亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Efficient Methods for Solving the Initial-value Problem of the Ordinary Differential Equation

        2011-12-09 00:54:14JIANGZhaominLIXiaojing
        關鍵詞:方法

        JIANG Zhaomin,LI Xiaojing

        (School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou 213001,China)

        Efficient Methods for Solving the Initial-value Problem of the Ordinary Differential Equation

        JIANG Zhaomin,LI Xiaojing

        (School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou213001,China)

        We applied the variational iteration method and the homotopy perturbation method to solve the initial-value problem of the fourth-order ordinary differential equation.A comparison of the results with the exact solution illustrates that the approximation is of high accuracy.This confirms that the variational iteration method and the homotopy perturba?tion method are extremely efficient and simple to solve the initial-value problems.

        variational iteration method;homotopy perturbation method;initial-value problem;exact solution;approx?imate solution

        CLC mumber:O 241 Document code:A Article ID:1674-4942(2011)04-0370-05

        In this paper,we consider the general fourth-or?der initial-value problem of the type

        Wherefis continuous function on[a,b]and the parametersαi(i=1,2,3,4)are real constants.Such type of systems arise in the mathematical modeling of the viscoelastic and inelastic flows,deformation of beams and plate deflection theory[1-2].Various meth?ods such as the variational iteration method(VIM)[3-5],the homotopy perturbation method(HPM)[6-7]and Adomian decomposition method[8]were de?veloped for solving the boundary value problems of the ordinary or the partial differential equation.

        The purpose of this article is to use the analysis of the variational iteration method and the homotopy perturbation method for solving the initial-value prob?lem of the fourth-orde r ordinary differential equation(1)-(2).

        1 Analysis of VIM

        We can construct the following iteration formula?tion:

        We can takeu0(t)with some confirmable param?eters,then substituting it into(7),we getu1(t).Re?peating the process,we can getu2(t),u3(t),…,un(t).Applying the initial conditions,the values of the pa?rameters can be determined.

        Here we suppose

        If the first-order approximate solution is enough,Imposing the initial conditions(4),we can identify the unknown constants as follows:

        So we obtain the following first-order approxi?mate solution

        Comparison of the first-order approximate solu?tion Eq.(13)with the exact solution

        Eq.(5)is illustrated in Fig.1

        From the fig1,we can see intuitively the curve of the approximation by VIM close to the curve of the exact solution.By means of the mathematical software MATHEMATICA,we can obtain its second-order or third-order approximations with very high accuracy easily.

        Fig.1Comparison of the approximate solution obtained by variation iteration method with the exact solution

        圖1 變分迭代近似解和精確解的比較

        2 Analysis of HPM

        Fig.2Comparison of the approximate solutions obtained by HPM with the exact solution圖2 同倫攝動近似解和精確解的比較

        We compare the approximate solutions obtained by HPM with the exact solution,and it is clear from Fig.2 that the fifth-order approximate solution is in good agreement with the exact solution.Also it is to be noted that the accuracy can be improved by com?puting more terms of the approximate solutions.

        3 Conclusion

        In this paper,we have used the variational itera?tion method and the homotopy perturbation method to solve the initial-value problem of the fourth-order or?dinary differential equation.The example illustrates that even its first-order approximation obtained by VIM is of high accuracy,the fifth-order approxima?tion by HPM is of high accuracy.The obtained solu?tion shows that these methods are very convenient and effective for solving the initial-value problems.These methods provide with realistic series solutions that converge very rapidly in physical problems.Hence,it is concluded that VIM and HPM can be used as effi?cient and reliable alternative algorithms for solving the initial-value problems of the ordinary differential equation.

        [1]Chawla M M,Katti C P.Finite difference methods for two-point boundary-value problems involving higher or?der differential equations[J].BIT,1979,19:27-33.

        [2]DoedelE.Finite difference methodsfor nonlinear two-point boundary-value problem[J].SIAM Journal of Numerical Analysis,1979,16:173-185.

        [3]He J H.Variational iteration method-Some recent results and new interpretations[J].Journal of Computational and Applied Mathematics2007,27:3-17.

        [4]He J H,Wu X H.Variational iteration method:New de?velopment and applications[J].Computers and Mathemat?ics with Applications,2007,54:881-894.

        [5]Muhammad Aslam Noor,Syed Tauseef Mohyud-Din.An efficient method for fourth-order boundary value problems[J].Computers and Mathematics with Applications,2007,54:1101-1111.

        [6]Noor M A,Mohyud-Din S T.An efficient algorithm for solving fifth-order boundary value problems[J].Mathe?matical and Computer Modelling,2007,45:954-964.

        [7]Golbabai A,Javidi M.Applications of He’s homotopy per?turbation method for th-order integro-differential equa?tions[J].Applied Mathematics and Computation,2007,190:1409-1416.

        [8]Wazwaz A M.The numerical solution of fifth-order boundary-value problems by Adomian decomposition[J].Journal of Computational and Applied Mathematics,2001,136:259-270.

        求四階常微分方程初值問題近似解的有效方法

        姜兆敏,李曉靜

        (江蘇技術師范學院 數(shù)理學院,江蘇 常州 213001)

        運用變分迭代法和同倫攝動方法求解四階常微分方程初值問題的近似解,通過將近似解和精確解進行比較,驗證了變分迭代法和同倫攝動方法對求解常微分方程的初值問題是兩種既有效又簡便的方法.

        變分迭代法;同倫攝動法;初值問題;精確解;近似解

        2011-09-03

        江蘇省自然科學基金(BK2009105,BK2008119);江蘇省高校自然科學基金(09KJD110001,08KJB110011)

        畢和平

        猜你喜歡
        方法
        中醫(yī)特有的急救方法
        中老年保健(2021年9期)2021-08-24 03:52:04
        高中數(shù)學教學改革的方法
        河北畫報(2021年2期)2021-05-25 02:07:46
        化學反應多變幻 “虛擬”方法幫大忙
        變快的方法
        兒童繪本(2020年5期)2020-04-07 17:46:30
        學習方法
        可能是方法不對
        用對方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        最有效的簡單方法
        山東青年(2016年1期)2016-02-28 14:25:23
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        中国女人a毛片免费全部播放| 亚洲无亚洲人成网站77777| 1000部夫妻午夜免费| 久久久AV无码精品免费| 91国语对白在线观看| 精品国产一区二区三区不卡在线| 又大又紧又粉嫩18p少妇| 成人伊人亚洲人综合网站222| 亚洲每天色在线观看视频| 亚洲av熟女中文字幕| 无码国产色欲xxxx视频| 亚洲av成本人无码网站| 日韩女优一区二区视频| 日本av天堂一区二区三区| 性色av免费网站| 奇米影视久久777中文字幕| 国产香蕉尹人在线视频你懂的| 国产激情综合五月久久| 亚洲日韩av无码一区二区三区人| 欧洲熟妇乱xxxxx大屁股7| 国产亚洲av人片在线播放| 中文字幕精品亚洲字幕| 少妇被粗大的猛烈进出免费视频 | 精品国产麻豆一区二区三区| 精品乱码卡1卡2卡3免费开放| 狂野欧美性猛xxxx乱大交| 中文字幕aⅴ人妻一区二区| 午夜高清福利| 久久综合老鸭窝色综合久久| 蜜芽亚洲av无码精品色午夜| 亚洲av无码一区二区三区四区| 久久久久久久综合日本| 特级黄色大片性久久久| 亚洲精品www久久久久久| 久久精品re| 亚洲国产av精品一区二| 日本韩国男男作爱gaywww| 特级毛片a级毛片免费播放| 午夜视频免费观看一区二区| 粉嫩国产av一区二区三区| 图片区小说区激情区偷拍区|