亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Chaos of discrete dynamical systems in complete metric spaces

        2012-05-09 11:52:22ZHAIHongliLINYajingSUNBo
        關(guān)鍵詞:編校紅利理工大學(xué)

        ZHAI Hongli, LIN Yajing, SUN Bo

        ?

        Chaos of discrete dynamical systems in complete metric spaces

        ZHAI Hong-li, LIN Ya-jing, SUN Bo

        (College of Mathematics and Computers, Changsha University of Science and Technology, Changsha 410114, China)

        Chaos of discrete dynamical systems in metric spaces was discussed. Two existing criteria for chaos was improved, and it is proven that a system was topologically conjugate to a symbolic dynamical system if it has a regular degenerate snap-back repeller.

        Metric space; discrete dynamical system; chaos; snap-back repeller

        Consider the following discrete dynamical system:

        Chaos for interval maps or one dimensional discrete dynamical systems have been studied by T.Y. Li, J. A. Yorke, Goong Chen and other authors[1-4]. Chaos for n-dimensional discrete dynamical systems was first studied by F. R. Marotto, then by Li, Chen, Hsu S and Zhou[5-7]. In 2004, Y. Shi and G. Chen studied system (1) for general metric spaces, and obtained results as follows.

        In this paper, we aim to modify Shi's work and deduce chaos of discrete dynamical systems in complete metric spaces under fewer conditions. We modify Proposition 1, and obtain the same chaos results under condition (a) and (b). Then we modify Proposition 2, and prove that the discrete dynamical system is chaotic under condition (a). Finally, we simplify Proposition 3 and get a better one.

        This paper is organized as follows: In section 1 we recall some preliminary definitions and lemmas; In section 2 we state our main results and prove them.

        1 Definitions and lemmas

        For convenience, we recall some definitions and lemmas as follows[3,8]:

        2 Main results

        Proof The proof is similar to that of Yuming Shi (Ref. [8], Theorem 1). So we recall the main steps of Yuming Shi, and modify a key step.

        The proof is divided into three steps:

        Combining Proposition 6 and the arguments on Theorem 1, we have:

        Acknowledgements

        The research for this work was supported, in part, by the Natural Sciences Council of China.

        [1] Roger Temam. Infinte-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 1998.

        [2] Li T Y, Yorke J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82: 985-992,.

        [3] Chen G, Huang T, Huang Y. Chaotic behavior of interval maps and total variations of iterates[J]. Int J Bifur chaos, 2004, 14: 2161-2186.

        [4] Zhou Z L. Symbolic Dynamical Systems[M]. Shanghai: Shanghai Science and Technology Press, 1997.

        [5] Sun B, Xiao H, Zhang X. A note on chaotic behavior of interval maps[J]. J Physics: Conference Series, 2008, 96: 1-4.

        [6] Frederick R. Marotto. Snap-back repellers imply chaos inR[J]. J Math Anal Appl, 1978, 63: 199-223.

        [7] Chen G, Hsu S, Zhou J. Snap-back repellers as a cause of chaotic vibration of the wave equation with a Van der Pol boundary condition and energy injection at the middle of the span[J]. J Math Phys, 1998, 39: 6459-6489.

        [8] Li C, Chen G. An improved version of the Marotto Theorem[J]. Chaos, Solitons and Fractals, 2003, 18: 969-977.

        [9] Shi Yuming, Chen Guanrong. Chaos of discrete dynamical systems in complete metric spaces[J]. Chaos, solitons and fractals, 2004, 22: 555-571.

        完備度量空間中離散動力系統(tǒng)的混沌

        翟紅利,林亞靜,孫 波

        (長沙理工大學(xué) 數(shù)學(xué)與計算科學(xué)學(xué)院, 湖南 長沙, 410114)

        考慮度量空間中離散動力系統(tǒng)的混沌, 改進(jìn)了兩條現(xiàn)有判據(jù), 證明了當(dāng)一個系統(tǒng)有正則退化snap-back repeller時拓?fù)涔曹椨诜杽恿ο到y(tǒng).

        度量空間; 離散動力系統(tǒng); 混沌; snap-back repeller

        O 193

        1672-6146(2012)01-0001-04

        10.3969/j.issn.1672-6146.2012.01.001

        2011-10-24

        翟紅利(1987-), 女, 碩士研究生, 研究方向為動力系統(tǒng)與控制理論.

        孫波(1965-), 男, 博士, 教授, 主要研究方向為偏微分方程、動力系統(tǒng)與控制理論. E-mail:sunbo52002@ yahoo.com.cn

        (責(zé)任編校:劉曉霞)

        猜你喜歡
        編校紅利理工大學(xué)
        推進(jìn)充分就業(yè) 實現(xiàn)“人口紅利”向“人才紅利”轉(zhuǎn)變
        華人時刊(2023年13期)2023-08-23 05:42:52
        昆明理工大學(xué)
        昆明理工大學(xué)
        昆明理工大學(xué)
        浙江理工大學(xué)
        把編校質(zhì)量的弦繃得更緊
        傳媒評論(2018年10期)2019-01-17 01:33:34
        富硒紅利一觸即發(fā)
        Finite-time Synchronization of Memristor-based Neural Networks with Discontinuous Activations
        健康紅利
        商周刊(2017年26期)2017-04-25 08:13:03
        牌照紅利之后的直銷未來
        国产精品卡一卡二卡三| 国产亚洲午夜精品久久久| 亚洲av无码偷拍在线观看| 欧美a级情欲片在线观看免费| 日本免费一区尤物| 在线观看极品裸体淫片av| 丝袜美腿人妻第一版主| 精品无码国产自产拍在线观看| 久草热8精品视频在线观看| 亚洲男人的天堂在线aⅴ视频 | 无遮挡十八禁在线视频国产制服网站| 青青草免费在线手机视频| 国产偷国产偷亚洲综合av| 午夜精品久久久久久毛片| 少妇精品无码一区二区三区| 亚洲av影片一区二区三区| 精品女同一区二区三区| 一本大道熟女人妻中文字幕在线| 国产亚洲av综合人人澡精品| 日本少妇按摩高潮玩弄| 国产av一区二区网站| 国产精品对白一区二区三区| 麻豆影视视频高清在线观看| 亚洲伊人久久大香线蕉影院| 国产日韩乱码精品一区二区 | 无码人妻aⅴ一区二区三区| 日韩国产成人无码av毛片蜜柚| 日本午夜免费福利视频| 久久午夜无码鲁丝片直播午夜精品| 青青草视全福视频在线| 一本久久a久久免费综合| 亚洲午夜精品久久久久久人妖 | 精品91精品91精品国产片| 今井夏帆在线中文字幕| 国产无夜激无码av毛片| 国产精品第一二三区久久蜜芽| 国产亚洲精品成人av在线| 国产黄色av一区二区三区| 亚洲人成无码区在线观看| 国产福利午夜波多野结衣| 国产精品欧美韩国日本久久|