陳曉麗 郭 金 鄒繼珍 盧曉琳 包怡華 吳麗華 牛 勃
神經(jīng)管畸形(neural tube defects,NTDs)在世界范圍內(nèi)的發(fā)病率約為1‰[2,3]。中國NTDs發(fā)病率高達(dá)27.4‰,每年有8~10萬例NTDs患兒出生,占先天畸形的20%~25%[4]。本課題組前期研究發(fā)現(xiàn)NTDs在山西省的發(fā)病率高達(dá)199.38‰[5]。
NTDs為多因素復(fù)雜疾病,是遺傳和環(huán)境因素共同作用的結(jié)果[6~9]。既往研究發(fā)現(xiàn)母體營養(yǎng)代謝的異常,特別是母體葉酸缺乏為NTDs的主要危險(xiǎn)因素[10,11],而孕期補(bǔ)充葉酸可以減少50%~70%的NTDs發(fā)生[12~14]。葉酸在體內(nèi)的主要功能是參與DNA合成及提供甲基供體。在孕期給予低葉酸飲食喂養(yǎng)的大鼠,其子代出現(xiàn)DNA總體低甲基化[15],而給葉酸缺乏的大鼠補(bǔ)充葉酸可以逆轉(zhuǎn)DNA總體甲基化水平的降低[16]?;蚪MDNA總體甲基化水平影響基因組穩(wěn)定性,而特定基因啟動(dòng)子區(qū)的甲基化水平影響該基因轉(zhuǎn)錄[17]?;蚪M不穩(wěn)定引發(fā)染色體重組性疾病以及腫瘤發(fā)生[18~20],因特定基因組或特定基因的異常甲基化引起的出生缺陷有Rett綜合征、Prader-Willi/Angelman綜合征以及Beckwith-Wiedemann綜合征[21]。
DNA修復(fù)通路在控制基因突變和維持基因組穩(wěn)定等方面具有重要作用,與一些神經(jīng)系統(tǒng)遺傳病發(fā)生有關(guān)[22,23]。錯(cuò)配修復(fù)基因(mismatch repair gene,MMR)是細(xì)胞內(nèi)負(fù)責(zé)對(duì)堿基錯(cuò)配進(jìn)行修復(fù)的基因,現(xiàn)有研究提示DNA修復(fù)通路基因可能在神經(jīng)管早期發(fā)育中發(fā)揮作用,如BRCA1基因敲除的小鼠出現(xiàn)脊柱裂和無腦兒表型[24],NTDs患兒腦組織中MMR蛋白表達(dá)水平顯著下降[25]。
本課題組前期研究結(jié)果已經(jīng)驗(yàn)證母體血清低葉酸水平是NTDs的危險(xiǎn)因素[26]。基于此,本研究以醫(yī)院為基礎(chǔ)進(jìn)行病例-對(duì)照研究,通過比較NTDs組與對(duì)照組DNA總體甲基化和7個(gè)MMR啟動(dòng)子區(qū)的甲基化水平,了解NTDs胎兒是否存在DNA甲基化修飾改變,為母體葉酸相對(duì)不足導(dǎo)致NTDs胎兒出現(xiàn)DNA甲基化修飾異常的假設(shè)尋找依據(jù)。
1.1 研究對(duì)象 所有標(biāo)本均來源于山西省呂梁地區(qū)縣級(jí)醫(yī)院及婦幼保健院引產(chǎn)的胎兒,由首都兒科研究所病理科醫(yī)生完成解剖診斷。NTDs組:B超診斷為NTDs而進(jìn)行引產(chǎn)的胚胎,經(jīng)解剖證實(shí)有1種或多種形式的NTDs畸形;對(duì)照組:同期非病理性引產(chǎn)的胚胎,經(jīng)解剖證實(shí)不存在任何先天畸形和胎兒發(fā)育遲緩。兩組引產(chǎn)胚胎分別取腦組織和皮膚組織各25 mg,迅速液氮凍存。Array-CGH芯片檢測(cè)排除大片段微染色體異常(>1 Mb)。以孕周和孕婦年齡對(duì)兩組進(jìn)行匹配。
1.2 倫理和知情同意 該研究經(jīng)首都兒科研究所倫理委員會(huì)批準(zhǔn),入組胚胎標(biāo)本均經(jīng)家屬的知情同意用于研究。
1.3 甲基化水平檢測(cè) 采用Qiagen組織/血樣DNA提取試劑盒(DNeasy Blood & Tissue kit)提取腦組織和皮膚組織的DNA,A260計(jì)算DNA濃度。用DNA甲基化檢測(cè)試劑盒(Epigentek,F(xiàn)armingdale,NY)完成DNA總體甲基化檢測(cè)。
采用MS-MLPA試劑盒(ME011-A1,MRC-Holland,Amsterdam,荷蘭)對(duì)腦組織MMR啟動(dòng)子區(qū)的甲基化水平進(jìn)行分析,共包括7個(gè)MMR(MLH1,MSH2,MSH6,MSH3,MLH3,PMS2和MGMT)。每個(gè)基因檢測(cè)3~4個(gè)HhaⅠ酶切位點(diǎn),共24個(gè)目的位點(diǎn)(3個(gè)PMS2探針,6個(gè)MLH1探針,4個(gè)MSH2探針,3個(gè)MSH3探針,3個(gè)MSH6探針,3個(gè)MGMT探針,2個(gè)MLH3探針),同時(shí)有8個(gè)內(nèi)參位點(diǎn)(內(nèi)參位點(diǎn)內(nèi)沒有HhaⅠ酶切位點(diǎn))。每個(gè)標(biāo)本分成兩管,一管進(jìn)行HhaⅠ酶切消化(HhaⅠ+),一管不進(jìn)行HhaⅠ酶切消化(HhaⅠ-),利用ABI3730(諾賽基因有限公司,北京)對(duì)PCR進(jìn)行峰值測(cè)定,然后用Genemarker 1.95軟件(SoftGenetics,State College,PA)對(duì)基因甲基化數(shù)據(jù)進(jìn)行圖像采集和甲基化分析。如待測(cè)DNA的GCGC位點(diǎn)未甲基化,則探針DNA復(fù)合物被HhaⅠ酶切開,致使PCR片段擴(kuò)增失敗,反之則可擴(kuò)增出PCR片段。以(消化后目的位點(diǎn)峰值/消化前目的位點(diǎn)峰值)/(消化后內(nèi)參位點(diǎn)峰值/消化前內(nèi)參位點(diǎn)峰值) 計(jì)算每個(gè)樣本的甲基化水平。
2.1 一般情況 2006年4月至 2007年12月共收集到符合匹配條件的65例NTDs胚胎和48例正常對(duì)照胚胎。兩組孕婦的年齡和孕周分布見表1,其構(gòu)成比無顯著差異。
2.2 腦組織和皮膚組織的DNA總體甲基化水平 首先兩組腦組織和皮膚組織的DNA總體甲基化水平數(shù)據(jù)進(jìn)行正態(tài)性檢驗(yàn),數(shù)據(jù)呈正態(tài)分布。由圖1可見,DNA總體甲基化在腦組織和皮膚組織顯示為不同的分布。皮膚組織的DNA總體甲基化水平顯著高于腦組織。進(jìn)一步比較NTDs組和對(duì)照組DNA甲基化水平,發(fā)現(xiàn)兩組腦組織DNA總體甲基化水平存在顯著差異,NTDs組顯著低于對(duì)照組(5.3%vs6.5%,P<0.001),而兩組皮膚組織DNA總體甲基化水平差異無統(tǒng)計(jì)學(xué)意義(13.3%vs13.1%,P>0.05)。
表1 NTDs組和對(duì)照組的一般情況
Tab 1 Basic information of NTD-affected cases and controls
NTDs[n(%)]Controls[n(%)]P1)Women'sage/y≤2539(60.9)19(39.6)0.074-3017(26.6)18(37.5)≥318(12.5)11(22.9)GA/weeks≤2026(40)27(56.3)0.224-2419(29.2)11(22.9)≥2520(30.8)10(20.8)
Notes 1)Pvalue fromχ2test; y: year; GA: gestational age
圖1 腦組織及皮膚組織DNA總體甲基化水平在NTDs組和對(duì)照組的比較
Fig 1 Comparison of global DNA methylation levels of brain and skin tissue in NTD-affected cases and controls
Notes 1) Global DNA methylation levels of brain in NTD-affected cases were lower than those in controls,P<0.001
Logistical 回歸分析結(jié)果顯示,腦組織DNA總體低甲基化水平(<對(duì)照組P25)使NTDs發(fā)生的危險(xiǎn)提高4.98倍(表2)。
表2 DNA總體甲基化水平與NTDs發(fā)生危險(xiǎn)度的Logistic回歸結(jié)果
Tab 2 Logistic regression of global DNA methylation and formation of NTDs
Level1)Controls[n(%)]NTDs[n(%)]OR(95%CI)AdjustedOR2)(95%CI)P3)Low(
Notes GA: gestational age. 1) Global DNA methylation levels in cases were categorized into three subgroups according to the percentiles of controls; 2)Model was adjusted for women′s age and gestational week. 3)Pvalue fromχ2test
2.3 MMR啟動(dòng)子區(qū)的甲基化水平 NTDs組和對(duì)照組各38例胚胎腦組織進(jìn)行了MMR啟動(dòng)子區(qū)甲基化水平檢測(cè),MS-MPLA結(jié)果如圖2所示。
圖2 待測(cè)樣本消化前后MS-MLPA結(jié)果
Fig 2 The MS-MLPA results for test sample before(A) and after(B) HhaⅠdigestion
Notes A showed the genomic copy number of 8 reference loci(blue dots) and 24 target loci(green dots). Green line represented the threshold of genomic copy number(0.75-1.25). In this case,the genomic copy number of 24 target loci was normal compared with reference loci. B showed the methylation ratio of 8 reference loci(blue dots) and 24 target loci(red and green dots). Green line represented the threshold of methyletion ratio(30%). The reference loci(blue dots) had high methylation ratio because they had no HhaⅠsite. 4 target loci(MSH2-246,MLH1-148,MLH3-202,MSH3-283) had high methyaltion above the threshold because they were resistant to HhaⅠdigestion,other target loci(green dots) had low methyaltion ratio under the threshold because they were digested by HhaⅠ
如表3所示,在7個(gè)MMR基因的24個(gè)位點(diǎn)上,有3個(gè)目的位點(diǎn)為高甲基化狀態(tài)(MSH2-246,MLH1-148,MLH3-202,甲基化百分比>80%),20個(gè)目的位點(diǎn)為低甲基化狀態(tài)(甲基化百分比<20%),MSH3-283為中等甲基化狀態(tài)(20%~80%)。通過比較NTDs組和對(duì)照組24個(gè)目的位點(diǎn)甲基化百分比均值,發(fā)現(xiàn)MSH6和PMS2啟動(dòng)子區(qū)上3個(gè)位點(diǎn)存在顯著差異(MSH6-301:2.5%vs3.7%,P<0.01;PMS2-328:5.7%vs6.7%,P<0.05;PMS2-142:2.0%vs2.7%,P<0.05)。另有MGMT啟動(dòng)子區(qū)1個(gè)位點(diǎn)(MGMT-193)的甲基化水平差異接近顯著水平(P=0.05)。
MMRlociControls(n=38)NTDs(n=38)PMSH2-1841.1±0.41.1±0.20.555MSH2-4002.1±1.12.4±0.80.335MSH2-2720.000.00NAMSH2-24692.4±10.789.7±5.00.493MSH6-3012.5±1.43.7±1.20.0051)MSH6-2090.10±0.180.000.068MSH6-1601.4±0.51.5±0.50.639MLH1-2371.4±0.71.7±0.80.159MLH1-14899.5±9.997.3±9.70.545MLH1-2650.000.00NAMLH1-1980.000.00NAMLH1-1660.9±0.40.9±0.20.704MLH1-2920.5±0.50.6±0.50.377MSH3-2208.4±1.78.2±1.50.744MSH3-3462.2±0.82.4±0.60.522MSH3-28345.3±1.252.4±1.30.119PMS2-3285.7±1.36.7±0.90.011PMS2-1422.0±0.72.7±1.20.028PMS2-1541.3±2.00.5±0.50.431MGMT-37326.2±5.425.9±5.40.887MGMT-1934.1±1.53.3±1.10.050MGMT-3191.5±0.61.6±0.60.719MLH3-3550.000.19NAMLH3-20290.3±42.9100NA
Notes NA: not available for student′sttest; 1)Pvalue remained significant after Bonferroni correction at 0.005
DNA甲基化修飾對(duì)于胚胎的發(fā)育至關(guān)重要[27]。在受精后的6~8 h,胚胎經(jīng)歷了廣泛的去甲基化過程,此時(shí)DNA的甲基化程度會(huì)成比例降低。在植入期,胚胎又發(fā)生了快速的重新甲基化過程[28]。既往研究發(fā)現(xiàn),阻斷Dnmt3b的表達(dá)可以干擾神經(jīng)管的閉合[29]。在對(duì)雞胚的研究中發(fā)現(xiàn),當(dāng)雞胚暴露在甲基化抑制劑中,其神經(jīng)系統(tǒng)的發(fā)育會(huì)出現(xiàn)延遲,并且這種延遲與所暴露的劑量成正比[30]。這些研究結(jié)果均提示NTDs形成過程中可能出現(xiàn)DNA甲基化修飾異常。
本研究采用病例-對(duì)照的方法,發(fā)現(xiàn)NTDs組胚胎腦組織DNA總體甲基化水平降低,增加了患NTDs的風(fēng)險(xiǎn),推測(cè)腦組織DNA的低甲基化狀態(tài)可能是母體葉酸缺乏導(dǎo)致胎兒發(fā)生NTDs的潛在致病機(jī)制之一。
DNA總體甲基化分布存在組織特異性,唐韶青等[31]運(yùn)用MSAP技術(shù)對(duì)豬、牛、羊、小鼠、雞和鴨不同組織的DNA總體甲基化水平做了分析,發(fā)現(xiàn)同一種動(dòng)物不同組織的DNA總體甲基化水平存在差異。本研究發(fā)現(xiàn)NTDs組和對(duì)照組的DNA總體甲基化水平差異僅表現(xiàn)在腦組織,而兩組皮膚組織的DNA總體甲基化水平無顯著差異,說明DNA總體甲基化模式在胎兒時(shí)期就出現(xiàn)了組織特異性。
在胚胎發(fā)育早期,一些神經(jīng)發(fā)育關(guān)鍵基因的啟動(dòng)子區(qū)域的甲基化也需要重新修飾。本課題組前期研究應(yīng)用MS-MLPA(MRC-Holland,ME002-A1)分析了MGMT、MSH6啟動(dòng)子區(qū)甲基化異常和NTDs的關(guān)系,發(fā)現(xiàn)NTDs組(特別是腦部NTDs組)的MSH6(1250-L0798)、MGMT(5670-L5146)位點(diǎn)甲基化狀態(tài)顯著低于對(duì)照組(3.5%vs5.3%,16.3%vs27.2%)[32]。本研究結(jié)果顯示,MGMT-193的差異水平接近顯著(P=0.05),進(jìn)而比較了2個(gè)研究中的探針設(shè)計(jì)位置,發(fā)現(xiàn)MGMT-193和MGMT(5670-L5146)為MGMT基因的同一GCGC位點(diǎn),再次證實(shí)MGMT基因啟動(dòng)子異常甲基化與NTDs的關(guān)系,而檢驗(yàn)P值不同可能源于2個(gè)研究中腦部脊柱裂在NTDs組所占比例不同。本研究還發(fā)現(xiàn)NTDs組MSH6-301位點(diǎn)甲基化狀態(tài)顯著高于對(duì)照組,與本課題組的前期結(jié)果不同。通過分析探針位置,發(fā)現(xiàn)MSH6-301、MSH6-209、MSH6-160位點(diǎn)與MSH6(1250-L0798)所處基因組位置不同,說明了基因啟動(dòng)子CpG區(qū)甲基化修飾的復(fù)雜性,即使同一基因的同一區(qū)域,各位點(diǎn)的甲基化狀態(tài)也存在差異。Liu等[33]研究NTDs胎兒的MLH1、MSH2啟動(dòng)子甲基化水平,發(fā)現(xiàn)NTDs組和正常對(duì)照組并無顯著差異,且各位點(diǎn)的甲基化狀態(tài)也不一致,如MSH2均為低甲基化水平位點(diǎn),而MLH1有2個(gè)高甲基化水平位點(diǎn)。本研究分析了4個(gè)MSH2位點(diǎn)和6個(gè)MLH1位點(diǎn),雖然研究位點(diǎn)不同,但也證實(shí)僅MSH2-246和MLH1-148為高甲基化水平位點(diǎn),其余位點(diǎn)都處于低甲基化水平,并且NTDs組和對(duì)照組甲基化水平無顯著差異。除已報(bào)道的MSH2、MSH6和MGMT外,本研究還新發(fā)現(xiàn)1個(gè)MMR(PMS2)啟動(dòng)子甲基化水平在NTDs組和對(duì)照組存在顯著差異,提示了PMS2啟動(dòng)子甲基化異常和NTDs的關(guān)系。上述結(jié)果深化了對(duì)神經(jīng)管發(fā)育過程中MMR的DNA甲基化修飾的認(rèn)識(shí)。
總之,本研究對(duì)NTDs胚胎腦組織DNA總體甲基化、MMR啟動(dòng)子區(qū)甲基化水平進(jìn)行了分析,發(fā)現(xiàn)NTDs胚胎腦組織DNA總體甲基化水平顯著低于對(duì)照組,DNA總體低甲基化水平顯著增加了NTDs患病風(fēng)險(xiǎn)。同時(shí)發(fā)現(xiàn)NTDs組的MSH6、PMS2基因啟動(dòng)子區(qū)甲基化水平不同于對(duì)照組。這些結(jié)果為進(jìn)一步研究神經(jīng)管發(fā)育過程中DNA總體低甲基化的發(fā)生發(fā)展、MMR甲基化修飾奠定基礎(chǔ),也為明確葉酸缺乏與DNA甲基化異常、NTDs發(fā)生的關(guān)系,葉酸預(yù)防NTDs機(jī)制提供理論依據(jù)。
目前關(guān)于基因特定位點(diǎn)甲基化檢測(cè)方法有MS-MLPA、甲基化特異性PCR(MS-PCR)、結(jié)合重亞硫酸鹽的限制性內(nèi)切酶法(COBRA)、甲基化特異探針雜交法。MS-MLPA技術(shù)將甲基化敏感性限制性內(nèi)切酶HhaⅠ和探針雜交技術(shù)結(jié)合,通過分析模板DNA酶切后的擴(kuò)增比例來定量甲基化程度。該技術(shù)缺點(diǎn)是所分析位點(diǎn)受限制性內(nèi)切酶位點(diǎn)(GCGC序列)限制,因而在本研究中,對(duì)于MMR的啟動(dòng)子區(qū)非HhaⅠ位點(diǎn),其甲基化程度無法依賴MS-MLPA進(jìn)行定量,今后需要利用其他甲基化研究技術(shù)繼續(xù)分析MMR的啟動(dòng)子區(qū)甲基化水平。
[1]Botto LD,Moore CA,Khoury MJ,et al. Neural-tube defects. N Engl J Med,1999,341(20):1509-1519
[2]Feuchtbaum LB,Currier RJ,Riggle S,et al. Neural tube defect prevalence in California(1990-1994): eliciting patterns by type of defect and maternal race/ethnicity. Genet Test,1999,3(3):265-272
[3]van der Put NM,van Straaten HW,Trijbels FJ,et al. Folate,homocysteine and neural tube defects: an overview. Exp Biol Med(Maywood),2001,226(4):243-270
[4]Wang YP(王艷萍),Zhu J,Wu YQ,et al. Dynamic variation of incidence of neural tube defects during 1988 to 1992 in China. Chin J Prev Med(中華預(yù)防醫(yī)學(xué)雜志),1998,32(6):369-371
[5]Gu X,Lin LM,Zheng XY,et al. High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Research(part A),2007,79:702-707
[6]Copp AJ,Green NDE,Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet,2003 ,4(10):784-793
[7]Blom HJ,Shaw GM,den Heijer M,et al. Neural tube defects and folate: case far from closed. Nat Rev Neurosci,2006,7(9):724-731
[8]Kibar Z,Capra V,Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet,2007,71(4):295-310
[9]Kibar Z,Torban E,McDearmid JR,et al. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med,2007,356(14):1432-1437
[10]Smithells RW,Sheppard S,Schorah CJ,et al. Vitamin defi-ciencies and neural tube defects. Arch Dis Child,1976,51:944-950
[11]Czeizel AE,Dudas I. Prevention of the first occurrence of neural tube defect by periconceptional vitamin supplementation. N Engl J Med,1992,327(26):1832-1835
[12]Smithells RW,Nevin NC,Seller MJ,et al. Further experience of vitamin supplementation for prevention of neural tube defect recurrences. Lancet,1983,1(8332):1027-1031
[13]Wald N,Sneddon J,Densem J,et al. MRC Vitamin study research group: Prevention of neural tube defects: results of the medical research council vitamin study. Lancet,1991,338(8760):131-137
[14]Berry RJ,Li Z,Erickson JD,et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med,1999,341(20):1485-1490
[15]Wolff GL,Kodell RL,Moore SR,et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB,1998,12(11):949-957
[16]Christman JK,Sheikhnejad G,Dizik M,et al. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis,1993,14(4):551-557
[17]Deaton AM,Bird A. CpG islands and the regulation of trans-cription. Genes Dev,2011,25(10):1010-1022
[18]Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull,1999,55(3):578-592
[19]Ehrlich M. DNA hypomethylation,cancer,the immuno-deficiency,centromeric region instability,facial anomalies syndrome and chromosomal rearrangements. J Nutr,2002,132(8S):2424-2429
[20]Eden A,Gaudet F,Waghmare A,et al. Chromosomal instabi-lity and tumors promoted by DNA hypomethylation. Science,2003,300(5618):455
[21]Van den Veyver IB. Genetic effects of methylation diets. Annu Rev Nutr,2002,22:255-282
[22]Hales B. DNA repair disorders causing malformations. Curr Opin Genet Dev,2005,15(3):234-240
[23]Jacob W,Kaplan D,Miller F. The p53 family in nervous system development and disease. J Neurochem,2006,97(6):1571-1584
[24]Frappart PO,McKinnon PJ. BRCA2 function and the central nervous system. Cell Cycle,2007,6(20):2453-2457
[25]Bao R(保睿),Zou JZ,Wu S,et al. A primary study on the correlation of DNA mismatch repair proteins(MLH1,PMS2,MSH2,MSH6) with neural tube defects(NTDs). Chinese Journal of Birth Health & Heredity(中國優(yōu)生與遺傳雜志),2010,18(5):10-13
[26]Zhang T,Xin R,Gu X,et al. Maternal serum vitamin B12,folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr,2008,12(5):680-686
[27]Chen X,Guo J,Lei Y,et al. Global DNA hypomethylation is associated with NTD-affected pregnancy: A case-control study. Birth Defects Res A Clin Mol Teratol,2010,88(7):575-581
[28]Reik W,Dean W,Walter J. Epigenetic reprogramming in mammalian development. Science,2001,293(5532):1089-1093
[29]Okano M,Bell DW,Haber DA,et al. DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999,99(3):247-257
[30]Afman LA,Blom HJ,Drittij MJ,et al. Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res,2005,158(1-2):59-65
[31]Tang SQ(唐韶青),Zhang Y,Xu Q,et al. Analysis of methylation level of genome in various tissues of different animal species. Journal of Agricultural Biotechnology(農(nóng)業(yè)生物技術(shù)學(xué)報(bào)),2006,14(4):507-510
[32]Tran S,Wang L,Le J,et al. Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci. 2011 Nov 19
[33]Liu Z,Wang Z,Li Y,et al. Association of genomic instability,and the methylation status of imprinted genes and mismatch-repair genes,with neural tube defects. Eur J Hum Genet,2012,242:1-5