李 丹,劉軼明,王貴君
(天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,天津 300387)
一類(lèi)折線模糊神經(jīng)網(wǎng)絡(luò)的存在性
李 丹,劉軼明,王貴君
(天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,天津 300387)
應(yīng)用折線模糊值函數(shù)的表示定理和Weierstrass第一逼近定理構(gòu)造了一個(gè)三層折線模糊神經(jīng)網(wǎng)絡(luò),并借助折線模糊數(shù)的優(yōu)良性質(zhì)證明了折線模糊神經(jīng)網(wǎng)絡(luò)對(duì)連續(xù)折線模糊值函數(shù)具有泛逼近性.
折線模糊數(shù);折線模糊值函數(shù);單隱層神經(jīng)網(wǎng)絡(luò);折線模糊神經(jīng)網(wǎng)絡(luò);泛逼近
1994年,Buckley J.J.等[1-2]在研究正則模糊神經(jīng)網(wǎng)絡(luò)的泛逼近性問(wèn)題時(shí)曾給出一個(gè)猜想:正則模糊神經(jīng)網(wǎng)絡(luò)關(guān)于連續(xù)遞增的模糊函數(shù)類(lèi)構(gòu)成泛逼近器.后來(lái),一些學(xué)者圍繞系統(tǒng)逼近與學(xué)習(xí)算法對(duì)該類(lèi)網(wǎng)絡(luò)展開(kāi)了廣泛研究,取得了諸多有益結(jié)果[3-7].2002年,劉普寅[5]曾給出一種n-對(duì)稱(chēng)折線模糊數(shù)的概念,詳細(xì)討論了這種折線模糊數(shù)的運(yùn)算、表示及其空間的完備性和可分性,建立了折線模糊神經(jīng)網(wǎng)絡(luò)(簡(jiǎn)稱(chēng)折線FNN),并證明了三層前向折線模糊神經(jīng)網(wǎng)絡(luò)可以作為連續(xù)遞增模糊函數(shù)的泛逼近器.事實(shí)上,依據(jù)折線模糊數(shù)建立的折線模糊神經(jīng)網(wǎng)絡(luò)是通過(guò)有限個(gè)點(diǎn)來(lái)完成模糊信息的處理,從而大大簡(jiǎn)化了學(xué)習(xí)算法的設(shè)計(jì)與運(yùn)算過(guò)程.文獻(xiàn)[6]引進(jìn)K-擬可加積分及其K-積分模概念,并在K-積分模意義下研究了四層正則折線模糊神經(jīng)網(wǎng)絡(luò)依K-積分模對(duì)模糊值可積函數(shù)類(lèi)的泛逼近性問(wèn)題.這些結(jié)果不僅討論了逼近的存在性,而且給出了具體的算法設(shè)計(jì)及程序?qū)崿F(xiàn),這對(duì)進(jìn)一步實(shí)現(xiàn)模糊推理與模糊控制乃至圖像恢復(fù)技術(shù)都有重要意義.2008年,曹飛龍等[8-9]在研究經(jīng)典神經(jīng)網(wǎng)絡(luò)時(shí)曾給出了網(wǎng)絡(luò)插值的存在性證明,而且用構(gòu)造的方法給出了神經(jīng)網(wǎng)絡(luò)的輸入權(quán)與閾值的計(jì)算方法,估計(jì)了插值網(wǎng)絡(luò)對(duì)目標(biāo)函數(shù)的逼近誤差.本研究在文獻(xiàn)[5-6]的基礎(chǔ)上,應(yīng)用Weierstrass第一逼近定理構(gòu)造了一個(gè)三層折線模糊神經(jīng)網(wǎng)絡(luò),并證明了折線模糊神經(jīng)網(wǎng)絡(luò)對(duì)連續(xù)折線模糊值函數(shù)具有泛逼近性.
定義1 若映射~A:R→[0,1]滿足:
圖1 的n-折線模糊數(shù)Fig.1 n-polygonal fuzzy number of
本研究在轉(zhuǎn)移函數(shù)滿足一定條件下構(gòu)造了一個(gè)三層正則折線模糊神經(jīng)網(wǎng)絡(luò),并證明了該網(wǎng)絡(luò)對(duì)連續(xù)折線模糊值函數(shù)具有泛逼近性.這為折線模糊神經(jīng)網(wǎng)絡(luò)在連續(xù)模糊系統(tǒng)中的應(yīng)用提供了理論依據(jù),該結(jié)果表明應(yīng)用折線模糊數(shù)來(lái)實(shí)現(xiàn)折線模糊神經(jīng)網(wǎng)絡(luò)的近似表示有其重要意義.事實(shí)上,折線模糊神經(jīng)網(wǎng)絡(luò)還具有以下優(yōu)點(diǎn):1)對(duì)以往逼近連續(xù)折線模糊值函數(shù)的范圍可以進(jìn)一步擴(kuò)充;2)同處理梯形模糊數(shù)信息一樣,容易設(shè)計(jì)學(xué)習(xí)算法;3)比傳統(tǒng)模糊神經(jīng)網(wǎng)絡(luò)具有更強(qiáng)的近似實(shí)現(xiàn)輸入輸出能力,而且逼近能力有所提高.
[1] BUCKLEY J J,HAYASHI Y.Can fuzzy neural nets approximate continuous fuzzy functions?[J].Fuzzy Sets and Systems,1994,61(1):43-51.
[2] BUCKLEY J J,HAYASHI Y.Can neural nets be universal approximators for fuzzy functions?[J].Fuzzy Sets and Systems,1999,101(3):273-278.
[3] LIU P Y.Approximation analyses for fuzzy valued functions inL1(μ)by regular fuzzy neural networks[J].J Electron Sci,2000,17(2):132-138.
[4] LIU P Y.Universal approximation of continuous analyses fuzzy valued functions by multi-layer regular fuzzy neural networks[J].Fuzzy Sets and Systems,2001,119(2):303-311.
[5] 劉普寅.一種新的模糊神經(jīng)網(wǎng)絡(luò)及其逼近性能[J].中國(guó)科學(xué):E輯,2002,32(1):76-86.
[6] 王貴君,李曉萍.K-積分模意義下折線模糊神經(jīng)網(wǎng)絡(luò)的泛逼近性[J].中國(guó)科學(xué):F輯,2011,54(11):2307-2323.
[7] 趙芬霞,李洪興.正則模糊神經(jīng)網(wǎng)絡(luò)在Sugeno積分模意義下的泛逼近性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2006,29(1):39-45.
[8] 曹飛龍,張永全.距離空間中的神經(jīng)網(wǎng)絡(luò)插值與逼近[J].數(shù)學(xué)學(xué)報(bào),2008,51(1):91-98.
[9] 徐士英,曹飛龍.距離空間中插值神經(jīng)網(wǎng)絡(luò)的誤差估計(jì)[J].系統(tǒng)科學(xué)與數(shù)學(xué),2009,29(5):670-676.
[10] DIAMOND P,KLOEDEN P.Metric Spaces of Fuzzy Sets[M].Singapore:World Scientific Press,1994.
[11] 曹飛龍,張廣全,張衛(wèi)國(guó).單隱層神經(jīng)網(wǎng)絡(luò)與最佳多項(xiàng)式逼近[J].數(shù)學(xué)學(xué)報(bào),2007,50(2):385-392.
Existence of a class of polygonal fuzzy neural networks
LIDan,LIUYi-ming,WANGGui-jun
(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
By means of the representation theorem of polygonal fuzzy valued functions and the Weierstrass first approximation theorem,the three-layers polygonal fuzzy neural networks are constructed.And the approximation of the polygonal fuzzy neural networks with respect to the continuous polygonal fuzzy valued functions is proved by using the good properties of polygonal fuzzy numbers.
polygonal fuzzy numbers;polygonal fuzzy valued functions;one hidden layer neural networks;polygonal fuzzy neural networks;approximation
TP183;O159
A
1671-1114(2012)01-0001-05
2011-06-21
國(guó)家自然科學(xué)基金資助項(xiàng)目(60974144)
李 丹(1985—),女,碩士研究生.
王貴君(1962—),男,教授,主要從事模糊神經(jīng)網(wǎng)絡(luò)和模糊測(cè)度與積分方面的研究.
(責(zé)任編校 馬新光)