經(jīng)網(wǎng)絡(luò)在建筑物沉降分析中的應(yīng)用[J].測(cè)繪工程,2010,13(4):48-50.