周 冉,楊 侃,李大亮,鄭 姣,劉國帥
(1.河海大學(xué)水文水資源學(xué)院,江蘇南京 210098;2.南京市水利規(guī)劃設(shè)計院有限責(zé)任公司,江蘇南京 210006)
實行水電站廠內(nèi)經(jīng)濟運行可提高經(jīng)濟效益1%~3%[1],因而該課題一直是國內(nèi)外的研究熱點.鄧先禮[2]探索了時滯對梯級水電站經(jīng)濟運行的影響;向凌等[3]在確定最優(yōu)負(fù)荷分配策略時考慮了發(fā)電機組啟停轉(zhuǎn)化導(dǎo)致的損水情況;徐洪泉等[4]考慮了穩(wěn)定性及抗空蝕磨損性能,從功能、精度和優(yōu)化時間等方面介紹了動態(tài)規(guī)劃算法的優(yōu)越性.目前一些進化算法[5-10]已在負(fù)荷分配計算中有了廣泛應(yīng)用,但因為一般存在早熟問題或不能滿足實時性要求,使得求解精度往往達不到要求.動態(tài)規(guī)劃算法具有全局收斂性,能滿足實時性要求[11].但從可獲文獻來看,在動態(tài)規(guī)劃廠內(nèi)經(jīng)濟運行模型精度問題方面研究較少.為了更好地解決廠內(nèi)經(jīng)濟運行模型計算結(jié)果與實際存在偏差的問題,本文采用插值法和四點法相結(jié)合的方法,以改進和提高水電站經(jīng)濟運行最佳負(fù)荷分配方案的精度.
當(dāng)系統(tǒng)要求的負(fù)荷確定時,以整個水電站所耗發(fā)電流量最少為目標(biāo),本文建立了“以電定水”模型:
a.階段和階段變量:將投入運行的機組依次編號,以新投入運行的機組編號 i為階段變量(i=1,2,…,m),則第i階段共有i臺機組在運行.
b.決策變量:以新投入運行的第i臺機組所承擔(dān)的負(fù)荷Pi作為決策變量,第i臺機組的可行出力范圍組成允許決策集合Gi,那么Pi∈Gi,若記子策略為 ui={P1,P2,…,Pi},則 um為全過程的一個策略.
c.狀態(tài)變量:以第 i階段所有運行機組的負(fù)荷總和Pzi作為狀態(tài)變量.
d.狀態(tài)轉(zhuǎn)移方程:Pzi=Pzi-1+Pi
f.遞推方程:
g.約束條件:
式中:Pzi-1——第i-1階段所有運行機組的總負(fù)荷;Qi(Pi)——第i臺機組承擔(dān)的負(fù)荷為Pi時所消耗的水量;Qzi(Pzi)——第i階段總負(fù)荷為Pzi時消耗的最小水量;Ps——系統(tǒng)給定的負(fù)荷;m——電廠內(nèi)所有機組總臺數(shù).
用動態(tài)規(guī)劃模型求解最佳負(fù)荷分配有兩大步驟:(a)根據(jù)遞推關(guān)系式進行逐段計算,順序求出各階段的最佳函數(shù);(b)逆序回代最佳函數(shù),求得各機組所承擔(dān)的負(fù)荷以及相應(yīng)的耗水量,機組臺數(shù)和組合方式,即最佳運行方式.
機組流量特性曲線是在某些離散水頭下的離散出力和流量之間的關(guān)系[12].當(dāng)離散度較高時,基于原始流量特性曲線的經(jīng)濟運行模型精度較低.本文采用插值法使離散水頭和離散出力盡可能連續(xù),以達到提高模型精度的目的.對于給定發(fā)電水頭和負(fù)荷條件下機組運行工況,采用四點法查詢獲得一定精度要求下的最佳負(fù)荷分配.
1.3.1 對發(fā)電水頭進行插值
1.3.2 對負(fù)荷進行插值
1.3.3 四點法
給定負(fù)荷NO和發(fā)電水頭HO可在圖中確定O點.與O 點相鄰的離散點有4個:A,B,C,D.第 1步:確定近似負(fù)荷.在與水頭H(k)、H(k+1)相應(yīng)的優(yōu)化特性曲線上各選一點,使其與目標(biāo)點O的負(fù)荷相差最小,如圖B點到O點的水平距離比A點到O點的距離小,選擇B點,同樣可選出 C點.第2步,確定近似發(fā)電水頭,選取與目標(biāo)點O的發(fā)電水頭相差最小的點,如圖1所示,L(k)<L(k+1),因此近似水頭為H(k),選定B點為目標(biāo)點O的近似點,以B點的機組臺數(shù)、機組組合以及負(fù)荷分配作為給定負(fù)荷和發(fā)電水頭的最優(yōu)負(fù)荷分配.四點法取得的是與實際要求誤差最小的近似點,對于精度提高具有正面影響.
圖1 四點法示意圖Fig.1 Sketch map of four-point method
葛洲壩水電站共有發(fā)電機組21臺,裝機容量為12.5萬kW的小機組19臺,編號為1~19,裝機容量為17萬kW的大機組2臺,編號為20,21.廠家提供的動力特性曲線以1m,0.1萬kW為精度.負(fù)荷以0.1萬kW為步長,水頭精度采用0.1m,0.01m建立“以電定水”模型,采用上述方法得到結(jié)果如表1所示.R為耗水量減少百分率.
表1 不同精度下的最優(yōu)工況Table 1 Optimal conditions with different accuracies
精度為0.01m時,求得2009年1月1日、3—5日、12日的最優(yōu)機組組合、負(fù)荷分配結(jié)果,見表2.
表2 基于DP算法的最優(yōu)負(fù)荷、流量分配Table 2 Distributions of optimal load and flow based on DP algorithm
a.通過“插值法”對流量特性曲線進行插值擬合降低其離散度,應(yīng)用于建立廠內(nèi)經(jīng)濟運行模型中,可以提高模型精度,獲得的最佳負(fù)荷分配方式與實際運行工況偏差較小.
b.隨著精度的提高,計算機的儲存量和計算量不斷加大,計算時間變長,這與滿足實時性要求相悖.因此規(guī)模不同的水電站,模型精度要根據(jù)具體情況確定.模型的精度問題還有待進一步研究.
[1]韓桂芳,陳啟華,張仁貢.動態(tài)規(guī)劃法在水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用[J].水電能源科學(xué),2005,23(1):48-51.(HAN Guifang,CHEN Qi-hua,ZHANG Reng-gong.Application of dynamic programming in inner-plant economical operation of hydropower station[J].Water Resources and Power,2005 ,23(1):48-51.(in Chinese))
[2]鄧先禮.時滯對梯級水電站經(jīng)濟運行的影響[J].重慶大學(xué)學(xué)報,1982(2):91-102.(DENG Xian-li.On the effect lag upon the economical operation of cascade hydroelectric power stations[J].Journal of Chongqing University,1982(2):91-102.(in Chinese))
[3]向凌,賀勝輝,周建中,等.機組啟停導(dǎo)致?lián)p水的最優(yōu)策略研究[J].繼電器,2004,32(12):29-31.(XIANG Ling,HESheng-hui,ZHOUJian-zhong ,et al.Study of optimization strategy inthewater-loss condition caused by staring and stopping of generator[J].Relay,2004,32(12):29-31.(in Chinese))
[4]徐洪泉,王萬鵬.考慮穩(wěn)定性和空蝕磨損性能的水電站優(yōu)化調(diào)度系統(tǒng)[J].水利水電技術(shù),2010,41(9):76-79.(XU Hongquan,WANG Wang-peng.Optimized operation system of hydro power station under consideration of operation stability and cavitation erosion resistance[J].Water Resources and Hydro power Engineering,2010,41(9):76-79.(in Chinese))
[5]申建建,程春田,張俊,等.蜜蜂進化算法在水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用[J].水電能源科學(xué),2008,26(3):137-140.(SHENG Jian-jian,CHENG Chun-tian,ZHANG Jun,et al.Application of honey-bee evolutionary algorithm for optimal operation of hydropower units[J].Water Resources and Power,2008,26(3):137-140.(in Chinese))
[6]趙雪花,黃強,吳建華.蟻群算法在水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用[J].水力發(fā)電學(xué)報,2009,28(2):139-142.(ZHAOXua-hua,HUANG Qiang,WU Jian-hua.Application of ant colony algorithm for economic operation of hydropower station[J].Journal of Hydroelectric Engineering,2009 ,28(2):139-142.(in Chinese))
[7]李剛,程春田,唐子田,等.結(jié)合禁忌搜索思想的粒子群算法在烏江渡水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用研究[J].水力發(fā)電學(xué)報 ,2009 ,28(2):128-132.(LI Gang ,CHENG Chun-tian ,TANG Zi-tian,et al.An improved PSO algorithm embedded TS for economic operation of Wujiangdu Hydroelectric Plant[J].Journal of Hydroelectric Engineering,2009 ,28(2):128-132.(in Chinese))
[8]楊鴻鋒,張志剛,黃偉軍.差分進化算法及其在水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用[J].中國農(nóng)村水利水電,2009(7):113-118.(YANG Hong-feng,ZHANG Zhi-gang,HUANG Wei-jun.Differential evolution algorithm and its application in economic operation of hydropower[J].China Rural Water and Hydro power,2009(7):113-118.(in Chinese))
[9]常黎,周建中,李瓊,等.抽水蓄能電站優(yōu)化運行方式的混合遺傳算法[J].華中科技大大學(xué)學(xué)報,2002,30(6):99-101.(CHANG Li,ZHOU Jian-zhong,LIQiong,et al.Themixed genetic algorithm for optimal operation pattern of pumped storage plant[J].Journal of Huazhong University of Science and Technology,2002,30(6):99-101.(in Chinese))
[10]袁曉輝,袁艷斌,張勇傳.電力系統(tǒng)中機組組合的現(xiàn)代智能優(yōu)化方法綜述[J].電力自動化設(shè)備,2003,23(2):73-78.(YUAN Xiao-hui,YUAN Yan-bin,ZHANG Yong-chuan.A survey of modern intelligence optimization for unit commitment in electric power systems[J].Electric Power Automation Equipment,2003,23(2):73-78.(in Chinese))
[11]權(quán)先璋.動態(tài)規(guī)劃原理在水電站廠內(nèi)經(jīng)濟運行中的應(yīng)用[J].水電能源科學(xué),1983,1(1):95-104.(QUAN Xian-zhang.Application of the dnamic programming principle to economic operation in a hydroelectric plant[J].Water Resources and Power,1983,1(1):95-104.(in Chinese))
[12]賀勝暉,張學(xué)濤,陶學(xué)軍,等.水電廠廠內(nèi)經(jīng)濟運行的實現(xiàn)[J].繼電器,2005,33(5):72-74.(HE Sheng-hui,ZHANG Xue-tao,TAO Xue-jun ,et al.Realization of economical operation of hydroelectric plant[J].Relay,2005,33(5):72-74.(in Chinese))