陳 楠 任凌燕 戴傳云
(重慶科技學(xué)院化學(xué)化工學(xué)院生物與制藥系,重慶 401331)
兩種異硫氰酸酯抗腫瘤的研究進(jìn)展
陳 楠 任凌燕 戴傳云
(重慶科技學(xué)院化學(xué)化工學(xué)院生物與制藥系,重慶 401331)
植物化學(xué)物的生物學(xué)功能研究是食品科學(xué)的研究熱點(diǎn)之一,來源于十字花科的2-苯乙基異硫氰酸酯和l-異硫氰酸-4-甲磺?;⊥橐蚓哂锌拱┕δ芏妒荜P(guān)注。該兩種異硫氰酸酯能影響細(xì)胞Ⅰ相和Ⅱ相酶活性、激活Nrf2-Keap1系統(tǒng)、抑制細(xì)胞核因子κb及促進(jìn)腫瘤細(xì)胞凋亡,起到預(yù)防癌癥的作用。文章綜述近年來兩種異硫氰酸酯抗腫瘤機(jī)制的研究進(jìn)展及應(yīng)用前景,為合理開發(fā)十字花科植物保健價(jià)值提供參考。
2-苯乙基異硫氰酸酯;l-異硫氰酸-4-甲磺酰基丁烷;抗腫瘤;分子機(jī)制
流行病學(xué)研究[1]證實(shí),膳食中十字花科蔬菜的攝入能預(yù)防多種惡性腫瘤。其抗腫瘤生物活性物質(zhì)為硫代葡萄糖苷(簡稱硫苷;glucosinolates,GS)水解產(chǎn)物異硫氰酸酯(isothiocyanates,ITCs)[2]。自Sidransky等[3]報(bào)道異硫氰酸酯調(diào)控腫瘤細(xì)胞生長以來,異硫氰酸酯抗腫瘤機(jī)制的研究開始受到廣泛關(guān)注。目前研究較多的異硫氰酸酯為2-苯乙基異硫氰酸酯(2-phenethyl,PEITC)和l-異硫氰酸-4-甲磺?;⊥椋?-methylsulfinylpropyl,SFN)。文章將對這兩種活性物質(zhì)抗腫瘤研究進(jìn)展進(jìn)行綜述。
當(dāng)十字花科植物的細(xì)胞區(qū)隔被破壞(昆蟲咀嚼、機(jī)械損傷、真菌侵染等)時(shí),位于胞漿中的硫苷與定位于特定蛋白上的內(nèi)源芥子苷酶(myrosinase,E.C.1.2.1.147)作用,脫去葡萄糖基團(tuán),生成不穩(wěn)定羥基中間體,在中性條件下,發(fā)生分子重排得到異硫氰酸酯。PEITC和SFN的前體——苯乙基硫苷和4-甲磺?;蜍諒V泛存在于西蘭花、花椰菜、水芹菜等十字花科蔬菜中[4]。異硫氰酸酯的食物來源見表1,人通過膳食,每攝入100g西蘭花或水芹菜可獲得50~200μmol PEITC[5]。PEITC與SFN結(jié)構(gòu)中N=C=S基團(tuán)被認(rèn)為是產(chǎn)生抗癌效應(yīng)的活性基團(tuán)。
異硫氰酸酯抗腫瘤主要機(jī)制:抑制Ⅰ相酶活性,阻止致癌前體物活化;激活Ⅱ相脫毒/抗氧化酶,加速致癌前體物在體內(nèi)的代謝;激活Nrf2或抑制NF-κb等細(xì)胞調(diào)節(jié)氧化應(yīng)激的重要轉(zhuǎn)錄因子,增加細(xì)胞對氧化應(yīng)激的抗性;調(diào)控細(xì)胞周期,誘導(dǎo)腫瘤細(xì)胞凋亡等。雖然PETIC和SFN抗腫瘤機(jī)制尚未完全闡明,但以下方面的機(jī)制已經(jīng)得到認(rèn)同。
前致癌物進(jìn)入細(xì)胞后,在Ⅰ相藥物代謝酶——細(xì)胞色素P450(cytochrome P450,CYPs)催化下,經(jīng)氧化、還原、水解等多種類型的化學(xué)反應(yīng)轉(zhuǎn)變成親電化合物,啟動(dòng)致癌或致突變過程[6]。PEITC和SFN通過抑制CYPs活性而阻止化學(xué)致癌物活化。試驗(yàn)[7,8]證實(shí)經(jīng) PEITC孵化后,肝微粒細(xì)胞CYP1A1、CYP1A2活性均受到不同程度的抑制,抑制作用呈PEITC濃度依賴。Guillermo Padillaa等[9]研究表明通過正常攝食西蘭花即可獲得抑制肝微粒CYP1A1、CYP1A2活性所需PEITC劑量。
SFN同樣能抑制CYPs酶活性。SFN處理小鼠肝細(xì)胞后,CYP1A1和CYP 2B1/2活性均受到抑制[10]。經(jīng)丙酮處理的小鼠肝微粒體中,SFN可競爭性抑制CYP2E1[11]。在人肝臟細(xì)胞中,SFN通過調(diào)控CYP3A4轉(zhuǎn)錄水平而抑制CYP3A4活性。Ahmad等[12]證實(shí)甚至未水解的SFN前體硫苷同樣能激活脫輔基蛋白酶而抑制肝微粒體CYP1A1、CYP1A2和CYP1B1活性。
表1 十字花科蔬菜來源異硫氰酸酯的分子結(jié)構(gòu)式Table 1 Structural formula of isothiocyanates from cruciferaes
雖然Ⅰ相酶能催化前致癌物質(zhì)活化,但細(xì)胞中存在對抗此類反應(yīng)的應(yīng)激保護(hù)機(jī)制,其中最重要的應(yīng)激保護(hù)便是激活Ⅱ相脫毒/抗氧化酶活性。Ⅱ相酶能催化Ⅰ相反應(yīng)產(chǎn)物與谷胱甘肽(GSH)、葡萄糖醛酸、硫酸鹽等結(jié)合,繼而代謝排出體外。PEITC和SFN在體內(nèi)、體外試驗(yàn)[13,14]中能激活谷胱甘肽轉(zhuǎn)移酶(GST)、NADP(H)醌氧化還原酶(NQO)、UDP-葡萄糖基轉(zhuǎn)移酶(UGT)等Ⅱ相酶活性。例如在對抗2-氨基-1-甲基-6-苯基-咪唑(PhIp)所引發(fā)的遺傳性損傷中,PEITC激活肝臟中多種Ⅱ相酶,并在所有試驗(yàn)組織中顯著減低了DNA-Phip復(fù)合物 水平[15]。Konsue等[16]用 PEITC 處 理 小鼠肝臟細(xì)胞12h后,利用生物芯片檢測到多種GSH同工酶的表達(dá),但PEITC激活Ⅱ相酶活性的作用呈現(xiàn)細(xì)胞和組織特異性,在小鼠肺和腎臟細(xì)胞中PEITC并無此作用。而在PC-3細(xì)胞中,除激活GST外,PEITC同樣能增加血紅素加氧酶1(HO-1)的表達(dá);在RAW264.7細(xì)胞中,PEITC能上調(diào)OH-1、NQO 等酶的 mRNA 表達(dá)水平[17,18],此類 mRNA 的上調(diào)表達(dá)與抗腫瘤和抗炎癥關(guān)系密切。Bacon等[19]證明SFN通過上調(diào)表達(dá)肝臟細(xì)胞中UGT1A1和GSTA1的mRNA水平而激活葡萄糖基轉(zhuǎn)移酶和谷胱甘肽轉(zhuǎn)移酶活性,顯著地抑制DNA與PhIp的結(jié)合。在不同組織中SFN激活抗氧化酶的作用表現(xiàn)出濃度依賴性[20,21]:當(dāng)SFN灌喂小鼠的劑量為40μmol/(kg·d)時(shí),在小鼠賁門、十二指腸和膀胱中GST和NQ還原酶的表達(dá)量提高;當(dāng)灌喂劑量達(dá)200~1 000μmol/(kg·d)時(shí),在小鼠肝臟、結(jié)腸和胰腺中GST和NQ還原酶表達(dá)量提高。在體外細(xì)胞試驗(yàn)[22,23]中,SFN能誘導(dǎo)人初級肝細(xì)胞中GSTA1/2和GSTP1mRNA表達(dá);在鼠HepG1c1c7細(xì)胞中SFN上調(diào)GST和NQO1蛋白表達(dá)而增加該兩種酶活性;在大腸癌HT-29和結(jié)腸癌細(xì)胞Caco2等其他細(xì)胞系中,SFN也能產(chǎn)生類似作用。
Nrf2(NF-E2-related factor2)是細(xì)胞調(diào)節(jié)抗氧化應(yīng)激反應(yīng)的重要轉(zhuǎn)錄因子,生理狀態(tài)下它與胞漿蛋白伴侶分子Keap1(kelch-like ECH-associated protien1)結(jié)合處于相對抑制狀態(tài)。氧化應(yīng)激源作用下,Nrf2與Keap1解偶聯(lián)后轉(zhuǎn)入核內(nèi),與抗氧化反應(yīng)原件 ARE(antioxidant response element)上GCTGAGTCA位點(diǎn)結(jié)合,啟動(dòng)ARE調(diào)控的抗氧化酶基因表達(dá)。SFN可通過修飾巰基破壞Keap1-Nrf2復(fù)合物,釋放Nrf2,使之結(jié)合到抗氧化反應(yīng)原件ARE(antioxidant response element)區(qū)域[24],啟動(dòng)抗氧化還原酶基因的表達(dá)。與SFN作用機(jī)制不同,PEITC激活絲裂素活化蛋白激酶(mitogen-activated protein kinases,MAPKs),經(jīng) MAPK細(xì)胞信號通路釋放Nrf2。MAPKs屬于絲蛋白/蘇氨酸激酶,是接受受體傳遞的信號并將其帶入細(xì)胞核內(nèi)的重要分子,在多種受體信號傳遞途徑中均具有關(guān)鍵性作用。PEITC通過磷酸化c-Jun N-末端激酶(JNK1/2)和細(xì)胞外信號調(diào)節(jié)蛋白激酶(ERK1/2),進(jìn)而磷酸化 Nrf2,使其從 Keap1-Nrf2復(fù)合物中釋放,與Maf蛋白形成二聚體,結(jié)合ARE/EpRE,啟動(dòng)其調(diào)控的抗氧化酶相關(guān)基因表達(dá)。在PC-3細(xì)胞中抑制JNK和ERK磷酸化可減弱PEITC對ARE的激活,說明PEITC通過MAPK信號通路而激活Nrf2-Keap1系統(tǒng)。
細(xì)胞核因子 NF-κb(nuclear factor kappa B)的激活與炎癥發(fā)生、腫瘤細(xì)胞的存活及腫瘤發(fā)生進(jìn)程相關(guān)[25]。異硫氰酸酯對NF-κb的抑制被認(rèn)為是其抗腫瘤的分子機(jī)理之一。PEITC通過抑制IκBα的磷酸化,穩(wěn)定IκBα結(jié)構(gòu)而抑制NF-κb活性,下調(diào)表達(dá)iNOS(一氧化氮合酶)和COX-2(環(huán)氧合酶-2)酶的基因,這些酶與炎癥、及腫瘤細(xì)胞生長密切聯(lián)系,從而減少促炎因子的分泌表達(dá)[26]。Jeong等[27]研究表明SFN抑制NF-κb活性的機(jī)理與PEITC相似,但也有試驗(yàn)[28]證明在RAW 264.7細(xì)胞中,SNF并不介導(dǎo)IκB的磷酸化使其降解或者核轉(zhuǎn)位,而是直接影響了NF-κb因子與DNA的結(jié)合,發(fā)揮抑制腫瘤細(xì)胞增殖的作用。SFN可通過形成二硫代氨基甲酸鹽直接與NF-κb亞基中的Cys結(jié)合,從而直接減少其與靶DNA的結(jié)合。
細(xì)胞周期停滯與細(xì)胞凋亡一樣是細(xì)胞自我防御的重要機(jī)制。在初級癌細(xì)胞中,用PEITC處理3h即可抑制癌細(xì)胞細(xì)胞生長[29],而SFN對人結(jié)腸癌細(xì)胞的生長抑制卻呈現(xiàn)出雙向模式,SFN對細(xì)胞生長周期阻滯的調(diào)控更加復(fù)雜。在HT-29細(xì)胞中,PEITC通過下調(diào)細(xì)胞周期蛋白A、D、E來控制 G1時(shí)期細(xì)胞阻滯[30];在PC-3細(xì)胞中,PEITC對 G2/M 時(shí)期的細(xì)胞抑制是通過抑制80%以上的細(xì)胞周期性依賴蛋白激酶,如CDK1、細(xì)胞周期分裂蛋白Cdc25c以及積累酪氨酸磷酸化激酶來實(shí)現(xiàn)的。除Cdc25c蛋白被下調(diào)表達(dá)外,G2/M細(xì)胞周期DNA細(xì)胞周期檢測點(diǎn)2激酶ChK2也是PEITC細(xì)胞周期阻滯的分子靶標(biāo)[31]。在Caco2細(xì)胞中,當(dāng)BITC與PEITC的IC50分別為5.1,2.4μmol/L時(shí)即能抑制DNA的合成[32],引發(fā)細(xì)胞生長停滯。PEITC可通過誘導(dǎo)細(xì)胞周期停滯而達(dá)到控制腫瘤細(xì)胞發(fā)展進(jìn)程的作用。
PEITC和SFN可通過調(diào)控腫瘤細(xì)胞內(nèi)源性受體而發(fā)揮其抗癌功能。PEITC能調(diào)控前列腺癌細(xì)胞中雄激素受體(AR)的轉(zhuǎn)錄和翻譯,在轉(zhuǎn)錄水平上,通過抑制轉(zhuǎn)錄因子Sp1而抑制轉(zhuǎn)錄,在翻譯后可加速AR蛋白的降解,進(jìn)而抑制前列腺癌細(xì)胞增殖[33]。在人乳腺癌細(xì)胞中,SFN通過抑制ERαmRNA轉(zhuǎn)錄和加速蛋白酶體介導(dǎo)的降解而調(diào)控雌激素受體ERα的表達(dá)。SFN處理 MCF-7細(xì)胞后,因激素ER受體異常地表達(dá),細(xì)胞增殖受到抑制。SFN還可通過上調(diào)細(xì)胞凋亡受體mRNA和蛋白表達(dá)量而加速其凋亡。在人骨肉瘤細(xì)胞和肝臟細(xì)胞中,SFN可增強(qiáng)由TRAIL誘導(dǎo)的細(xì)胞凋亡。SFN可通過上調(diào)凋亡受體DR5mRNA和蛋白表達(dá)水平進(jìn)而加速腫瘤細(xì)胞凋亡[34]。調(diào)控細(xì)胞內(nèi)源性受體也是PEITC和SFN抑制腫瘤細(xì)胞生長的分子機(jī)制之一。
綜上所述,PEITC和SFN通過作用于細(xì)胞內(nèi)多種分子靶標(biāo)如:Ⅰ相/Ⅱ相藥物代謝酶系、Nrf2-Keap1,IκB/NF-κb,CHk2和TRAIL受體等發(fā)揮抗腫瘤功能,但這些細(xì)胞信號通路的激活并不是孤立發(fā)生的,而是協(xié)同作用的。在分子生物學(xué)水平上闡述這兩種異硫氰酸酯的抗腫瘤機(jī)制能為合理開發(fā)十字花科農(nóng)產(chǎn)品的保健成分、研制抗癌藥物等領(lǐng)域提供理論依據(jù)。
隨著PEITC和SFN抗腫瘤分子機(jī)制的逐步揭示,兩種物質(zhì)的抗腫瘤生物學(xué)功能得到進(jìn)一步證實(shí)。另外,這兩種物質(zhì)也是十字花科植物風(fēng)味形成的前體物質(zhì),同時(shí)還具有抑菌和植物防御的生物功能[35],因此這兩種植物化學(xué)物質(zhì)在保健食品、藥品、化妝品及食物添加劑等方面都有著較好的應(yīng)用前景。膳食中兩種異硫氰酸酯主要來源于十字花科植物,而植物次生代謝物本身代謝路徑的復(fù)雜性及植物活性物質(zhì)在動(dòng)物體、人體中作用的復(fù)雜性使得目前對兩物質(zhì)的研究還存在一些的問題:比如PEITC和SFN等硫苷降解物在人體內(nèi)的吸收、代謝途徑及生物利用度等問題都還缺乏深入研究,目前此方面的多數(shù)試驗(yàn)結(jié)果來源于體外細(xì)胞試驗(yàn)而體內(nèi)試驗(yàn)的結(jié)果也還有待研究。對十字花科蔬菜在采收、貯藏、加工過程中硫苷及其降解產(chǎn)物的變化規(guī)律研究較少,缺乏對十字花科蔬菜及其加工食品的硫苷營養(yǎng)學(xué)評價(jià)。此外,如何從天然十字花科植物中高效分離得到硫苷活性物質(zhì),以及硫苷及其降解產(chǎn)物的分析鑒定也等都是十分有意義的研究領(lǐng)域。
1 Dario Brunelli,Michele Tavecchio.The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo[J].Free Radical Biology & Medicine,2008(45):494~502.
2 Hayes J D,Kelleher M O,Eggleston I M.The cancer chemopreventive actions of phytochemicals derived from glucosinolates[J].Eur.J.Nutr.,2008,47(2):73~88.
3 Sidransky H Ito N,Verney E.Influence of alpha-naphthyl-isothiocyanate on liver tumorigenesis in rats ingesting ethionine and N-2-fluorenylacetamide[J].J.Natl.Cancer Inse.,1966,37(5):677~686.
4 M Gratacós-CubarsíA,Ribas-Agustí,J A García-Regueiro,et al Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L.var.botrytis[J].Food Chemistry,2011,122(1):257~263.
5 Auemduan Prawan,Young-Sam Keum,Tin Oo Khor,et al.Structural influence of isothiocuanates on the antioxidant response element(ARE)-mediated heme oxygenase-1(HO-1)expression[J].Pharmaceutical Research,2008,25(4):837~844.
6 Wogan G N,Hecht S S,F(xiàn)elton J S,et al.Environmental and chemical carcinogenesis[J].Semin Cancer Biol.,2004(14):473~486.
7 Gross-Steinmeyer K,Stapleton P L,Liu F,et al.Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes[J].Xenobiotica,2004(34):619~632.
8 Nakajima M,Yoshida R,Shimada N,et al.Inhibition and inacti-vation of human cytochrome P450isoforms by phenethyl isothiocyanate[J].Drug Metab Dispos,2001(29):1 110~1 103.
9 Guillermo Padillaa,María Elena Cartea.Modulation of carcinogen-metabolising cytochromes P450in human liver by the chemopreventive phytochemical phenethyl isothiocyanate[J].Toxicology,2010,3(268)184~190.
10 Hu R,Xu C,Shen G,et al.Identification of Nrf2-regulated gens induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray[J].Life Sci.,2006,(79):1 944~1 955.
11 Dinkova-Kostova A T,F(xiàn)ahey J W,Wade K L,et al.Induction of the phase 2response in mouse and human skin by sulforaphane-containing broccoli sprout extracts[J].Cancer Epidemiol Biomarker Prev.,2007(16):847~851.
12 Ahmad F,Abdull Razis,Manuela Bagatta,et al.Intact glucosinolates modulate hepatic cytochrome P450and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables[J].Toxicology,2010(11):74~85.
13 Saracino M R,Lampe J W.Phytochemical regulation of UDP-glucuronosyltransferases:Implications for cancer prevention[J].Nutr.Cancer,2007(59):121~141.
14 Vasiliou V,Ross D,Nebert D W.Update of the NAD(P)H:quinine oxidoreductase(NQO)gen family[J].Hum.Genomics,2006,2(5):329~335.
15 Banning A,D eubel S,Kluth D,et al.The GI-GPx gene is a target for Nrf2[J].Mol.Cell Biol.,2005(25):4 914~4 923.
16 Konsue N,Ioannides C.Tissue differences in the modulation of rat cytochromes P450and phaseⅡconjugation systems by dietary doses of phenethyl isothiocyanate[J].Food Chem.Toxicol.,2008(46):3 677~3 683.
17 Xu C,Yuan X,Pan Z,et al.Mechanism of action of isothiocyanates:the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2[J].Mol.Cancer Ther.,2006(5):1 918~1 926.
18 Cheung K L,Khor T O,Kong A N.Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane orcurcumin and sulforaphane in the inhibition of inflammation[J].Pharm Res.,2009(26):224~231.
19 Bacon J R,Williamson G,Garner R C,et al.Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2cells and hepatocutes[J].Catcinogenesis,2003(24):1 903~1 911.
20 A F Abdull Razis,Manuela Bagatta,Renato Iori,et al.Intact glucosinolates modulate hepatic cytochrome P450and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables[J].Toxiolgy,2010,277(3):74~87
21 Saracino M R,Lampe J W.Phtochemical regulation of UDP-glucuronosyltransferases:implications for cancer prevention[J].Nutr.Cancer,2007(59):121~141.
22 Kim S J,Kang S Y,Shin H H,et al.Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kappaB[J].Mol.Cells,2005,20:364~370.
23 Klaunig J E,Kamendulis L M.The role of oxidative stress in carcinogenesis[J].Annu.Rev.Pharmacol,2004(44):239~267.
24 Hong F,F(xiàn)reeman M L,Liebler D C.Identification of sensor cysteines in human Keap1modified by the cancer chemopreventive agent sulforaphane[J].Chem.Res.Toxicol.,2005(18):1 917~1 926.
25 D Kalpana Deepa Priya,R Gayathri,D Sakthisekaran,et al.Role of sulforaphane in the anti-initiating mechanism of lung carcinogenesis in vivo by modulating the metabolic activation and detoxification of benzo(a)pyrene,[J].Biomed and Phar 2011,65(1):19~16.
26 Woo KJ,Kwon TK,Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2(COX-2)expression through the modulation of multiple targets in COX-2gene promoter[J].Int Immunopharmacol,2007(7):1 776~1 783.
27 Jeong W S,Kim I W,Hu R,et alModulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway[J].Pharm Res.,2004(21):661~670.
28 Heiss E,Gerhauser C.Time-dependent modulation of thioredoxin reductase actibity might contribute to sulforaphane mediated inhibition of NF-kappaB binding to DNA[J].Antioxid redox signal,2005(7):1 601~1 611.
29 Zhang Y,Tang L,Gonzalez V.Selected isothiocyanates rapidly induce growth inhibition of cancer cells[J].Mol.Cancer Ther.,2003(2):1 045~1 052.
30 Cheung KL,Khor TO,Yu S,Kong AN.PEITC induces G1cell cycle arrest on HT-29cellsthrough the activation of p38MAPK signaling pathway.[J].AAOS J.,2008(10):277~281.
31 Wang LG,Liu XM,F(xiàn)ang Y,et al De-repression of the p21promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc[J].Int.J.Oncol,2008(33):375~380.32 Ramiez MC,Singletary K.Regulation of estrogen receptor alpha expression in human breast cancer cells by sulforaphane[J].J.Nutr.Biochem.,2009(20):195~201.
33 Matsui TA,Sowa Y,Yoshida T,et al Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5expression in human osteosarcoma cell[J].Carciogenesis,2006(27):1 768~1 777.
34 Mastrangelo L,Cassidy A,Mulholland F,et al.Serotonin receptors,novel targets of sulforaphane identified by proteomic analysis in Caco-2[J].Cancefr Res.,2008(68):5 487~5 491.
35 李顯,陳昆松,張明方,等.十字花科植物中硫代葡萄糖苷的研究進(jìn)展[J].園藝學(xué)報(bào),2008,33(3)675~679.
Research advances on two kinds of isothiocyanates for cancer chemoprevention
CHEN Nan REN Ling-yanDAI Chuan-yun
(Department of Biology and Pharmacy,Chongqing University of Science and Techology,Chongqing401331,China)
The biological function of phytochemicals has became one of the hottest research areas on food science.For the cancer chemoprevention,isothiocyanates 2-Phennethyl(PEITC)and 4-Methylsulfinylbuty(SFN)from the crucifers were widely investigated.These anti-cancer activities have been attributed to a variety of physiological actions including inducing phaseⅠand phaseⅡenzymes,activating Nrf2-Keap1system ,inhibiting the transcription factorκb and promoting cell apoptosis.Their molecular mechanisms of chemoprevention effects and perspectives were reviewed in this paper which amid to provide reference for the cruciferaes resource development.
2-Phennethyl;4-Methylsulfinylbuty;anticancer;molecular mechanisms
10.3969/j.issn.1003-5788.2012.02.066
陳楠(1982-),女,重慶科技學(xué)院講師,博士研究生。E-mail:chennan0205@gmail.com
戴傳云
2011-12-10