胡衛(wèi)敏, 蔣達(dá)清
(1. 伊犁師范學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院應(yīng)用數(shù)學(xué)研究所, 新疆 伊寧 835000; 2. 東北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 長(zhǎng)春 130024)
考慮如下奇異邊值問(wèn)題:
(1)
目前, 關(guān)于邊值問(wèn)題
(2)
的研究已有許多結(jié)果[1-15]. 文獻(xiàn)[5-8]給出了問(wèn)題(2)當(dāng)非線(xiàn)性項(xiàng)不具有奇性時(shí)的存在性結(jié)果; 文獻(xiàn)[1,9]給出了當(dāng)p=2時(shí)奇異邊值問(wèn)題(奇性依賴(lài)于變量)的一些存在性原則; 文獻(xiàn)[10]研究了當(dāng)p=2 時(shí)離散邊值問(wèn)題解的存在性; 文獻(xiàn)[11]研究了當(dāng)p=2時(shí)連續(xù)邊值問(wèn)題解的存在性. 而關(guān)于二階p-Laplacian方程組奇異邊值問(wèn)題解的存在性研究目前文獻(xiàn)報(bào)道較少.
若奇異邊值問(wèn)題(1)滿(mǎn)足以下條件, 則稱(chēng)(x(t),y(t))是問(wèn)題(1)的正解:
1) (x,y)∈C[0,1]×C[0,1]∩C1(0,1)×C1(0,1);
2) ?t∈(0,1), (x,y)>(0,0), 且x(0)=y(0)=A,x(1)=y(1)=B;
3)φ(x′(t)),φ(y′(t))在(0,1)中絕對(duì)連續(xù), 且滿(mǎn)足:
假設(shè)條件:
(H1)fi(t,x,y)∈C((0,1)×R2,R)(i=1,2);
(3)
(4)
(5)
注2容易驗(yàn)證條件(H2)蘊(yùn)含著
其中φ-1(t)是φ(t)的反函數(shù). 事實(shí)上,
類(lèi)似地, 有
引理1邊值問(wèn)題
(6)
證明: 由于唯一性的證明很簡(jiǎn)單, 這里只證明存在性. 對(duì)任意的0 由注2, 顯然y(t)在(0,1)中連續(xù)非增且y(0+)<0 取 (7) 則Ur是定義在(0,1)上的函數(shù), 且有 (8) 對(duì)于0 類(lèi)似地有, 當(dāng)0<ν 因此,Ur(t)在[0,1]上連續(xù), 同理, 若取 也有類(lèi)似結(jié)論. 類(lèi)似引理1的證明, 有: 引理2邊值問(wèn)題 對(duì)每個(gè)固定的(x,y)∈D, 考慮如下邊值問(wèn)題: (9) 先考慮修正后的邊值問(wèn)題: (10)n 其中:n≥4是自然數(shù);ηn(t)在[0,1]上連續(xù), 且滿(mǎn)足0≤ηn(t)≤1及 (12)n 和 (13)n 引理3令(ln(t),wn(t))是問(wèn)題(10)n的解, 則 (ur(t),vr(t))≤(ln(t),wn(t))=(Tn(l,w))(t)≤(Ur(t),Vr(t)), 0≤t≤1. 證明: 由于(ln(t),wn(t))≥(ur(t),vr(t))在[0,1]上成立與(ln(t),wn(t))≤(Ur(t),Vr(t))在[0,1]上成立本質(zhì)上一致, 所以本文只證明后者即可. (14) 對(duì)式(14)兩邊關(guān)于t從t0到t∈(t0,t2)積分, 得 即 則有w(t0)≤w(t2)=0, 矛盾. 類(lèi)似地, 有wn(t)≤Vr(t), 所以?t∈[0,1], (ln(t),wn(t))≤(Ur(t),Vr(t)). 證明: 令[a,b]?(0,1)是一緊區(qū)間, 可得 (15) 其中Cn是方程 的解. 根據(jù)積分第一中值定理, 存在ξn∈[a,b], 使得 即 又由引理3知,ur(t)≤ln(t)≤Ur(t), 從而存在M=M(r,a,b)>0, 使得 (16) (17) 成立. 由式(15)~(17), 有 類(lèi)似地, 有 根據(jù)引理4, 可以證明: (18) 其中τ=φ(l′(1/2))是方程 (19) 的解. 綜上可得l(t)=(Tl)(t), 類(lèi)似可證w(t)=(Tw)(t). 因此, (l,w)=(T(l,w))(t)是式(9)的解. 由于D是C[0,1]×C[0,1]中的任意有界集, 于是有: 引理6T:C[0,1]×C[0,1]→C[0,1]×C[0,1]全連續(xù). 對(duì)問(wèn)題(1)利用Schauder不動(dòng)點(diǎn)定理和Leray-Schauder非線(xiàn)性抉擇定理可得更一般的存在性原則. 定理1假設(shè)(H1)和(H2)成立. 設(shè)存在常數(shù)M>A+B(不依賴(lài)于λ), 且 (20) 其中(x,y)∈C[0,1]×C[0,1]∩C1(0,1)×C1(0,1)是邊值問(wèn)題 (21)λ 的解,λ∈(0,1). 則問(wèn)題(1)存在一個(gè)解(x,y)且滿(mǎn)足‖(x,y)‖≤M. 證明: 式(21)λ等價(jià)于不動(dòng)點(diǎn)問(wèn)題 (x,y)=λT(x,y), (x,y)∈C[0,1]×C[0,1], (22)λ 定理2假設(shè)(H1)和(H2)成立. 設(shè)存在常數(shù)M>A+B(不依賴(lài)于λ), 且式(20)成立, 其中(x,y)∈C[0,1]×C[0,1]∩C1(0,1)×C1(0,1)是邊值問(wèn)題 (23)λ 的解,λ∈(0,1). 則問(wèn)題(1)存在一個(gè)解(x,y)且滿(mǎn)足‖(x,y)‖≤M. 證明: 式(23)λ等價(jià)于不動(dòng)點(diǎn)問(wèn)題 (x,y)=(1-λ)(Q,Q)+λT(x,y),Q=A(1-t)+Bt. (24)λ 證明: 問(wèn)題(1)等價(jià)于不動(dòng)點(diǎn)問(wèn)題(x,y)=T(x,y). 因?yàn)門(mén):C[0,1]×C[0,1]→C[0,1]×C[0,1]全連續(xù), 則利用Schauder不動(dòng)點(diǎn)定理可證得結(jié)論. [1] Agarwal R P, O’Regan D. Existence Theory for Single and Multiple Solutions to Singular Positone Boundary Value Problems [J]. J Differential Equations, 2001, 175(2): 393-414. [2] JIANG Da-qing, GAO Wen-jie. Upper and Lower Solution Method and a Singular Boundary Value Problem for the One-Dimensionp-Laplacian [J]. J Math Anal Appl, 2000, 252(2): 631-648. [3] JIANG Da-qing, LIU Hui-zhao. On the Existence of Nonnegative Radial Solutions forp-Laplacian Elliptic Systems [J]. Ann Polon Math, 1999, 71(1): 19-29. [4] JIANG Da-qing. Upper and Lower Solutions Method and a Superlinear Singular Boundary Value Problem for the One-Dimensionalp-Laplacian [J]. Computers and Mathematics with Applications, 2001, 42(6/7): 927-940. [6] WANG Jun-yu, GAO Wen-jie. A Singular Boundary Value Problem for the One-Dimensionalp-Laplacian [J]. J Math Anal Appl, 1996, 201(3): 851-866. [7] KONG Ling-bin, WANG Jun-yu. Multiple Positive Solutions for the One-Dimensionalp-Laplacian [J]. Nonlinear Anal: Theory, Methods and Applications, 2000, 42(8): 1327-1333. [8] ZHANG Mei-rong. Nonuniform Nonresonance at the First Eigenvalue of thep-Laplacian [J]. Nonlinear Anal: Theory, Methods and Applications, 1997, 29(1): 41-51. [9] O’Regan D. Existence Theorey for Nonlinear Ordinary Differential Equations [M]. Dordrecht: Kuwer Academic, 1997. [10] HU Wei-min, JIANG Da-qing, LUO Ge-xin. Theory for Single and Multiple Solution to Singular Discrete Boundary Value Problems for Second-Order Differential Systems [J]. Dynamic Systems and Applications, 2008, 17: 221-234. [11] QIAN Mei-hua, CONG Fu-zhong, XU Xiao-jie. Existence of Twin Positive Solutions for Singular Second Order Differential Systems [J]. Journal of Jilin University: Science Edition, 2010, 48(5): 755-760. (千美華, 從福仲, 許曉婕. 奇異二階方程組兩個(gè)正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2010, 48(5): 755-760.) [12] O’Rrgan D, Agarwal R P. Existence Theory for Single and Multiple Solutions to Singular Boundary Value Problems for One-Dimensionp-Laplacian [J]. Advances in Mathematical Science and Applications, 2003, 13(1): 179-199. [13] SHEN Qin-rui, ZHOU Zong-fu. Existence of Perodic Solution for a Class of Third-Orderp-Laplacian Equation with a Deviating Argument [J]. Journal of Jilin University: Science Edition, 2012, 50(1): 27-34. (沈欽銳, 周宗福. 一類(lèi)具偏差變?cè)娜Ap-Laplacian方程周期解的存在性 [J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2012, 50(1): 27-34.) [14] SUN Peng, KONG De-jian, LI Jian-jun, et al. Blow-Up and Global Existence of Positive Solutions for Inhomogenous Evolutionp-Laplacian Equations [J]. Journal of Northeast Normal University: Natural Science Edition, 2012, 44(1): 1-9. (孫鵬, 孔德建, 李建軍, 等. 非奇次發(fā)展型p-Laplacian 方程正解的爆破性和存在性 [J]. 東北師大學(xué)報(bào): 自然科學(xué)版, 2012, 44(1): 1-9.) [15] WEN Xiang-dan, YUAN Cheng-jun, JIANG Da-qing. Solutions to Perodic Boundary Value Problems of a First Order Singular Coupled Systems [J]. Journal of Natural Science of Heilongjiang University, 2011, 28(6): 763-766. (文香丹, 苑成軍, 蔣達(dá)清. 一階奇異耦合方程組周期邊值問(wèn)題的解 [J]. 黑龍江大學(xué)自然科學(xué)學(xué)報(bào), 2011, 28(6): 763-766.)