亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Efficient Methods for Solving the Initial-value Problem of the Ordinary Differential Equation

        2011-12-09 00:54:14JIANGZhaominLIXiaojing
        關鍵詞:方法

        JIANG Zhaomin,LI Xiaojing

        (School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou 213001,China)

        Efficient Methods for Solving the Initial-value Problem of the Ordinary Differential Equation

        JIANG Zhaomin,LI Xiaojing

        (School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou213001,China)

        We applied the variational iteration method and the homotopy perturbation method to solve the initial-value problem of the fourth-order ordinary differential equation.A comparison of the results with the exact solution illustrates that the approximation is of high accuracy.This confirms that the variational iteration method and the homotopy perturba?tion method are extremely efficient and simple to solve the initial-value problems.

        variational iteration method;homotopy perturbation method;initial-value problem;exact solution;approx?imate solution

        CLC mumber:O 241 Document code:A Article ID:1674-4942(2011)04-0370-05

        In this paper,we consider the general fourth-or?der initial-value problem of the type

        Wherefis continuous function on[a,b]and the parametersαi(i=1,2,3,4)are real constants.Such type of systems arise in the mathematical modeling of the viscoelastic and inelastic flows,deformation of beams and plate deflection theory[1-2].Various meth?ods such as the variational iteration method(VIM)[3-5],the homotopy perturbation method(HPM)[6-7]and Adomian decomposition method[8]were de?veloped for solving the boundary value problems of the ordinary or the partial differential equation.

        The purpose of this article is to use the analysis of the variational iteration method and the homotopy perturbation method for solving the initial-value prob?lem of the fourth-orde r ordinary differential equation(1)-(2).

        1 Analysis of VIM

        We can construct the following iteration formula?tion:

        We can takeu0(t)with some confirmable param?eters,then substituting it into(7),we getu1(t).Re?peating the process,we can getu2(t),u3(t),…,un(t).Applying the initial conditions,the values of the pa?rameters can be determined.

        Here we suppose

        If the first-order approximate solution is enough,Imposing the initial conditions(4),we can identify the unknown constants as follows:

        So we obtain the following first-order approxi?mate solution

        Comparison of the first-order approximate solu?tion Eq.(13)with the exact solution

        Eq.(5)is illustrated in Fig.1

        From the fig1,we can see intuitively the curve of the approximation by VIM close to the curve of the exact solution.By means of the mathematical software MATHEMATICA,we can obtain its second-order or third-order approximations with very high accuracy easily.

        Fig.1Comparison of the approximate solution obtained by variation iteration method with the exact solution

        圖1 變分迭代近似解和精確解的比較

        2 Analysis of HPM

        Fig.2Comparison of the approximate solutions obtained by HPM with the exact solution圖2 同倫攝動近似解和精確解的比較

        We compare the approximate solutions obtained by HPM with the exact solution,and it is clear from Fig.2 that the fifth-order approximate solution is in good agreement with the exact solution.Also it is to be noted that the accuracy can be improved by com?puting more terms of the approximate solutions.

        3 Conclusion

        In this paper,we have used the variational itera?tion method and the homotopy perturbation method to solve the initial-value problem of the fourth-order or?dinary differential equation.The example illustrates that even its first-order approximation obtained by VIM is of high accuracy,the fifth-order approxima?tion by HPM is of high accuracy.The obtained solu?tion shows that these methods are very convenient and effective for solving the initial-value problems.These methods provide with realistic series solutions that converge very rapidly in physical problems.Hence,it is concluded that VIM and HPM can be used as effi?cient and reliable alternative algorithms for solving the initial-value problems of the ordinary differential equation.

        [1]Chawla M M,Katti C P.Finite difference methods for two-point boundary-value problems involving higher or?der differential equations[J].BIT,1979,19:27-33.

        [2]DoedelE.Finite difference methodsfor nonlinear two-point boundary-value problem[J].SIAM Journal of Numerical Analysis,1979,16:173-185.

        [3]He J H.Variational iteration method-Some recent results and new interpretations[J].Journal of Computational and Applied Mathematics2007,27:3-17.

        [4]He J H,Wu X H.Variational iteration method:New de?velopment and applications[J].Computers and Mathemat?ics with Applications,2007,54:881-894.

        [5]Muhammad Aslam Noor,Syed Tauseef Mohyud-Din.An efficient method for fourth-order boundary value problems[J].Computers and Mathematics with Applications,2007,54:1101-1111.

        [6]Noor M A,Mohyud-Din S T.An efficient algorithm for solving fifth-order boundary value problems[J].Mathe?matical and Computer Modelling,2007,45:954-964.

        [7]Golbabai A,Javidi M.Applications of He’s homotopy per?turbation method for th-order integro-differential equa?tions[J].Applied Mathematics and Computation,2007,190:1409-1416.

        [8]Wazwaz A M.The numerical solution of fifth-order boundary-value problems by Adomian decomposition[J].Journal of Computational and Applied Mathematics,2001,136:259-270.

        求四階常微分方程初值問題近似解的有效方法

        姜兆敏,李曉靜

        (江蘇技術師范學院 數(shù)理學院,江蘇 常州 213001)

        運用變分迭代法和同倫攝動方法求解四階常微分方程初值問題的近似解,通過將近似解和精確解進行比較,驗證了變分迭代法和同倫攝動方法對求解常微分方程的初值問題是兩種既有效又簡便的方法.

        變分迭代法;同倫攝動法;初值問題;精確解;近似解

        2011-09-03

        江蘇省自然科學基金(BK2009105,BK2008119);江蘇省高校自然科學基金(09KJD110001,08KJB110011)

        畢和平

        猜你喜歡
        方法
        中醫(yī)特有的急救方法
        中老年保健(2021年9期)2021-08-24 03:52:04
        高中數(shù)學教學改革的方法
        河北畫報(2021年2期)2021-05-25 02:07:46
        化學反應多變幻 “虛擬”方法幫大忙
        變快的方法
        兒童繪本(2020年5期)2020-04-07 17:46:30
        學習方法
        可能是方法不對
        用對方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        最有效的簡單方法
        山東青年(2016年1期)2016-02-28 14:25:23
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        亚洲精品国产精品av| 四虎影视免费观看高清视频| 久久99精品国产99久久6男男| 国产精品亚洲A∨天堂| 天堂av在线播放观看| 亚洲国产精品一区二区毛片| 亚洲色大成网站www久久九九| 人妻人人澡人人添人人爽人人玩| 大又大粗又爽又黄少妇毛片| 国产精品二区在线观看| 亚洲av一区二区国产精品| 在线人妻va中文字幕| 国产特黄级aaaaa片免| 欧美性大战久久久久久久| 国产精品亚洲综合色区韩国| 色婷婷精久久品蜜臀av蜜桃| 一区二区三区视频在线观看免费| 伊人久久大香线蕉综合影院首页 | 五月天欧美精品在线观看| 国产最新一区二区三区| 黄片视频免费在线播放观看| 亚瑟国产精品久久| 久久免费网国产AⅤ| 在线免费观看亚洲天堂av| 成人免费在线亚洲视频| 2021久久精品国产99国产精品 | 日本精品极品视频在线| 宅男亚洲伊人久久大香线蕉| 插b内射18免费视频| 国产熟女亚洲精品麻豆| 国产av一区二区日夜精品剧情| 色88久久久久高潮综合影院| 欧美极品美女| 高清av一区二区三区在线 | 疯狂做受xxxx高潮视频免费| 黑人巨大videos极度另类| 一区二区久久精品66国产精品| 国产亚洲超级97免费视频| 久久精品娱乐亚洲领先| 亚色中文字幕| 青青草原综合久久大伊人精品 |