亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        過充電保護(hù)添加劑1,4-二甲氧基苯的反應(yīng)機(jī)理

        2012-11-30 10:41:28李田田王朝陽邢麗丹李偉善許夢清
        物理化學(xué)學(xué)報(bào) 2012年4期
        關(guān)鍵詞:華南甲氧基師范大學(xué)

        李田田 王朝陽 邢麗丹 李偉善,2,3,* 彭 彬 許夢清,2,3

        顧鳳龍1,2,3 胡社軍1,2,3

        (1華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州510006;2華南師范大學(xué),廣東高校電化學(xué)儲能與發(fā)電技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣州510006; 3華南師范大學(xué),電化學(xué)儲能材料與技術(shù)教育部工程研究中心,廣州510006)

        過充電保護(hù)添加劑1,4-二甲氧基苯的反應(yīng)機(jī)理

        李田田1王朝陽1邢麗丹1李偉善1,2,3,*彭 彬1許夢清1,2,3

        顧鳳龍1,2,3胡社軍1,2,3

        (1華南師范大學(xué)化學(xué)與環(huán)境學(xué)院,廣州510006;2華南師范大學(xué),廣東高校電化學(xué)儲能與發(fā)電技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣州510006;3華南師范大學(xué),電化學(xué)儲能材料與技術(shù)教育部工程研究中心,廣州510006)

        采用密度泛函理論(B3LYP/6-311+G(d,p))和MP2/6-311+G(d,p)方法,研究鋰離子電池過充電保護(hù)添加劑1,4-二甲氧基苯(p-DMOB)的作用機(jī)理.計(jì)算結(jié)果表明,在過充時,p-DMOB優(yōu)先于溶劑分子(乙基甲基碳酸酯、二甲基碳酸酯、碳酸乙酯)發(fā)生氧化反應(yīng).用B3LYP和MP2計(jì)算所得的p-DMOB理論氧化電位接近,分別為4.12和4.05 V(vs Li/Li+).p-DMOB氧化時首先失去一個電子,生成p-DMOB+●正離子自由基,用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為701.24和728.27 kJ·mol-1.失去電子后苯環(huán)的共軛性受到破壞,隨后p-DMOB+●苯環(huán)上的C―H鍵發(fā)生斷裂,失去H+并形成p-DMOB·自由基.用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為1349.78和1810.99 kJ·mol-1.p-DMOB·自由基很不穩(wěn)定,會在電極表面發(fā)生聚合反應(yīng)形成聚合物膜,用B3LYP和MP2方法計(jì)算所得的相應(yīng)能量變化分別為-553.37和-1331.20 kJ·mol-1.

        鋰離子電池;過充電保護(hù)添加劑;1,4-二甲氧基苯;反應(yīng)機(jī)理;密度泛函理論

        1 Introduction

        Lithium ion battery(LIB)has been widely used to power portable electronic devices such as camera,mobile phone,and computer.It is also demonstrated to be promising for largescale applications such as hybrid or pure electric vehicles.1-6One of the important limitations for the application of LIB is safety concern.7,8It is well known that solvents in LIB tend to decompose on anode or cathode surface when LIB is overcharged,9-12and LIB becomes thermally unstable at overcharged state,which sometimes smokes,ignites,and even explodes.13,14Much effort has been devoted to improving the safety characteristics of LIB in recent years.The use of solid polymer or ionic liquid electrolytes provides a safe solution to the decomposition of solvents that have been used in commercial LIBs,but the ionic conductivity of these electrolytes is too low to be used in practice.Alternatively,various types of electrolyte additives,such as polymerizable compounds,have been proposed as additives in electrolyte to prevent the LIBs from overcharging.15,16Polymerizable compounds,also called“shutdown additives”,are found to be effective for the overcharge protection of LIB.These additives are electrochemically polymerized forming an insulating polymer layer that blocks charge current from flowing further when the LIB is overcharged.

        It has been reported by several research groups that many derivatives based on 1,4-dimethoxy benzene(p-DMOB),the compounds in which the hydrogen atoms on the benzene ring of p-DMOB are replaced by electron-donating or electron-withdrawing groups,are functioned as redox shuttles for overcharge protection of LIB.17-21A LIB is protected from overcharge by a redox shuttle through the reduction of oxidized shuttle on anode and the oxidation of reduced shuttle on cathode of LIB.The reaction process for the p-DMOB based derivatives as redox shuttles has been understood through the theoretical calculations.22Different from its derivatives,however, p-DMOB was found to function as a shutdown additive.23The aim of this paper is to understand the reaction mechanism of p-DMOB as a shutdown additive for lithium ion battery.

        2 Computational details

        All calculations have been performed using Gaussian 03 package.24The geometries are optimized by the B3LYP and MP2 methods in conjunction with the 6-311+G(d,p)basis set.25,26The solvent effects are considered by employing the integral equation formalism of the polarizable continuum model (IEFPCM).27A dielectric constant of 31.3 is adopted,which is a weighted average value between the dielectric constants of ethylene carbonate(EC:89),dimethyl carbonate(DMC:3), and ethylmethyl carbonate(EMC:2)(nEC/nDMC/nEMC=1:1:1).To confirm each optimized stationary point and make zero-point energy(ZPE)corrections,frequency analyses are done with the same basis set.Enthalpy and Gibbs free energy are obtained at 298.2 K.Charge distribution is analyzed by the natural bond orbital(NBO)theory.

        The absolute potential(φabs)for the oxidation of p-DMOB is obtained based on the following equation:28

        where IP is ionization potential,ΔS is the entropy difference between p-DMOB and p-DMOB+●in gas phase,ΔG0Sis the Gibbs free energy change of p-DMOB or p-DMOB+●between gas phase and solvent,and F is Faraday constant.The oxidation potential,φ(p-DMOB),of the compounds in this paper is given with respect to φabs(Li/Li+)that is the absolute potential of Li/ Li+(1.4 V).

        3 Results and discussion

        3.1 Oxidation activity and oxidative potential

        The optimized geometric structures of p-DMOB,ethyl methyl carbonate,dimethyl carbonate,ethylene carbonate,and their radical cations are presented in Fig.1.

        Table 1 lists the frontier molecular orbital energy and ionization potential(IP)of p-DMOB and solvents in gas phase,optimized by B3LYP and MP2.On the basis of the molecular orbital theory,the ability of a molecule to lose one electron depends on the energy level of the highest occupied molecular orbital (HOMO).There exists difference in calculated values of HOMO or IP between B3LYP and MP2,but the same conclusion on the difference among p-DMOB,EMC,DMC,and EC can be drawn from these two methods,i.e.,p-DMOB is oxidized prior to the solvents.The preferable reduction oxidation of p-DMOB is important for p-DMOB to be used as a shutdown additive.

        Table 2 lists the thermodynamic properties of p-DMOB and its radical cation(p-DMOB+●)in gas phase(g)and solvent(s). With these data,we can obtain the theoretical oxidation potential(Ecal)of p-DMOB,which is 4.12 V(vs Li/Li+)by B3LYP and 4.05 V(vs Li/Li+)by MP2,respectively.Both theoretical values are in good agreement with the experimentally obtained oxidation potential,which is 3.9 V(vs Li/Li+).20

        3.2 Oxidative process of p-DMOB

        Fig.1 Optimized geometric structures of p-DMOB,EMC,DMC,EC and their radical cations

        Table 1 The frontier molecular orbital energy and IPof p-DMOB and solvents in gas phase

        The initial oxidation of p-DMOB involves a one-electron transfer,resulting in radical cation(p-DMOB+●).The optimized geometry is presented in Fig.1.The charge distributions on atoms in p-DMOB and p-DMOB+●obtained by natural population analysis(NPA)are presented in Table 3.It can be seen from Table 3 that the charge distributions on atoms in p-DMOB and p-DMOB+●are quite different.The charge changes on―C6H4,―O11CH3,―O12CH3are-0.589e,-0.205e,-0.205e by B3LYP and-0.687e,-0.154e,-0.155e by MP2,respectively.The results obtained by both B3LYP and MP2 indicate that the electron mainly bereaves from benzene ring and the charge conjugation of benzene ring is damaged after the initial oxidation of p-DMOB.

        Scheme 1 shows the possible pathways for the further oxidation.The p-DMOB+●loses a hydrogen ion forming a radical p-DMOB·with the cleavage of the C1―H7bond and p-DMOB· copolymerizes by itself forming a polymer.The ΔE1,ΔE2,and ΔE3are defined as the activation energies in the reactions p-DMOB-e→p-DMOB+●,p-DMOB+●-H+→p-DMOB·,and p-DMOB·+p-DMOB·→p-DMOB-1,respectively.The optimized geometry structures of p-DMOB and p-DMOB+●are shown in Fig.1,and the optimized geometry structures of p-DMOB·and p-DMOB-1 are presented in Fig.2.

        The energies of compounds involved in the polymerization of p-DMOB are presented in Table 4.The energy variation of p-DMOB+●with the bond length of C1―H7is shown in Fig.3.It can be found from Fig.3 that the energy of p-DMOB+●increases with increasing the bond length.This suggests that there is no transition state available during the breaking of C1―C7bond.The obtained ΔE1,ΔE2,ΔE3values are 701.24,1349.78,-553.37 kJ·mol-1by B3LYP and 728.27,1810.99,-1331.20 kJ·mol-1by MP2,respectively.Although ΔE2is large,the sum of ΔE2and ΔE3is small,compared with ΔE1.Therefore,the polymerization is preferable and p-DMOB+●functions as a shutdown additive for the overcharge protection of LIB.

        From the obtained results above,it can be concluded that p-DMOB is preferably to be oxidized forming a polymerthrough the breaking of C―H bond on benzene ring.Differently,the C―H bond on benzene ring in the radical cations formed from the one-electron oxidation of p-DMOB derivatives cannot be broken.Since the radical cations of p-DMOB derivatives are hard to oxidize further,they are preferably reduced on anode and turn back to the derivative molecules.22This is why p-DMOB functions as a shutdown additive but its derivatives as shuttle additives.

        Table 2 Thermodynamic properties of p-DMOB and its radical cation(p-DMOB+●)in gas phase(g)and solvent(s)

        Table 3 Charge distribution(e)on atoms in p-DMOB and p-DMOB+●obtained by natural population analysis

        Fig.2 Optimized geometry structures of p-DMOB·and p-DMOB-1

        Table 4 Energy of compounds involved in the polymerization of p-DMOB

        Fig.3 Energy variation of p-DMOB+●with the bond lengths of C1―H7

        4 Conclusions

        The reaction mechanism of p-DMOB as an overcharge protection additive for lithium ion battery was understood with the calculation based on B3LYP/6-311+G(d,p)and MP2/6-311+ G(d,p).Based on the calculated results,p-DMOB is oxidized prior to the solvents when the battery is overcharged.The initial oxidation of p-DMOB involves a one-electron transfer from p-DMOB resulting in a radical cation p-DMOB+●,the corresponding energy is 701.24 kJ·mol-1by B3LYP and 728.27 kJ·mol-1by MP2.The radical cation loses a hydrogen ion forming the radical p-DMOB·with the cleavage of the C―H bond on benzene ring and p-DMOB·copolymerizes forming a polymer.

        (1)Ménard,L.;Fontès,G.;Astier,S.Energy Convers.Manage. 2010,327.

        (2)Yu,Y.;Gu,L.;Zhu,C.;Aken,P.A.;Maier,J.J.Am.Chem.Soc. 2009,131,15984.

        (3)Yao,Z.D.;Wei,W.;Wang,J.L.;Yang,J.;Nuli,Y.N.Acta Phys.-Chim.Sin.2011,27,1005. [姚真東,魏 巍,王久林,楊 軍,努麗燕娜.物理化學(xué)學(xué)報(bào),2011,27,1005.]

        (4) Fergus,J.W.J.Power Sources 2010,195,939.

        (5)Xu.J.;Yao,W.H.;Yao,Y.W.;Wang,Z.C.;Yang,Y.Acta Phys.-Chim.Sin.2009,25,201. [許 杰,姚萬浩,姚宜穩(wěn),王周成,楊 勇.物理化學(xué)學(xué)報(bào),2009,25,201.]

        (6)Xu,M.Q.;Zuo,X.X.;Li,W.S.;Zhou,H.J.;Liu,J.S.;Yuan, Z.Z.Acta Phys.-Chim.Sin.2006,22,335.[許夢清,左曉希,李偉善,周豪杰,劉建生,袁中直.物理化學(xué)學(xué)報(bào),2006,22, 335.]

        (7) Feng,J.K.;Ai,X.P.;Cao,Y.L.;Yang,H.X.Electrochem. Commun.2007,9,25.

        (8)Chung,Y.S.;Yoo,S.H.;Kim,C.K.Ind.Eng.Chem.Res.2009, 48,4346.

        (9) Matsuta,S.;Kato,Y.;Ota,T.;Kurokawa,H.;Yoshimura,S.; Fujitani,S.J.Electrochem.Soc.2001,148,A7.

        (10) Moshkovich,M.;Cojocaru,M.;Gottlieb,H.E.;Aurbach,D. J.Electroanal.Chem.2001,497,84.

        (11)Xing,L.D.;Wang,C.Y.;Li,W.S.;Xu,M.Q.;Meng,X.L.; Zhao,S.F.J.Phys.Chem.B 2009,113,5181.

        (12)Xing,L.D.;Li,W.S.;Wang,C.Y.;Gu,F.L.;Xu,M.Q.;Tan, C.L.;Yi,J.J.Phys.Chem.B 2009,113,16596.

        (13) Balakrishnan,P.G.;Ramesh,R.;Kumar,T.P.J.Power Sources 2006,155,401.

        (14) Leising,R.A.;Palazzo,M.J.;Takeuchi,E.S.;Takeuchi,K.J. J.Power Sources 2001,97,681.

        (15) Li,S.L.;Ai,X.P.;Feng,J.K.;Cao,Y.L.;Yang,H.X.J.Power Sources 2008,184,553.

        (16)Xu,M.Q.;Xing,L.D.;Li,W.S.;Zuo,X.X.;Shu,D.;Li,G.L. J.Power Sources 2008,184,427.

        (17) Chen,J.;Buhrmester,C.;Dahn,J.R.Electrochem.Solid-State Lett.2005,8,A59.

        (18) Chen,Z.H.;Amine,K.Electrochim.Acta 2007,53,453.

        (19)Taggougui,M.;Carré,B.;Willmann,P.;Lemordant,D. J.Power Sources 2007,174,1069.

        (20)Wang,R.L.;Dahn,J.R.J.Electrochem.Soc.2006,153,A1922.

        (21) Zheng,H.H.;Wang,X.J.;Li,B.;Qin,J.H.Chin.J.Power Sources 2006,30,511.[鄭洪河,王顯軍,李 苞,秦建華.電源技術(shù),2006,30,511.]

        (22) Li,T.T.;Xing,L.D.;Li,W.S.;Peng,B.;Xu,M.Q.;Gu,F.L.; Hu,S.J.J.Phys.Chem.A 2011,115,4988.

        (23) Demartinez,M.C.;Marquez,O.P.;Marquez,J.;Hahn,F.; Beden,B.;Crouigneau,P.;Rakotondrainibe,A.;Lamy,C.Syth. Met.1997,88,187.

        (24) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision B.05;Gaussian Inc.:Pittsburgh,PA,2003.

        (25)Abbotto,A.;Streitwieser,A.;Schleyer,P.R.J.Am.Chem.Soc. 1997,119,11255.

        (26)Wang,Y.;Balbuena,P.B.J.Phys.Chem.A 2001,105,9972.

        (27)Tomasi,J.;Mennucci,B.;Cammi,R.Chem.Rev.2005,105, 2999.

        (28) Trasatti,S.Pure Appl.Chem.1986,58,955.

        October 31,2011;Revised:January 3,2012;Published on Web:January 13,2012.

        Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive

        LI Tian-Tian1WANG Chao-Yang1XING Li-Dan1LI Wei-Shan1,2,3,*PENG Bin1
        XU Meng-Qing1,2,3GU Feng-Long1,2,3HU She-Jun1,2,3
        (1School of Chemistry and Environment,South China Normal University,Guangzhou 510006,P.R.China;2Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes,South China
        Normal University,Guangzhou 510006,P.R.China;3Engineering Research Center of Materials and Technology for Electrochemical Energy Storage(Ministry of Education),South China Normal University,Guangzhou 510006,P.R.China)

        The reaction mechanism of 1,4-dimethoxybenzene(p-DMOB)as an overcharge protection additive for lithium ion batteries was determined by theoretical calculation of density functional theory (DFT)at the level of B3LYP/6-311+G(d,p)and MP2/6-311+G(d,p).It was found that p-DMOB is oxidized prior to the solvents,ethyl methyl carbonate,dimethyl carbonate,and ethylene carbonate,when the lithium ion battery is overcharged.The calculated oxidative potentials of p-DMOB by B3LYP and MP2 methods are well in agreement at 4.12 and 4.05 V(vs Li/Li+),respectively.The initial oxidation of p-DMOB involves a one-electron transfer resulting in a radical cation p-DMOB+●.The corresponding energy variations were 701.24 and 728.27 kJ·mol-1from B3LYP and MP2 calculations,respectively.The p-DMOB+●species then loses one proton forming a radical p-DMOB·through the breaking of a C―H bond on the benzene ring, with the corresponding energy variations of 1349.78 and 1810.99 kJ·mol-1for B3LYP and MP2, respectively.The p-DMOB·species is unstable and copolymerizes forming an insulated polymer with the corresponding energy variations of-553.37 and-1331.20 kJ·mol-1for B3LYP and MP2,respectively.

        Lithium ion battery;Overcharge protection additive;1,4-Dimethoxy benzene; Reaction mechanism;Density functional theory

        10.3866/PKU.WHXB201201132

        O646

        ?Corresponding author.Email:liwsh@scnu.edu.cn;Tel/Fax:+86-20-39310256.

        The project was supported by the Joint Project of National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province(U1134002)and Natural Science Foundation of Guangdong Province,China(10351063101000001).

        國家自然科學(xué)基金-廣東省人民政府自然科學(xué)聯(lián)合基金(U1134002)和廣東省自然科學(xué)基金(10351063101000001)資助項(xiàng)目

        猜你喜歡
        華南甲氧基師范大學(xué)
        華南風(fēng)采
        海峽姐妹(2019年8期)2019-09-03 01:00:46
        記華南女院前三任校長
        海峽姐妹(2018年10期)2018-12-26 01:20:56
        華南掠影
        海峽姐妹(2018年10期)2018-12-26 01:20:54
        蘇萌娜 初心不渝 情牽華南
        海峽姐妹(2018年10期)2018-12-26 01:20:52
        Study on the harmony between human and nature in Walden
        長江叢刊(2018年8期)2018-11-14 23:56:26
        2-(2-甲氧基苯氧基)-1-氯-乙烷的合成
        DAD-HPLC法同時測定龍須藤總黃酮中5種多甲氧基黃酮
        中成藥(2017年4期)2017-05-17 06:09:50
        Balance of Trade Between China and India
        商情(2017年9期)2017-04-29 02:12:31
        Courses on National Pakistan culture in Honder College
        Film Music and its Effects in Film Appreciation
        97久久人人超碰超碰窝窝| 国产一区二区三区四区在线视频 | 日本中文字幕乱码中文乱码| 狠狠躁夜夜躁人人爽超碰97香蕉| 国产青草视频在线观看| 久久精品国产99精品国偷| 国产av熟女一区二区三区老牛| 91自拍视频国产精品| 国产精品无码久久久久成人影院| 亚洲自拍另类制服在线| 亚洲一道一本快点视频| 亚洲一区二区三区99| 国产aⅴ无码专区亚洲av麻豆 | 日韩精品一区二区三区影音视频 | 日韩一区二区三区熟女| 日韩国产精品无码一区二区三区| 老熟妇高潮喷了╳╳╳| 国产日韩午夜视频在线观看| 亚洲视频在线观看一区二区三区| 四虎影视成人永久免费观看视频| 四虎永久免费一级毛片| 在线视频一区二区观看| 国产亚洲一区二区三区综合片| 天码人妻一区二区三区| 亚洲欧洲久久久精品| 国产在线观看黄片视频免费| 色88久久久久高潮综合影院| 正在播放国产对白孕妇作爱| 激情五月婷婷久久综合| 成年人干逼视频水好多| 四虎影视免费永久在线观看| 国产免费网站看v片元遮挡| 97久久综合精品国产丝袜长腿| 国产aⅴ无码专区亚洲av| 夜爽8888视频在线观看| 国产一区二区在线观看我不卡 | 一区二区三区在线视频爽| 精品人妻少妇av中文字幕| 精品国产一区二区三区av 性色| 国内精品久久久久影院蜜芽| 亚洲女同同性一区二区|