游思維
成年哺乳動(dòng)物發(fā)育和再生的嗅神經(jīng)能夠進(jìn)入嗅球,在中樞神經(jīng)系統(tǒng)微環(huán)境中生長并與靶細(xì)胞建立突觸聯(lián)系。嗅球之所以有別于其他中樞神經(jīng)系統(tǒng)組織,具有終身支持嗅神經(jīng)再生的能力,就在于嗅黏膜、嗅神經(jīng)和嗅球中廣泛分布的嗅鞘細(xì)胞(olfactory ensheathing cells)。嗅鞘細(xì)胞是一種其前體細(xì)胞位于嗅黏膜內(nèi)的特殊大膠質(zhì)細(xì)胞,在發(fā)育、形態(tài)和免疫細(xì)胞化學(xué)等諸多方面,與其他類型膠質(zhì)細(xì)胞截然不同。嗅鞘細(xì)胞兼具雪旺細(xì)胞和星形膠質(zhì)細(xì)胞的特性,能構(gòu)成嗅神經(jīng)鞘膜包繞嗅神經(jīng)元的軸突,自周圍神經(jīng)系統(tǒng)主動(dòng)遷移進(jìn)入嗅球并與其自然整合。嗅鞘細(xì)胞還可分泌多種神經(jīng)營養(yǎng)因子,表達(dá)不同親和性的神經(jīng)營養(yǎng)因子受體,分泌軸突再生所必需的細(xì)胞外基質(zhì)和細(xì)胞黏附分子。嗅鞘細(xì)胞具有以上優(yōu)點(diǎn),近20年來已成為中樞神經(jīng)損傷后細(xì)胞移植修復(fù)理論及應(yīng)用基礎(chǔ)研究領(lǐng)域的熱點(diǎn),并不斷取得進(jìn)展和突破。嗅鞘細(xì)胞已成為可供中樞神經(jīng)系統(tǒng)損傷后細(xì)胞移植治療的重要備選細(xì)胞之一。
胚胎發(fā)育時(shí)期,嗅鞘細(xì)胞直接起源于外胚層的鼻板,有別于星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞等起源于腦泡的中樞神經(jīng)系統(tǒng)膠質(zhì)細(xì)胞。嗅鞘細(xì)胞廣泛分布于嗅黏膜、嗅神經(jīng)和嗅球的表面兩層(嗅神經(jīng)纖維層和嗅小球?qū)樱?,其在體內(nèi)、外的形態(tài)學(xué)特征,也不同于其他類型的膠質(zhì)細(xì)胞。因此,不能將嗅鞘細(xì)胞混同于任何其它周圍神經(jīng)系統(tǒng)和中樞神經(jīng)系統(tǒng)的膠質(zhì)細(xì)胞。
不同發(fā)育和生長階段的嗅鞘細(xì)胞的形態(tài)均具有特征。發(fā)育中的嗅鞘前體細(xì)胞因其深色外表、與軸突的聯(lián)系方式及電鏡形態(tài)而有別于其他遷移細(xì)胞。遷移嗅鞘細(xì)胞有長、圓形兩種。前者發(fā)出纖細(xì)的層狀突起包裹小的軸突束,被認(rèn)為是“成熟”嗅鞘細(xì)胞;后者最大可能是嗅鞘前體細(xì)胞,其后分化為成熟嗅鞘細(xì)胞。成年動(dòng)物嗅球內(nèi)的嗅鞘細(xì)胞僅在形成膠質(zhì)細(xì)胞外限制膜的區(qū)域與基板接觸,這點(diǎn)不同于雪旺細(xì)胞,卻類似于星形膠質(zhì)細(xì)胞。同其他周圍神經(jīng)系統(tǒng)-中樞神經(jīng)系統(tǒng)移行區(qū)相比,嗅鞘細(xì)胞和星形膠質(zhì)細(xì)胞的漿膜并未被基底膜所阻隔。嗅鞘細(xì)胞也可在血管處形成終鈕。供體動(dòng)物年齡和培養(yǎng)條件的差異,可使體外培養(yǎng)的嗅鞘細(xì)胞形態(tài)相去甚遠(yuǎn)。原代培養(yǎng)成年大鼠嗅球的表面兩層,可獲得三種不同形態(tài)的細(xì)胞:梭形細(xì)胞、扁圓形細(xì)胞和有突起的多極細(xì)胞。梭形細(xì)胞被認(rèn)為是毛細(xì)血管內(nèi)皮細(xì)胞,扁圓形細(xì)胞為小膠質(zhì)細(xì)胞,多突起細(xì)胞符合嗅鞘細(xì)胞的表型和功能標(biāo)準(zhǔn),因此被確定為嗅鞘細(xì)胞。根據(jù)免疫親和原理,可用抗低親和性神經(jīng)營養(yǎng)素受體p75抗體將嗅鞘細(xì)胞從其他取自嗅球的培養(yǎng)細(xì)胞純化出來。
嗅鞘細(xì)胞在發(fā)育和成年期均可包裹生長或損傷修復(fù)中的嗅神經(jīng)纖維,為其提供適宜的生長環(huán)境。這一獨(dú)特作用,有其獨(dú)特的表型基礎(chǔ)。Vimentin是一種主要在中樞神經(jīng)系統(tǒng)發(fā)育階段表達(dá)的蛋白質(zhì),是成年動(dòng)物嗅鞘細(xì)胞中間絲的主要成分,表明嗅鞘細(xì)胞保留了未成熟的表型,因而具有促進(jìn)軸突生長的特性。嗅鞘細(xì)胞能夠分泌多種促進(jìn)神經(jīng)元存活和軸突再生所必需的細(xì)胞外基質(zhì)和細(xì)胞黏連分子(如L1、層黏連蛋白、纖維連接蛋白和神經(jīng)細(xì)胞黏附分子等)神經(jīng)營養(yǎng)因子并表達(dá)不同親和性的神經(jīng)營養(yǎng)因子受體,在中樞神經(jīng)系統(tǒng)內(nèi)提供了適宜軸突生長再生的環(huán)境。嗅鞘細(xì)胞還能夠產(chǎn)生血小板源性生長因子、神經(jīng)肽Y和S100,這些因子都是已知的促進(jìn)神經(jīng)細(xì)胞生長和存活的因子。
成年動(dòng)物嗅覺系統(tǒng)和嗅鞘細(xì)胞保留了許多發(fā)育階段的特性和可塑性,因此植入異體中樞神經(jīng)系統(tǒng)的嗅鞘細(xì)胞具有隨再生軸突遷移并促進(jìn)軸突再生的能力。盡管其他膠質(zhì)細(xì)胞已被用于促進(jìn)成年中樞神經(jīng)系統(tǒng)的修復(fù),但嗅鞘細(xì)胞似乎為更佳選擇。嗅鞘細(xì)胞在正常情況下存在于中樞神經(jīng)系統(tǒng),與中樞神經(jīng)系統(tǒng)的整合及在其內(nèi)部的遷移是自然的,也就使得嗅鞘細(xì)胞所形成的支架橋梁,能夠穿越再生軸突無法逾越的膠質(zhì)瘢痕。與星形膠質(zhì)細(xì)胞及雪旺細(xì)胞相比,嗅鞘細(xì)胞可成功與宿主成年中樞神經(jīng)系統(tǒng)實(shí)質(zhì)整合,并伴隨再生軸突向特定的靶組織遷移。近年來,嗅鞘細(xì)胞不斷被用于中樞神經(jīng)系統(tǒng)尤其是脊髓損傷修復(fù)的研究。
1.嗅鞘細(xì)胞對(duì)脊髓損傷修復(fù)的作用:嗅鞘細(xì)胞促進(jìn)中樞神經(jīng)系統(tǒng)再生的研究始于1994年。Ramon-Cueto等[1]首次將純化的嗅鞘細(xì)胞植入異體成年大鼠脊髓胸10節(jié)段背根神經(jīng)進(jìn)入脊髓處,發(fā)現(xiàn)被切斷的背根神經(jīng)可再生進(jìn)入成年大鼠脊髓,伴隨嗅鞘細(xì)胞穿過脊髓后外側(cè)束和背根與脊髓移行區(qū)的膠質(zhì)瘢痕,進(jìn)入雙側(cè)脊髓第Ⅰ、Ⅱ、Ⅲ板層。一些傳入纖維穿行于第Ⅳ、Ⅴ板層內(nèi)側(cè),并經(jīng)灰連合背側(cè)到達(dá)對(duì)側(cè)后角,部分再生軸突可抵達(dá)對(duì)側(cè)后角第Ⅲ、Ⅳ板層。盡管僅有少量纖維長入后索,但再生的感覺纖維并不進(jìn)入前索,所有這些軸突都進(jìn)入在正常情況下應(yīng)該抵達(dá)的板層。鑒于移植的嗅鞘細(xì)胞和再生軸突位于同一部位,且再生纖維不進(jìn)入在正常情況下并不支配的區(qū)域,作者認(rèn)為軸突沿特定途徑再生,嗅鞘細(xì)胞伴隨再生軸突并為其生長提供適宜的環(huán)境。
李英和Raisman等[2-3]在其前期形態(tài)學(xué)研究的基礎(chǔ)上,以電極破壞成年大鼠一側(cè)頸髓皮質(zhì)脊髓束,將取自成年大鼠嗅球原代培養(yǎng)未經(jīng)純化的嗅鞘細(xì)胞(含小膠質(zhì)細(xì)胞和血管內(nèi)皮細(xì)胞)植入損傷區(qū)。術(shù)后1周損傷纖維出現(xiàn)纖細(xì)、有小分支的枝芽,并依附嗅鞘細(xì)胞沿皮質(zhì)脊髓束向尾側(cè)方向延伸。這些再生神經(jīng)纖維于術(shù)后3周聚集成束,穿越損傷區(qū)域全長,進(jìn)入皮質(zhì)脊髓束的尾側(cè)段,并首次取得大鼠脊髓損傷后截癱肢體運(yùn)動(dòng)功能恢復(fù)的重大突破。此項(xiàng)研究于1997年發(fā)表于《Science》,并被該雜志評(píng)為當(dāng)年十大科技進(jìn)展之一。他們進(jìn)一步的研究觀察到,移植入的嗅鞘細(xì)胞分兩種主要類型:一種是表達(dá)p75的S細(xì)胞,另一種為表達(dá)纖維連接蛋白的A細(xì)胞。前者包繞單一軸突形成典型一對(duì)一方式的周圍神經(jīng)髓鞘,后者則聚集為管狀鞘膜包裹成束的纖維,當(dāng)再生纖維重返中樞神經(jīng)系統(tǒng)微環(huán)境時(shí)被少突膠質(zhì)細(xì)胞所包裹。因此,嗅鞘細(xì)胞的主要作用被認(rèn)為是為受損中樞神經(jīng)纖維提供跨越損傷區(qū)域的橋梁[4]。
李英和Raisman的研究僅選擇性損傷了一側(cè)皮質(zhì)脊髓束,Ramon-Cueto等[5]則將嗅鞘細(xì)胞移植用于脊髓全橫斷損傷后的修復(fù)。他們在完全離斷的脊髓斷端間置入充滿雪旺細(xì)胞的引導(dǎo)管,然后采用立體定向技術(shù),在兩斷端脊髓實(shí)質(zhì)內(nèi)經(jīng)微玻管注入純化的成年大鼠嗅球原代培養(yǎng)的嗅鞘細(xì)胞懸液。大量紅核脊髓束和上行脊髓固有神經(jīng)的再生纖維與嗅鞘細(xì)胞并行,穿越膠質(zhì)瘢痕后經(jīng)引導(dǎo)管進(jìn)入損傷區(qū)對(duì)側(cè)的脊髓組織內(nèi),并在白質(zhì)和灰質(zhì)中與植入的嗅鞘細(xì)胞并行長距離延伸。在其后的研究中,Ramon-Cueto等[6]研究的是全橫斷脊髓后不再應(yīng)用雪旺細(xì)胞引導(dǎo)管,而只將嗅鞘細(xì)胞懸液植入脊髓斷端內(nèi)。所有接受嗅鞘細(xì)胞移植的大鼠均于術(shù)后3~7月恢復(fù)了截癱后肢支撐體重和自主運(yùn)動(dòng)的功能,并出現(xiàn)對(duì)輕觸覺和本體覺刺激的反射活動(dòng)。
應(yīng)用嗅鞘細(xì)胞脊髓內(nèi)移植在短短3年時(shí)間內(nèi)連續(xù)獲得截癱大鼠肢體運(yùn)動(dòng)功能的恢復(fù),使科學(xué)家們極為振奮,不斷努力將嗅鞘細(xì)胞移植作為攻克創(chuàng)傷性截癱的第二代療法。然而,隨著嗅鞘細(xì)胞研究的不斷深入,也出現(xiàn)了部分相左的意見??v觀十多年的文獻(xiàn),絕大多數(shù)的研究是肯定嗅鞘細(xì)胞移植具有促進(jìn)脊髓修復(fù)作用:(1)能夠促進(jìn)動(dòng)物行走、姿勢和呼吸運(yùn)動(dòng)功能的恢復(fù)。多項(xiàng)來自不同實(shí)驗(yàn)室的研究指出,將嗅鞘細(xì)胞植入急性和慢性損傷的脊髓內(nèi),可獲得截癱后肢運(yùn)動(dòng)功能的部分恢復(fù)[7-18]。轉(zhuǎn)染膠質(zhì)細(xì)胞源性神經(jīng)營養(yǎng)因子(glial cell-derived neurotrophic factor, GDNF)和神經(jīng)營養(yǎng)素-3(neurotropin-3,NT-3)的嗅鞘細(xì)胞[19-20],或嗅鞘細(xì)胞與FK506、COX-2、NOS拮抗劑、富含多巴胺神經(jīng)元的腹側(cè)中腦組織及神經(jīng)干細(xì)胞等聯(lián)合應(yīng)用[21-24],可發(fā)揮更為顯著的修復(fù)效果。將取自外層嗅球或鼻黏膜的嗅鞘細(xì)胞制成懸液植于動(dòng)物半橫斷或挫傷的上段頸髓中,脊髓控制呼吸的功能得以部分恢復(fù)[25-26]。自體鼻腔嗅黏膜固有層內(nèi)富含嗅鞘細(xì)胞,取材便利,移植后無免疫排斥[26-28],因而有著更好的治療脊髓損傷的臨床應(yīng)用前景;(2)植入脊髓后具有增殖和遷移能力。嗅鞘細(xì)胞能與宿主中樞神經(jīng)系統(tǒng)實(shí)質(zhì)整合,在損傷區(qū)兩側(cè)遷移,穿越軸突無法逾越的空洞和膠質(zhì)瘢痕,形成供再生軸突依附、延伸的橋梁。移植的嗅鞘細(xì)胞主要有表達(dá)p75的S細(xì)胞和表達(dá)纖維粘附素的A細(xì)胞。前者包繞單一軸突形成典型一對(duì)一方式的周圍神經(jīng)髓鞘,后者則聚集為管狀鞘膜包裹成束的纖維,當(dāng)再生纖維進(jìn)入脊髓時(shí),再次被寡突膠質(zhì)細(xì)胞所包裹,因此嗅鞘細(xì)胞主要作用被認(rèn)為是為受損軸突提供跨越損傷區(qū)域的橋梁[19,29-31];(3)促進(jìn)并伴隨軸突向特定靶組織的長距離再生[10,13-15,32-33]。嗅鞘細(xì)胞還可包繞脫髓鞘的軸突使其重新髓鞘化[34],并提高動(dòng)作電位的傳導(dǎo)速度;(4)減輕炎癥反應(yīng)、組織和細(xì)胞構(gòu)筑的破壞和膠質(zhì)瘢痕[5,17,33];(5)能夠促進(jìn)脊髓損傷后大腦皮質(zhì)和腦干下行神經(jīng)元的存活[35]。
部分研究也有不同的發(fā)現(xiàn):(1)單獨(dú)使用嗅鞘細(xì)胞不能促進(jìn)脊髓功能的恢復(fù),或雖有功能恢復(fù)但非嗅鞘細(xì)胞的直接作用[36-39]。Barnett和 Riddell[39]通過文獻(xiàn)回顧,綜合分析了既往動(dòng)物實(shí)驗(yàn)的證據(jù)和功能恢復(fù)的可能機(jī)理,認(rèn)為嗅鞘細(xì)胞在植入不同類型的損傷脊髓中是能夠促進(jìn)功能恢復(fù)的,但相應(yīng)的組織學(xué)證據(jù)卻表明,軸突雖然可在植入的嗅鞘細(xì)胞范圍內(nèi)再生,但不能穿越損傷區(qū)或與對(duì)側(cè)的神經(jīng)元重新連接。因此功能恢復(fù)的原因可能是嗅鞘細(xì)胞的神經(jīng)保護(hù)作用以及未損傷神經(jīng)纖維的代償性發(fā)芽;(2)嗅鞘細(xì)胞植入脊髓后不具備獨(dú)特的遷移能力,也不能橋接損傷的脊髓傳導(dǎo)束[40]。外源性嗅鞘細(xì)胞只能在周圍神經(jīng)中遷移而不能進(jìn)入中樞神經(jīng)系統(tǒng);(3)不支持軸突再生或再生異常[40],不能使軸突再髓鞘化[41]。上行和下行長束軸突并未優(yōu)先向嗅鞘細(xì)胞條索內(nèi)延伸生長[40]。嗅鞘細(xì)胞對(duì)傳入神經(jīng)纖維的再生作用極為有限,嗅鞘細(xì)胞與軸突的重新長入和功能性神經(jīng)纖維的連接重建并無直接關(guān)聯(lián)。
早期研究通常移植體外培養(yǎng)的純化嗅鞘細(xì)胞,但近期研究顯示高純度嗅鞘細(xì)胞的效果并不一定優(yōu)于低純度的細(xì)胞。在多數(shù)研究中,嗅鞘細(xì)胞的移植時(shí)機(jī)選擇在脊髓損傷后的急性期。但由于脊髓繼發(fā)性損傷可能會(huì)對(duì)移植細(xì)胞的活性造成程度不同的損害,因此在脊髓損傷急性期過后移植嗅鞘細(xì)胞,可能較損傷后立即移植細(xì)胞有著更好的效果。
2.嗅鞘細(xì)胞對(duì)視神經(jīng)損傷修復(fù)的作用:視網(wǎng)膜與視神經(jīng)在組織學(xué)上隸屬中樞神經(jīng)系統(tǒng),其軸突組成視神經(jīng)的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(簡稱節(jié)細(xì)胞)屬中樞神經(jīng)元。由于全視網(wǎng)膜平鋪技術(shù)便于研究分析整個(gè)視網(wǎng)膜中的節(jié)細(xì)胞,節(jié)細(xì)胞的胞體和有髓軸突可以分開處理,視網(wǎng)膜和視神經(jīng)已成為廣泛應(yīng)用于中樞神經(jīng)損傷修復(fù)研究方便而實(shí)用的模型。
武明媚等[42]將嗅鞘細(xì)胞植入球后切斷的視神經(jīng)眶側(cè)殘段內(nèi),在術(shù)后2、7和14 d三個(gè)時(shí)間點(diǎn)觀察嗅鞘細(xì)胞在移植部位的存活狀況和對(duì)節(jié)細(xì)胞的保護(hù)作用,發(fā)現(xiàn)隨術(shù)后時(shí)間的延長,移植部位嗅鞘細(xì)胞的數(shù)量逐漸減少,14 d時(shí)已完全消失。移植的嗅鞘細(xì)胞在第7天能夠顯著增加存活節(jié)細(xì)胞的數(shù)量,且視網(wǎng)膜和視神經(jīng)殘段內(nèi)的腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)表達(dá)水平明顯上調(diào),說明移植的嗅鞘細(xì)胞通過上調(diào)的BDNF發(fā)揮了神經(jīng)保護(hù)作用。為回答上調(diào)的BDNF究竟是來源于移植嗅鞘細(xì)胞,還是移植嗅鞘細(xì)胞刺激了宿主視網(wǎng)膜內(nèi)BDNF的分泌,王濤等[43]將培養(yǎng)的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞劃傷后加入嗅鞘細(xì)胞條件培養(yǎng)液,發(fā)現(xiàn)嗅鞘細(xì)胞條件培養(yǎng)液增強(qiáng)損傷節(jié)細(xì)胞的活性,并促進(jìn)節(jié)細(xì)胞的數(shù)量和突起生長。經(jīng)檢測,條件培養(yǎng)液中BDNF表達(dá)明顯增強(qiáng),用特異性中和性抗體阻斷條件培養(yǎng)液中的BDNF后,嗅鞘細(xì)胞條件培養(yǎng)液對(duì)損傷節(jié)細(xì)胞的保護(hù)作用完全消失,間接證明BDNF來源于移植的嗅鞘細(xì)胞。Huo等[44-45]還發(fā)現(xiàn),植入1月齡視網(wǎng)膜色素變性大鼠視網(wǎng)膜下腔的嗅鞘細(xì)胞,能夠減輕Müller細(xì)胞損傷的反應(yīng),保持恢復(fù)蛋白(recoverin)的表達(dá),保護(hù)視網(wǎng)膜外色素層,增加外色素層中花生凝集素陽性的視錐細(xì)胞,減少caspase陽性的凋亡物質(zhì),下調(diào)膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)并保持視網(wǎng)膜電圖的b波。
李英等[46]將成年大鼠單側(cè)視神經(jīng)在球后切斷,植入視神經(jīng)兩斷段之間的嗅鞘細(xì)胞在術(shù)后6個(gè)月遷移進(jìn)入視神經(jīng)遠(yuǎn)側(cè)段內(nèi)達(dá)10 mm,切斷的節(jié)細(xì)胞軸突與移植的嗅鞘細(xì)胞伴行長入視神經(jīng)遠(yuǎn)側(cè)段內(nèi)達(dá)10 mm,證明移植的嗅鞘細(xì)胞能促進(jìn)損傷視網(wǎng)膜神經(jīng)節(jié)細(xì)胞軸突的再生。植入視神經(jīng)的嗅鞘細(xì)胞不但能夠在視神經(jīng)夾傷后促進(jìn)節(jié)細(xì)胞軸突的再生,同時(shí)還有助于再生軸突的再髓鞘化[47]。移植嗅鞘細(xì)胞聯(lián)合應(yīng)用玻璃體腔內(nèi)注射重組人類GDNF在成年大鼠不完全性視神經(jīng)損傷后,對(duì)促進(jìn)視覺功能恢復(fù)更為有效[48]。
3.嗅鞘細(xì)胞對(duì)腦損傷修復(fù)的作用:有限的研究表明,嗅鞘細(xì)胞移植對(duì)腦損傷的修復(fù)同樣具有促進(jìn)作用。Smale等[49]切斷穹隆-海馬傘后立即于損傷區(qū)內(nèi)植入嗅鞘細(xì)胞,4周后發(fā)現(xiàn)嗅鞘細(xì)胞可在損傷區(qū)內(nèi)存活,并顯著抑制損傷區(qū)內(nèi)星形膠質(zhì)細(xì)胞反應(yīng)和損傷神經(jīng)纖維的再生。Teng等[50]切斷大鼠一側(cè)黑質(zhì)紋狀體多巴胺能神經(jīng)元軸突,植入損傷區(qū)的嗅鞘細(xì)胞促進(jìn)了多巴胺能軸突的再生,并完全抑制了損傷區(qū)內(nèi)膠質(zhì)瘢痕的形成。這些不同的研究表明,中樞神經(jīng)系統(tǒng)不同神經(jīng)元均可對(duì)移植的嗅鞘細(xì)胞產(chǎn)生良好的修復(fù)反應(yīng)。因此,嗅鞘細(xì)胞很有可能成為中樞神經(jīng)再生的通用促進(jìn)劑。
多種治療已被證明有促進(jìn)中樞神經(jīng)系統(tǒng)尤其是脊髓損傷修復(fù)的作用,但在單一因素的作用下,受損神經(jīng)纖維再生和截癱肢體運(yùn)動(dòng)功能的恢復(fù)程度均十分有限。中樞神經(jīng)損傷是成因多元化的復(fù)雜性疾病,如何在系統(tǒng)水平上理解和評(píng)價(jià)多組分、多靶點(diǎn)治療的作用機(jī)理和療效已成為日趨熱門的應(yīng)用系統(tǒng)生物學(xué)學(xué)科的前沿方向。近年來已出現(xiàn)采用雞尾酒式復(fù)合干預(yù)措施來修復(fù)機(jī)理錯(cuò)綜復(fù)雜的脊髓損傷的趨勢,國際神經(jīng)科學(xué)領(lǐng)域高影響因子雜志上已發(fā)表多項(xiàng)細(xì)胞移植加某種藥物聯(lián)合治療的研究成果,足以體現(xiàn)此類研究的必然趨勢。
1 Ramón-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants[J]. Exp Neurol,1994,127(2):232-244.
2 Li Y, Raisman G. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in longterm lesions of the adult rat spinal cord[J]. Exp Neurol,1995,134(1):102-111.
3 Li Y, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells[J]. Science,1997,277(5334):2000-2002.
4 Li Y, Field PM., Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells[J]. J Neurosci, 1998,18(24):10514-10524.
5 Ramón-Cueto A, Plant GW, Avila J, et al. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants[J]. J Neurosci, 1998,18(10):3803-3815.
6 Ramón-Cueto A, Cordero MI, Santos-Benito FF, et al.Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia[J]. Neuron, 2000,25(27):425-435.
7 López-Vales R, Forés J, Navarro X, et al. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat[J]. Glia, 2007,55(3):303-311.
8 Verdú E, García-Alías G, Forés J, et al. Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery[J]. Glia, 2003,42(3):275-286.
9 Sasaki M, Lankford KL, Zemedkun M, et al. Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin[J]. J Neurosci, 2004,24(39):8485-8493.
10 García-Alías G., López-Vales R, Forés J, et al. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat[J]. J Neurosci Res, 2004,75(5):632-641.
11 Li BC, Xu C, Zhang JY, et al. Differing Schwann cells and olfactory ensheathing cells behaviors, from interacting with astrocyte, produce similar improvements in contused rat spinal cord’s motor function[J]. J Mol Neurosci,2012,48(1):35-44.
12 Takeoka A, Jindrich DL, Mu?oz-Quiles C, et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation[J]. J Neurosci, 2011,31(11):4298-4310.
13 Centenaro LA, Jaeger Mda C, Ilha J, et al. Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration[J]. Brain Res, 2011,1426:54-72.
14 Takeoka A, Jindrich DL, Mu?oz-Quiles C, et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation[J]. J Neurosci, 2011, 31(11):4298-4310.
15 Ziegler MD, Hsu D, Takeoka A, et al. Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection[J]. Exp Neurol,2011,229(1):109-119.
16 Masgutova GA, Savchenko EA, Viktorov IV, et al. Reaction of oligoglia to spinal cord injury in rats and transplantation of human olfactory ensheathing cells[J]. Bull Exp Biol Med, 2010,149(1):135-139.
17 Li BC, Li Y, Chen LF, et al. Olfactory ensheathing cells can reduce the tissue loss but not the cavity formation in contused spinal cord of rats[J]. J Neurol Sci,2011,303(1-2):67-74.
18 Tharion G, Indirani K, Durai M, et al. Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury[J]. Neurol India, 2011,59(4):566-572.
19 Cao L, Liu L, Chen ZY, et al. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair[J]. Brain, 2004,127(Pt3):535-549.
20 Ma YH, Zhang Y, Cao L,et al. Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury[J]. Cell Transplant,2010,19(2):167-177.
21 López-Vales R, Forés J, Navarro X., et al. Olfactory ensheathing glia graft in combination with FK506 administration promote repair after spinal cord injury[J].Neurobiol Dis, 2006,24(3):443-454.
22 López-Vales R, García-Alías G., Guzmán-Lenis MS, et al. Effects of COX-2 and iNOS inhibitors alone or in combination with olfactory ensheathing cell grafts after spinal cord injury[J]. Spine, 2006,31(10):1100-1106.
23 Johansson S, Lee IH, Olson L, et al. Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions[J]. Brain, 2005,128(Pt12):2961-2976.
24 Wang G, Ao Q, Gong K, et al. Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury[J]. Cell Transplant,2010,19:1325-1337.
25 Polentes J, Stamegna JC, Nieto-Sampedro M, et al. Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells[J].Neurobiol Dis, 2004,16(3):638-653.
26 Stamegna JC, Felix MS, Roux-Peyronnet J, et al. Nasal OEC transplantation promotes respiratory recovery in a subchronic rat model of cervical spinal cord contusion[J].Exp Neurol, 2011,229(1):120-131.
27 Lu J, Féron F, Mackay-Sim A, et al. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord[J]. Brain,2002,125(Pt 1):14-21.
28 Zhang SX, Huang F, Gates M, et al. Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: a LM observation[J]. Histol Histopathol,2011,26(1):45-58.
29 Sasaki M, Lankford KL,Zemedkun M, et al. Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin[J]. J Neurosci, 2004,24(39):8485-8493.
30 Richter MW, Fletcher PA, Liu, J, et al. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord[J]. J Neurosci, 2005,2 5(46):10700-10711.
31 Deng C, Gorrie C, Hayward I, et al. Survival and migration of human and rat olfactory ensheathing cells in intact and injured spinal cord[J]. J Neurosci Res,2006,83(7):1201-1212.
32 Toft A, Tomé M, Lindsay SL, et al. Transplant-mediated repair properties of rat olfactory mucosal OM-I and OM-II sphere-forming cells[J]. J Neurosci Res,2012,90(3):619-631.
33 Ramer LM, Au E, Richter MW, et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury[J]. J Comp Neurol, 2004,473(1):1-15.
34 Akiyama Y, Lankford K, Radtke C, et al. Remyelination of spinal cord axons by olfactory ensheathing cells and Schwann cells derived from a transgenic rat expressing alkaline phosphatase marker gene[J]. Neuron Glia Biol,2004,1(1):47-55.
35 Sasaki M, Hains BC, Lankford KL, et al. Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells[J]. Glia, 2006,53(4):352-359.
36 Dobkin BH, Havton LA. Basic advances and new avenues in therapy of spinal cord injury[J]. Annu Rev Med, 2004,55:255-282.
37 Resnick DK, Cechvala CF, Yan Y, et al. Adult olfactory ensheathing cell transplantation for acute spinal cord injury[J]. J Neurotrauma, 2003,20(3):279-285.
38 Collazos-Castro JE, Mu?etón-Gómez VC, Nieto-Sampedro M. Olfactory glia transplantation into cervical spinal cord contusion injuries[J]. J Neurosurg Spine,2005,3(4):308-317.
39 Barnett SC, Riddell JS. Olfactory ensheathing cell transplantation as a strategy for spinal cord repair--what can it achieve? [J]. Nat Clin Pract Neurol, 2007,3(3):152-161.
40 Lu P, Yang H, Culbertson M, et al. Olfactory ensheathing cells do not exhibit unique migratory or axonal growthpromoting properties after spinal cord injury[J]. J Neurosci,2006,26(43):11120-11130.
41 Boyd JG, Lee J, Skihar V, et al. LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord[J]. Pro Natl Acad Sci USA, 2004,101(7):2162-2166.
42 Wu MM, Fan DG, Tadmori I, et al. Death of axotomized retinal ganglion cells delayed after intraoptic nerve transplantation of olfactory ensheathing cells in adult rats[J]. Cell Transplant, 2010,19(2):159-166.
43 Wang T, Cong, R, Yang H, et al. Neutralization of BDNF attenuates the in vitro protective effects of olfactory ensheathing cell-conditioned medium on scratchinsulted retinal ganglion cells. Cell[J]. Mol Neurobiol,2011,31(3):357-364.
44 Huo SJ, Li Y, Raisman G, et al. Transplanted olfactory ensheathing cells reduce the gliotic injury response of Müller cells in a rat model of retinitis pigmentosa[J]. Brain Res, 2011,1382:238-244.
45 Huo SJ, Li YC, Xie J, et al. Transplanted olfactory ensheathing cells reduce retinal degeneration in royal college of surgeons rats[J]. Cur Eye Res, 2012,37(8):749-758.
46 Li Y, Sauvé Y, Li D, et al. Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons[J]. J Neurosci, 2003, 23(21):7783-7788.
47 Sandvig I, Thuen M, Hoang L, et al. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve[J].NMR Biomed, 2012,25(4):620-631.
48 Liu Y, Gong Z, Liu L, et al. Combined effect of olfactory ensheathing cell transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats[J]. Mol Vis, 2010,16:2903-2910.
49 Smale KA, Doucette R, Kawaja MD. Implantation of olfactory ensheathing cells in the adult rat brain following fimbria-fornix transection[J]. Exp Neurol,1996,137(2):225-233.
50 Teng X, Nagata I, Li HP, et al. Regeneration of nigrostriatal dopaminergic axons after transplantation of olfactory ensheathing cells and fibroblasts prevents fibrotic scar formation at the lesion site[J]. J Neurosci Res,2008,86(14):3140-33150.