阮周生,張文,王澤文
(1.東華理工大學(xué) 放射性地質(zhì)與勘探技術(shù)國防重點學(xué)科實驗室,江西 撫州 344000;2.東華理工大學(xué) 理學(xué)院,江西 南昌 330013)
數(shù)值求解一類空間分?jǐn)?shù)階擴(kuò)散方程源項系數(shù)反問題
阮周生1,2,張文1,2,王澤文2
(1.東華理工大學(xué) 放射性地質(zhì)與勘探技術(shù)國防重點學(xué)科實驗室,江西 撫州 344000;2.東華理工大學(xué) 理學(xué)院,江西 南昌 330013)
數(shù)值求解一類空間分?jǐn)?shù)階擴(kuò)散方程源項系數(shù)反問題.利用函數(shù)變換,將源項系數(shù)反問題轉(zhuǎn)為對應(yīng)的定解問題,利用隱式差分格式,求解對應(yīng)定解問題,然后利用數(shù)值積分,求得待定系數(shù)函數(shù)的數(shù)值解,并且證明了隱式差分格式的絕對穩(wěn)定性.通過數(shù)值算例表明,該數(shù)值方法具有較高的計算精度.
反常擴(kuò)散;空間分?jǐn)?shù)階導(dǎo)數(shù);反問題;有限差分格式;穩(wěn)定性
MSC 2010:35K05
反常擴(kuò)散現(xiàn)象在自然界廣泛存在,反常擴(kuò)散過程本質(zhì)上是時間上有記憶性和空間非局域性的過程,故利用整數(shù)階擴(kuò)散方程不能準(zhǔn)確地描述這類反常擴(kuò)散過程,分?jǐn)?shù)階擴(kuò)散方程在描述自然界反常擴(kuò)散現(xiàn)象中起著非常重要的作用,其基本思想是利用對時間(或空間)的分?jǐn)?shù)階導(dǎo)數(shù)代替整數(shù)階時間(或空間)導(dǎo)數(shù),從而能夠較精確地描述有記憶和遺傳、路徑依賴性質(zhì)的物理過程,在半導(dǎo)體、核磁共振、多孔介質(zhì)、高分子聚合物、湍流、固體表面擴(kuò)散、膠體中的輸運、量子光學(xué)、分子光譜、經(jīng)濟(jì)金融都有廣泛的應(yīng)用[1-6].常福宣等利用分?jǐn)?shù)階對流-彌散方程的Lévy分布解來模擬空間點溶質(zhì)濃度的時間變化過程比用傳統(tǒng)的二階對流-彌散方程所得的高斯分布解來模擬效果更好[2];孫洪廣等對空間分?jǐn)?shù)階導(dǎo)數(shù)“反?!睌U(kuò)散方程的3種數(shù)值算法進(jìn)行比較[3];王晟等將Fick擴(kuò)散定律的Fourier三角級數(shù)算法推廣成多孔材料分形擴(kuò)散模型的Fourier-Bessel級數(shù)算法,并把它應(yīng)用于化學(xué)工程中吸附問題涉及的濃度分布與相對吸附量的計算中,取得一些規(guī)律性認(rèn)識[4].
近年來,分?jǐn)?shù)階對流擴(kuò)散方程反問題越來越引起國內(nèi)外學(xué)者的關(guān)注,谷文娟[5]等利用最佳攝動量法研究了一維時間分?jǐn)?shù)階擴(kuò)散方程中同時確定分?jǐn)?shù)微分階數(shù)與擴(kuò)散系數(shù)的數(shù)值反演問題.Battaglis[7]等求解了分?jǐn)?shù)階熱傳導(dǎo)反問題.Murio[8]建立了一類分?jǐn)?shù)階擴(kuò)散方程反問題的穩(wěn)定數(shù)值方法;Murio[9]分析了Caputo's時間分?jǐn)?shù)階熱傳導(dǎo)問題.Sivaprasad[10]等利用反靈敏分析研究了分?jǐn)?shù)階動力衰減系統(tǒng).Cresson[11]討論了分?jǐn)?shù)階微分方程反問題,并得到了一些微分方程的拉格朗日結(jié)構(gòu),最近魏慧利用最佳攝動量方法數(shù)值求解了一類分?jǐn)?shù)階拋物型方程擴(kuò)散系數(shù)反問題[12].
本文考慮下面系數(shù)反問題,即找{p(t),u(x,t)},使得滿足問題
其中擴(kuò)散系數(shù)d(x,t),源項q(x,t),邊界條件函數(shù)h1(t),h2(t),初始條件函數(shù)f(x)為已知函數(shù),k(x)表示求解區(qū)間[0,L]內(nèi)1已知函數(shù),E(t)為測量數(shù)據(jù),p(t)為未知系數(shù)函數(shù).問題(1)~(4)可視為源項控制反問題,通過在求解區(qū)域內(nèi)源項產(chǎn)生能量的變化規(guī)律來反演源項系數(shù)p(t).
程系數(shù)p(t)反問題已經(jīng)有許多學(xué)者研究過,見文獻(xiàn)[13-17].
在時間方向上采用一階向前差商,離散上述反常擴(kuò)散方程中的一階時間偏導(dǎo)數(shù),有在空間上使用修正的向前Grünwald-Letnikov定義來表示空間α階導(dǎo)數(shù)[3],
研究了一類一維分?jǐn)?shù)階擴(kuò)散方程源項系數(shù)反問題的數(shù)值計算方法,證明了差分格式的無條件穩(wěn)定性.從數(shù)值模擬來看,當(dāng)Nx與Nt的取值越大時,精度越高.本文的數(shù)值方法同樣可以應(yīng)用到二維分?jǐn)?shù)階擴(kuò)散方程源項系數(shù)反問題.
[1] PODLUBNY I.Fractional differential equation[M].San Diego:Academic Press,1999:50-78.
[2] 常福宣,吳吉春,戴水漢.多孔介質(zhì)溶質(zhì)運移的分?jǐn)?shù)彌散過程與Lévy分布[J].南京大學(xué)學(xué)報:自然科學(xué)版,2004,40(3):287-291.
CHANG Fuxuan,WU Jichun,DAI Shuihan.The fractional dispersion in pore medium and lévy distribution[J].Journal of Nanjing University:Natural Sciences,2004,40(3):287-291.
[3] 孫洪廣,陳文,蔡行.空間分?jǐn)?shù)階導(dǎo)數(shù)“反?!睌U(kuò)散方程數(shù)值算法的比較[J].計算物理,2009,26(5):719-724.
SUN Hongguang,CHEN Wen,CAI Hang.Comparative study of numerical algorithms for‘a(chǎn)nomalous’diffusion equation with spatial fractional derivatives[J].Chinese Journal of Computational Physics,2009,26(5):719-724.
[4] 王晟,馬正飛,姚虎卿.多孔材料分形擴(kuò)散模型的Fourier-Bessel級數(shù)算法及其應(yīng)用[J].計算物理,2008,25(3):289-295.
WANG Sheng,MA Zhengfei,YAO Huqing.Fourier-bessel series algorithm in fractal diffusion model for porous material[J].Chinese Journal of Computational Physics,2008,25(3):289-295.
[5] 谷文娟,李功勝,殷鳳蘭,等.一個時間分?jǐn)?shù)階擴(kuò)散方程的參數(shù)反演問題[J].山東理工大學(xué)學(xué)報:自然科學(xué)版,2010,24(6):22-25.
GU Wenjuan,LI Gongsheng,YIN Fenglan.Parameters inversion for a time fractional diffusion equation[J].Journal of Shandong Unirersity of Technology:Natural Science Edition,2010,24(6):22-25.
[6] 王濟(jì)平.一維熱傳導(dǎo)方程不適定問題的解法[J].河北大學(xué)學(xué)報:自然科學(xué)版,1988,8(3):6-11.
Wang Jiping.The solution of an ill-posed problem for one-dimension heat transport equation[J].Journal of Hebei University:Natural Science Edition,1988,8(3):6-11.
[7] BATAGLIA J L,COIS O,PUIGSEGUR L,et al.Solving an inverse heat conduction problem using a non-integer identified model[J].International Journal of Heat and Mass Transfer,2001,44:2671-2680.
[8] MURIO D A.Stable numerical solution of a fractional-diffusion inverse heat conduction problem[J].Computers &Mathematics with Applications,2007,3:1492-1501.
[9] MURIO D A.Time fractional IHCP with Caputo fractional derivatives[J].Computers & Mathematics with Applica-tions,2008,56:2371-2381.
[10] SIVAPRASAD R,VENKATESHA S,MANOHAR C S.Identification of dynamical systems with fractional derivative damping models using inverse sensitivity analysis[J].CMC,2009,298:1-29.
[11] CRESSON J.Inverse problem of fractional calculus of variations for partial differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2010,15:987-996.
[12] WEI Hui,CHEN Wen,SUN Hongguang,et al.A coupled method for inverse source problem of spatial fractional anomalous diffusion equations[J].Inverse Problems in Science and Engineering,2010,18:945-956.
[13] CANNON J R,LIN Y,XU S.Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations[J].Inverse Probl,1994,10:227-243.
[14] MEHDI D.Finding a control parameter in one-dimensional parabolic equation[J].Applied Mathematics and Computation,2003,135:491-503.
[15] MEHDI D.Determination of a control function in three-dimensional parabolic equations[J].Mathematics and Computers in Simulation,2003,61:89-100.
[16] MEHDI D.Finite difference schemes for two-dimensional parabolic inverse problem with temperature overspecification[J].International Journal of Computer Mathematics,2000,75:339-349.
[17] MEHDI D,MEHDI T.Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions[J].Mathematical and Computer Modeling,2006,44:1160-1168.
Numerical solution of source terms coefficient inverse problem for a kind of space fractional diffusion equation
RUAN Zhousheng1,2,ZHANG Wen1,2,WANG Zewen2
(1.Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology,F(xiàn)uzhou 344000,China;2.College of Science,East China Institute of Technology,Nanchang 330013,China)
A numerical method for source coefficient inverse problem of a kind of one-dimensional space fractional diffusion equation is concerned.The inverse problem of source coefficient is converted to the corresponding definite problem through function transformation.Applying the implicit difference,the solution of the corresponding definite problem is founded.Using the numerical integral,the numerical solution of the undetermined function is founded,and the unconditional stability of difference scheme is proved.The numerical example shows that the proposed method has high accuracy.
anomalous diffusion;spatial fractional derivative;inverse problem;finite difference scheme;stability
O175
A
1000-1565(2012)05-0458-06
2011-10-11
國家自然科學(xué)基金資助項目(41001320,11161002);江西省自然科學(xué)基金資助項目(2009GZS0001);江西省教育廳科技資助項目(GJJ11151);放射性地質(zhì)與勘探技術(shù)國防重點學(xué)科實驗室資助項目(2010RGET12)
阮周生(1980-),男,江西吉安人,東華理工大學(xué)講師,主要從事偏微分方程正反問題的算法與理論研究.
E-mail:zhshruan@ecit.cn
王蘭英)