于利娟,李建軍,杜文權(quán)
(西安電子科技大學(xué)理學(xué)院,陜西西安 710071)
實(shí)際應(yīng)用中,組合導(dǎo)體平臺(tái)前加載線天線的實(shí)例不勝枚舉,合理對(duì)線天線建模并準(zhǔn)確分析其輻射特性尤為重要。S.U.Hwu、Wei-Bin Ewe等在這方面做了大量工作[1-2],但對(duì)線、面以及連接結(jié)構(gòu)用到了不同的基函數(shù),這就使得公式推導(dǎo)相對(duì)繁瑣而且近似較多。Makarov使用窄帶來替代具有等效半徑的線天線[3],使得在整個(gè)模型上都可應(yīng)用相同的基函數(shù),簡(jiǎn)化了公式推導(dǎo)。
數(shù)值算法中,MoM、FDTD等都可用于研究導(dǎo)體平臺(tái)上線天線的輻射問題[4-5],且MoM的結(jié)果一貫被人們接受,但卻難以求解電大尺寸目標(biāo)的電磁問題[6],因此采用高低頻混合算法來加速計(jì)算得到了發(fā)展[7]。采用混合MoM-PO方法分析導(dǎo)體平臺(tái)上線天線輻射問題時(shí),需將天線、近場(chǎng)強(qiáng)耦合區(qū)以及平臺(tái)上的不規(guī)則區(qū)域劃為MoM區(qū),其它劃歸為PO區(qū)域,因?yàn)橛糜赑O近似的磁場(chǎng)積分方程只能用于處理閉域問題,雖速度快但精度差;用MoM計(jì)算的電場(chǎng)積分方程可求解全域問題,雖精度高但速度慢。MoM-PO方法可結(jié)合上述兩種求解積分方程方法的優(yōu)點(diǎn),通過合理劃分MoM、PO區(qū)域,可以保證在一定計(jì)算精度的前提下提高計(jì)算效率,數(shù)值結(jié)果也驗(yàn)證了這種方法的有效性。
就天線的阻抗和輻射方向圖而言,不計(jì)厚度的窄帶天線與具有等效半徑的圓柱天線有相同的電性能。由文獻(xiàn)[8]推導(dǎo)出,窄帶天線的等效半徑為其寬度的1/4,即
將線天線用窄帶天線建模后,對(duì)流經(jīng)其上的電流就可以使用RWG基函數(shù)[9]展開,使其沿著帶的橫向只有一個(gè)邊元,如圖1所示,兩個(gè)相鄰的邊元能夠沿帶軸向形成均勻電流[3]。
圖1 窄帶天線模型
針對(duì)用三角面片擬合的線天線模型,文中采用δ函數(shù)發(fā)生器法對(duì)天線饋電,文獻(xiàn)[3]給出了電壓列向量的計(jì)算結(jié)果:
(1)偶極子中心饋電的情況
(2)單極子面面連接處饋電的情況
將模型表面劃分為MoM、PO區(qū)域后,假設(shè)表面上的電流分別為JMoM和JPO,并利用RWG基函數(shù)展開如下
根據(jù)導(dǎo)體表面的邊界條件分別建立EFIE和MFIE
式中,Etan為饋電電壓沿軸向的切向分量;G(r,r')、η、k分別為自由空間的格林函數(shù)、波阻抗、波數(shù);δn為PO區(qū)面片的遮擋系數(shù),被遮擋時(shí)取0,否則取1;為PO區(qū)面片的外法向單位矢量;是為便于計(jì)算引入的一對(duì)矢量[10],它們分別是正負(fù)三角形內(nèi)垂直于公共邊ln的單位矢量,方向如圖2所示。
圖2 三角形面片對(duì)及矢量
選取RWG基函數(shù)fm為檢驗(yàn)函數(shù),對(duì)式(6)兩邊分別取內(nèi)積,經(jīng)整理可得
其中矩陣元素經(jīng)整理后為
式中,[Z']為MoM與PO區(qū)域間的耦合阻抗矩陣;δ+、δ-分別為所研究PO面片正負(fù)三角形的遮擋因子;[V]為電壓列向量矩陣;[I]為待求的MoM區(qū)域電流系數(shù)矩陣,即[αn]。
對(duì)于線天線的輻射問題,PO區(qū)域的電流系數(shù)可參考文獻(xiàn)[10]的方法求得,為
綜上,在得知MoM,PO區(qū)域的電流展開系數(shù)后,即可通過式(4)和式(5)得出導(dǎo)體表面的感應(yīng)電流,繼而可求得天線的輻射場(chǎng)分布。
例1 如圖3所示,3 m×3 m的正方形導(dǎo)體板位于XOY平面內(nèi),中心在坐標(biāo)原點(diǎn),距離其上方0.75 m處平行于Y軸放置一偶極子天線,中心饋電,工作頻率為300 MHz。偶極子天線半徑為0.001 m,等效的窄帶寬度取為0.004m。MoM計(jì)算時(shí),總的未知量數(shù)目為2 679,計(jì)算時(shí)間為430 s,占用內(nèi)存114 056 kB;選取偶極子天線為MoM區(qū)域,其它為PO區(qū)域采用混合方法計(jì)算時(shí),MoM區(qū)域未知數(shù)為39,PO區(qū)域未知數(shù)為2 640,計(jì)算時(shí)間306 s,占用內(nèi)存3 452 kB。XOZ平面的歸一化輻射方向圖如圖4所示。
圖3 導(dǎo)體平板前半波陣子示意圖
圖4 XOZ面歸一化輻射方向圖
例2 如圖5,半徑為0.5 λ的導(dǎo)體球前放置一偶極子天線,天線平行于Z軸放置,中心饋電,半徑為0.001 λ,等效窄帶寬度為0.004 λ,饋電點(diǎn)距離球心1.5 λ。MoM計(jì)算時(shí),總的未知量數(shù)目為1 479,計(jì)算時(shí)間為97 s,占用內(nèi)存35 576 kB;選取偶極子天線為MoM區(qū)域,其它為PO區(qū)域采用混合方法計(jì)算時(shí),MoM區(qū)域未知數(shù)為39,PO區(qū)域未知數(shù)為1 440,計(jì)算時(shí)間76 s,占用內(nèi)存2 396 kB。XOY平面的歸一化輻射方向圖如圖6所示。
以上計(jì)算結(jié)果表明:MoM、混合MoM-PO方法和FEKO結(jié)果基本一致,主瓣方向圖吻合良好,副瓣方向圖有些許偏差,但混合方法較MoM計(jì)算效率更高,內(nèi)存需求量更低。下面給出一尺寸稍大的模型,考慮計(jì)算時(shí)間的問題,只對(duì)混合MoM-PO方法和FEKO結(jié)果作一對(duì)比。
例3 如圖7所示,尺寸為3 λ ×3 λ ×1.5 λ 的長(zhǎng)方體導(dǎo)體中心坐標(biāo)為( -0.75 λ,0,0),左側(cè)平面與YOZ平面重合,在該導(dǎo)體左側(cè)挖去一半球,半球的半徑為,球心位于坐標(biāo)原點(diǎn)。平行于Z軸放置一偶極子天線,中心位于坐標(biāo)原點(diǎn),偶極子中心饋電,天線半徑為0.001 m,等效的窄帶寬度取0.004 m,選取偶極子天線為MoM區(qū)域,其他為PO區(qū)域。XOY平面的歸一化輻射方向圖如圖8所示。
用混合MoM-PO方法計(jì)算了基于窄帶建模的組合導(dǎo)體平臺(tái)前的線天線輻射特性。通過對(duì)線天線用三角面片擬合,并在全局使用同一種基函數(shù)和檢驗(yàn)函數(shù),簡(jiǎn)化了公式推導(dǎo),減少了近似過程。上述實(shí)例的計(jì)算結(jié)果與MoM、FEKO軟件的仿真結(jié)果對(duì)比顯示:在保證了一定計(jì)算精度的前提下,有效提高了計(jì)算效率。這也證明了混合方法的有效性和可行性。
[1]HWU S U,WILTON D R,RAO S M.Electromagnetic scattering and radiation by arbitrary conducting wire/surface configurations[C].New York:Antenna and Propa Society International Symposium:3,IEEE,1988:890 -893.
[2]EWE W B,LI L W,CHANG C S,et al.AIM analysis of scattering and radiation by arbitrary surface-wire configurations[J].IEEE Transcations on Antennas Propagation,2007,55(1):162-166.
[3]MAKAROV S N.Antenna and EM modeling with Matlab[M].New York:John Wiley & Sons,2002.
[4]萬繼響,張玉,梁昌洪.任意導(dǎo)體與線天線連接問題的MoM 分析[J].電波科學(xué)學(xué)報(bào),2003,18(5):523 -528.
[5]閆玉波,李清亮.復(fù)雜載體短波天線特性的FDTD模擬與分析[J].電子科技大學(xué)學(xué)報(bào),2004,19(2):135 -142.
[6]秦三團(tuán).電磁散射的時(shí)域積分方程法研究[D].西安:西安電子科技大學(xué),2005.
[7]LING Jin,GONG Shuxi,QIN Santuan,et al.Radiation analysis of on‐platform antenna using MoM‐PO combined with surface - surface configuration[J].International Journal of RF and Microwave Computer- Aided Engineering,2010,20(6):667-671.
[8]Butler C.The equivalent radius of a narrow conducting strip[J].IEEE Trans on Antennas Propa,1982,30(4):755 -758.
[9]RAO S M,WILTON D R,GLISSONA W.Electromagnetic scattering by surfaces of arbitrary shape[J].IEEE Trans on Antennas Propa,1982,30(3):409 -418.
[10]JAKOBUS U,LANDSTROFER F M.Improved P0-MM hybrid formulation for scattering from three dimensional perfectly conducting bodies of arbitrary shape[J].IEEE Trans on Antennas Propa,1995,43(2):162-169.