王秋蘭,盧育洪,李盛璞,王牡,蔡繼業(yè)
1 暨南大學(xué)化學(xué)系,廣州 510632
2 暨南大學(xué)附屬第一臨床醫(yī)院血液科,廣州 510632
B細(xì)胞膜CD20抗原的分布與單分子力譜探測(cè)
王秋蘭1,盧育洪2,李盛璞1,王牡1,蔡繼業(yè)1
1 暨南大學(xué)化學(xué)系,廣州 510632
2 暨南大學(xué)附屬第一臨床醫(yī)院血液科,廣州 510632
CD20抗原分子在B細(xì)胞上表達(dá)下降是慢性B淋巴細(xì)胞白血病 (B-CLL) 的標(biāo)志性特征。采用激光掃描共聚焦顯微鏡 (LSCM) 和量子點(diǎn)標(biāo)記相結(jié)合的方法對(duì)正常和B-CLL外周血CD20+B淋巴細(xì)胞膜表面CD20抗原分子的表達(dá)及分布進(jìn)行了熒光成像。同時(shí),采用原子力顯微鏡 (AFM) 對(duì) CD20+B細(xì)胞的形貌及超微結(jié)構(gòu)特征進(jìn)行了表征,并且將AFM針尖用生物素化的單克隆抗體進(jìn)行修飾,對(duì)CD20+B細(xì)胞表面的CD20抗原-抗體之間的單分子力譜進(jìn)行了探測(cè)。LSCM熒光圖像顯示,B-CLL CD20+B淋巴細(xì)胞上CD20分子的表達(dá)量比正常CD20+B淋巴細(xì)胞顯著降低。AFM結(jié)果顯示,B-CLL CD20+B淋巴細(xì)胞超微結(jié)構(gòu)比正常的粗糙。力譜結(jié)果顯示,CD20抗原-抗體的相互作用力大約是非特異性黏附力的5倍,CD20分子在正常CD20+B淋巴細(xì)胞膜上分布比較均勻,小部分有聚集現(xiàn)象,反之,在B-CLL CD20+B淋巴細(xì)胞膜表面分布稀疏。利用以上兩種方法能進(jìn)一步觀察到B-CLL外周血B淋巴細(xì)胞的異常,并在一定程度上解釋臨床上B-CLL病人對(duì)利妥昔的低反應(yīng)現(xiàn)象,為針對(duì)抗原CD20的治療用藥選擇提供參考。
B-CLL,外周血CD20+B淋巴細(xì)胞,CD20分子,LSCM,AFM
Abstract:The lower expression of CD20 antigen molecules on the B cell membrane is the primary characteristic of B-chronic lymphocytic leukemia (B-CLL). In this paper, we combined laser scanning confocal microscopy (LSCM) and quantum dots labeling to detect the expression and distribution of CD20 molecules on CD20+B lymphocyte surface. Simultaneously, we investigated the morphology and ultrastructure of the B lymphocytes that belonged to the normal persons and B-CLL patients through utilizing the atomic force microscope (AFM). In addition, we measured the force spectroscopy of CD20 antigen-antibody binding using the AFMtips modified with CD20 antibody. The fluorescent images indicated that the density of CD20 of normal CD20+B lymphocytes was much higher than that of B-CLL CD20+B cells. The AFM data show that ultrastructure of B-CLL CD20+B lymphocytes became more complicated. Moreover, the single molecular force spectroscopy data show that the special force of CD20 antigen-antibody was four times bigger than the nonspecific force between the naked AFM tip and cell surface. The force map showed that CD20 molecules distributed homogeneously on the normal CD20+B lymphocytes, whereas, the CD20 molecules distributed heterogenous on B-CLL CD20+B lymphocytes. Our data provide visualized evidence for the phenomenon of low-response to rituximab therapy on clinical.Meanwhile, AFM is possible to be a powerful tool for development and screening of drugs for pharmacology use.
Keywords:B-chronic lymphocytic leukemia (B-CLL), peripheral blood CD20+B lymphocytes, CD20 molecule, laser scanning confocal microscopy (LSCM), atomic force microscope (AFM)
CD20分子是一種在細(xì)胞周期起始和細(xì)胞分化過(guò)程中起重要作用的膜蛋白,它在正常B淋巴細(xì)胞及大部分B細(xì)胞惡性淋巴瘤膜表面均有明顯表達(dá),這為抗 CD20抗體的免疫靶向治療提供了基礎(chǔ)。利妥昔單抗是一種嵌合鼠/人的單克隆抗體,該抗體可與縱貫細(xì)胞膜的CD20抗原特異性結(jié)合。已經(jīng)有報(bào)道用利妥昔治療慢性淋巴細(xì)胞增殖性疾病[1-3],但是在臨床上 B-CLL病人對(duì)利妥昔治療出現(xiàn)低反應(yīng)現(xiàn)象[4],除其他因素外,腫瘤細(xì)胞的CD20抗原密度可能是影響治療效果的因素[5-6]。一直以來(lái),表征細(xì)胞表面抗原密度最常用的是流式細(xì)胞儀,流式表征正常和B-CLL B細(xì)胞表面CD20抗原密度的研究結(jié)果表明[7-12],CD20在B-CLL B細(xì)胞上的表達(dá)比在正常B細(xì)胞上的表達(dá)還要低,這為解釋B-CLL對(duì)利妥昔治療出現(xiàn)低反應(yīng)提供了一定的依據(jù)。
AFM已經(jīng)被廣泛應(yīng)用于生物領(lǐng)域中,并作為研究解決生物問(wèn)題的有力工具。利用AFM可以在細(xì)胞水平上對(duì)樣品進(jìn)行成像[13-15]。隨著對(duì)AFM功能的深入研究,目前可以利用原子力顯微鏡空間和力譜高分辨的獨(dú)特優(yōu)勢(shì),通過(guò)細(xì)胞和功能化針尖之間抗原抗體的相互作用或受體配體相互作用,來(lái)探測(cè)蛋白分子間作用力及細(xì)胞表面蛋白分子的分布[16-21],這方面研究已經(jīng)成為國(guó)內(nèi)外研究的新熱點(diǎn)。對(duì)此,本課題組也有相關(guān)的報(bào)道[22-24]。本文首次嘗試結(jié)合共聚焦顯微鏡和原子力顯微鏡對(duì)人正常和慢性淋巴白血病外周血單個(gè)B淋巴細(xì)胞表面的CD20抗原的分布情況進(jìn)行分析和比較,為臨床上針對(duì) CD20分子治療的藥物選擇提供一定的參考。
淋巴細(xì)胞分離液購(gòu)自AXIS SHIELD PoC AS公司;RPMI1640培養(yǎng)液購(gòu)自Gibgo公司;CD20+微珠和MS柱購(gòu)自Mihenyi Biotech公司;鏈霉親和素偶聯(lián)發(fā)射中心波長(zhǎng)655 nm (紅色) 的量子點(diǎn) (QD565)購(gòu)自Sigma公司;其他所用的試劑皆為分析純,實(shí)驗(yàn)用水為三次蒸餾水。Zeiss激光共聚焦掃描熒光顯微鏡 (LS M510,Zeiss,德國(guó));原子力顯微鏡 (Autoprobe CP Research,Thermomicroscopes 公司,美國(guó));免疫磁珠分選儀 (Mihenyi Biotech公司,德國(guó))。
1.2.1 外周血取樣
B慢性淋巴白血病病人外周血取自暨南大學(xué)附屬第一臨床醫(yī)院血液科,正常外周血取自健康志愿者。
1.2.2 單個(gè)核細(xì)胞分離
分別抽取健康人和B-CLL病人新鮮外周血,加肝素鈉抗凝,用密度梯度離心法分離獲得外周血單個(gè)核細(xì)胞。具體如下:以等體積 RPMI1640培養(yǎng)液稀釋肝素抗凝血,小心鋪在細(xì)胞分離液之液面上(稀釋液∶淋巴細(xì)胞分離液為 2∶1),2 000 r/min離心15 min,收集環(huán)狀乳白色淋巴細(xì)胞層,單個(gè)核細(xì)胞沉淀經(jīng)RPMI1640培養(yǎng)液反復(fù)洗2次即得所需細(xì)胞。
1.2.3 免疫磁珠分選法分離CD20+B細(xì)胞
將得到的單個(gè)核細(xì)胞用 80 μL的緩沖液對(duì) 107個(gè)細(xì)胞進(jìn)行重懸,加入20 μL的CD20微珠,混勻,4 ℃~8 ℃孵育15 min,加入1 mL緩沖液洗滌細(xì)胞,1 500 r/min離心10 min,完全去除上清,用500 μL緩沖液重懸,所得細(xì)胞懸液加入 MS分選柱中,收集先行流出的未標(biāo)記細(xì)胞組分,并用500 μL緩沖液沖洗MS柱,重復(fù)3次,此時(shí)收集到的懸液為CD20陰性細(xì)胞。將分選柱移出磁場(chǎng),于柱中加1 mL緩沖液,并用活塞快速將分選柱上滯留的細(xì)胞洗脫下來(lái),這些細(xì)胞是磁性標(biāo)記的 CD20陽(yáng)性細(xì)胞。由于慢淋病人外周血單個(gè)核細(xì)胞中CD20+B淋巴細(xì)胞占90%以上,故無(wú)需進(jìn)一步純化[25]。
1.2.4 激光掃描共聚焦實(shí)驗(yàn)
使用 Zeiss激光共聚焦掃描熒光顯微鏡對(duì)CD20+B淋巴細(xì)胞進(jìn)行成像。將分離出的CD20+B淋巴細(xì)胞滴在經(jīng)多聚賴氨酸處理的蓋玻片上,用 PBS清洗3次,4% (質(zhì)量分?jǐn)?shù)) 多聚甲醛固定15 min,再用PBS清洗3次,加入50 μL 10 mg/L的生物素化的單克隆CD20抗體室溫孵育30 min,PBS清洗除去過(guò)量的抗體,加入 50 μL 1 mg/L鏈霉親和素QD655室溫孵育30 min,PBS清洗除去過(guò)量的鏈霉親和素QD655,封片,對(duì)處理好的載玻片進(jìn)行共聚焦成像。
1.2.5 針尖修飾
AFM 針尖修飾的過(guò)程[26-27]:將 AFM 針尖(UL20B硅探針,力常數(shù)為0.9 N/m) 在乙醇溶液中浸泡5 min,紫外燈下輻照30 min,隨后把針尖浸泡在1 g/L生物素化的牛血清白蛋白溶液中37 ℃孵育過(guò)夜,用PBS洗去過(guò)量的生物素化牛血清白蛋白溶液,再將針尖浸泡在1 g/L鏈霉親和素溶液中室溫孵育30 min,用 PBS洗去過(guò)量的鏈霉親和素,然后將針尖浸泡在10 mg/L生物素化抗人的CD20抗體溶液中4 ℃孵育過(guò)夜,PBS清洗過(guò)量的抗體,最后將針尖浸泡在PBS溶液中4 ℃保存?zhèn)溆茫诳諝庵凶匀涣栏墒褂谩?/p>
1.2.6 AFM樣品制備
分別取正常和B-CLL外周血B淋巴細(xì)胞,滴于玻片上,使其自然鋪展,吸附10 min,然后用 4%多聚甲醛固定15 min,用蒸餾水沖洗3次,室溫自然干燥。立即進(jìn)行AFM掃描。
1.2.7 原子力顯微鏡掃描
將載有細(xì)胞樣品的玻片固定在 AFM 的掃描臺(tái)上,用監(jiān)視器定位所要掃描的樣品區(qū)域,對(duì)樣品進(jìn)行掃描成像,實(shí)驗(yàn)采用100 μm掃描器,空氣中進(jìn)行掃描,以接觸模式成像。所有圖像僅經(jīng)儀器配置軟件 (Thermomicroscopes proscan image processing software version 2.1) 平滑處理,以消除掃描方向上的低頻背景噪音。原子力顯微鏡的力譜用于分析力曲線測(cè)量。所有的力曲線都是在同一加載速率下測(cè)量得到。
將量子點(diǎn)標(biāo)記的細(xì)胞樣品放在LSCM下觀察,得到量子點(diǎn)標(biāo)記的外周血 CD20+B淋巴細(xì)胞的激光共聚焦圖像 (圖1),其中A和D為熒光圖,B和E為微分干涉 (DIC) 圖,C和F為疊加圖。由于CD20+B淋巴細(xì)胞攜帶CD20分子,圖1A和1D中細(xì)胞發(fā)紅光代表 CD20抗原分子表達(dá)于該細(xì)胞上,且分布在細(xì)胞膜表面,核區(qū)未出現(xiàn),該實(shí)驗(yàn)結(jié)果進(jìn)一步證實(shí)了所分離的細(xì)胞確為 CD20+B淋巴細(xì)胞,并且從圖中可以明顯看出B-CLL外周血CD20+B淋巴細(xì)胞表面 CD20抗原分子表達(dá)量低于正常外周血 CD20+B淋巴細(xì)胞。
對(duì)正常和B-CLL外周血CD20+B淋巴細(xì)胞進(jìn)行了AFM成像 (圖2A和2B),高分辨的形貌圖像顯示正常外周血CD20+B淋巴細(xì)胞比較光滑,而B-CLL外周血 CD20+B淋巴細(xì)胞較粗糙。為了進(jìn)一步探測(cè)單個(gè)正常和B-CLL外周血CD20+B淋巴細(xì)胞表面受體分子即CD20的分布情況,我們對(duì)這2種淋巴細(xì)胞分別進(jìn)行超微結(jié)構(gòu)成像以達(dá)到定位的目的 (圖2C和 2D)。利用 AFM 力曲線測(cè)量的方法,在 1 μm× 1 μm的膜區(qū)域共測(cè)量了256條力曲線,分析檢測(cè)這2種細(xì)胞的CD20+B淋巴細(xì)胞表面CD20抗原-抗體的特異性相互作用(圖 3A和 3B),圖中白色的點(diǎn)代表該位置有很強(qiáng)的黏附力,這些可探測(cè)到黏附力的位置就是CD20+B淋巴細(xì)胞表面的 CD20抗原分布,其中代表性的力曲線如圖3C (正常B淋巴細(xì)胞) 和D(B-CLL B淋巴細(xì)胞)。力曲線回收使CD20+B淋巴細(xì)胞表面CD20抗原和CD20抗體修飾的AFM針尖作用斷裂。對(duì)照實(shí)驗(yàn)使用未修飾 CD20抗體的針尖對(duì)正常和 B-CLL CD20+B淋巴細(xì)胞進(jìn)行力曲線測(cè)量,發(fā)現(xiàn)2種細(xì)胞與針尖間均沒有出現(xiàn)明顯的作用力,具有代表性的力曲線如圖3E (正常B淋巴細(xì)胞)和 F (B-CLL B淋巴細(xì)胞)。這個(gè)結(jié)果說(shuō)明了 CD20抗原和對(duì)應(yīng)抗體具有特異性和高親和性,并且抗原-抗體特異性作用力約是非特異性4倍。對(duì)比圖3A和3B,發(fā)現(xiàn)CD20抗原在正常CD20+B淋巴細(xì)胞膜上的分布均勻,小部分有聚集現(xiàn)象,而在 B-CLL CD20+B淋巴細(xì)胞膜上的分布相對(duì)要稀少,這與用LSCM 觀察到的結(jié)果一致。這很可能是因?yàn)?,相?duì)于正常外周血B淋巴細(xì)胞,B-CLL B細(xì)胞是處在B淋巴細(xì)胞成熟的早期階段,并且CD20在B-CLL B細(xì)胞表達(dá)下降是B-CLL的標(biāo)志性特征[4]。
圖1 CD20+B淋巴細(xì)胞CD20分子標(biāo)記QD655激光掃描共聚圖Fig. 1 LSCM images of CD20 molecules of CD20+B lymphocytes labeled with QD565. (A) Fluorescence image of normal CD20+B lymphocyte. (B) DIC image of normal CD20+B lymphocyte. (C) Merged image of normal CD20+B lymphocyte. (D) Fluorescence image of B-CLL CD20+B lymphocyte. (E) DIC image of B-CLL CD20+B lymphocyte. (F) Merged image of B-CLL CD20+B lymphocyte.
圖2 CD20+B淋巴細(xì)胞的原子力圖Fig. 2 AFM images of CD20+B lymphocytes. (A) 3-D image of normal CD20+B lymphocyte (9 μm×9 μm). (B) 3-D image of B-CLL CD20+B lymphocyte (9 μm×9 μm). (C) Ultrastructure image of normal CD20+B lymphocyte (1 μm×1 μm). (D)Ultrastructure image of B-CLL CD20+B lymphocyte (1 μm×1 μm). div: division.
圖3 CD20+B淋巴細(xì)胞的力曲線Fig. 3 Force curves of CD20+B lymphocytes. Map of force curves pots (n=256) recorded using anti-human CD20 functionalized AFM tips and cells (A: normal group, B: B-CLL group, fwhite>fblack, white spots represent the location of CD20 molecules). (C) The force distance curves between the functionalized tip and normal CD20+B lymphocytes. (D) The force distance curves between the functionalized tip and B-CLL CD20+B lymphocytes. (E) The force distance curves between the unfunctionalized tip and normal CD20+B lymphocytes. (F)The force distance curves between the unfunctionalized tip and B-CLL CD20+B lymphocytes.
本實(shí)驗(yàn)通過(guò)結(jié)合LSCM和AFM兩種方法,分析對(duì)比了人正常和外周血單個(gè) CD20+B淋巴細(xì)胞膜表面 CD20抗原的表達(dá)及分布情況。結(jié)果表明,與正常B淋巴細(xì)胞相比,CD20在B-CLL B淋巴細(xì)胞上面的表達(dá)低,分布不均勻。首先,利用LSCM和AFM能進(jìn)一步辨別出B-CLL B淋巴細(xì)胞的異常,結(jié)合形態(tài)學(xué)和其他特征,能夠提高B淋巴細(xì)胞異常診斷的精確性。其次,利妥昔治療能改善患B細(xì)胞白血病人的病情,但是體內(nèi)確切的治療機(jī)制并不清楚,因此B淋巴細(xì)胞表面CD20抗原表達(dá)的多少與臨床上利妥昔治療有一定的關(guān)系[28]。本實(shí)驗(yàn)結(jié)果在一定程度上能解釋臨床上B-CLL病人對(duì)利妥昔反應(yīng)低的原因,并且為針對(duì)抗原 CD20的治療用藥選擇提供一定的參考。
REFERENCES
[1] Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol, 2001, 19(8): 2153?2164.
[2] Huhn D, von Schilling C, Wilhelm M, et al. Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood, 2001, 98(5): 1326?1331.
[3] O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol, 2001, 19(8): 2165?2170.
[4] Oscier D, Fegan C, Hillmen P, et al. Guidelines on diagnosis and management of chronic lymphocytic leukemia. Br J Haematol, 2004, 125(3): 294?317.
[5] Wierda WG, Keating MJ, O’Brien S. Refractory chronic lymphocytic leukemia: prognosis and treatment options. Am J Cancer, 2004, 3(3): 163?178.
[6] Rossmann ED, Lundin J, Lenkei R, et al. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J, 2001, 2(5): 300?306.
[7] Almasri NM, Duque RE, Iturraspe J, et al. Reducedexpression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol, 1992,40(4): 259?263.
[8] Marti GE, Faguet G, Bertin P, et al. CD20 and CD5 expression in B-chronic lymphocytic leukemia. Ann N Y Acad Sci, 1992, 651(1): 480?483.
[9] D'Arena G, Dell'Olio M, Musto P, et al. Morphologically typical and atypical B-cell chronic lymphocytic leukemias display a different pattern of surface antigenic density.Leukemia Lymphoma, 2001, 42(4): 649?654.
[10] Wang LL, Abbasi F, Gaigalas AK, et al. Comparison of fluorescein and phycoerythrin conjugates for quantifying CD20 expression on normal and leukemic B-cells. Cytometry B Clin Cytom, 2006, 70(6): 410?415.
[11] Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol, 1998, 51(5): 364?369.
[12] Johnson NA, Boyle M, Bashashati A, et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood, 2009, 113(16):3773?3780.
[13] Scheuring S, Dufrêne YF. Atomic force microscopy:probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol, 2010, 75(6): 1327?1336.
[14] Yuana Y, Oosterkamp TH, Bahatyrova S, et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost, 2010,8(2): 315?323.
[15] Lesoil C, Nonaka T, Sekiguchi H, et al. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study. Biochem Biophys Res Commun, 2010, 391(3): 1312?1317.
[16] Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA, 2007, 104(23):9609?9614.
[17] Girish CM, Binulal NS, Anitha VC, et al. Atomic force microscopic study of folate receptors in live cells with functionalized tips. Appl Phys Lett, 2009, 95(22):223703/1-223703/3.
[18] Moskalenko AV, Yarova PL, Gordeev SN, et al. Single protein molecule mapping with magnetic atomic force microscopy. Biophys J, 2010, 98(3): 478?487.
[19] Duman M, Pfleger M, Zhu R, et al. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging. Nanotechnology, 2010, 21(11):115504.
[20] Soumetz FC, Saenz JF, Pastorino L, et al. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy. Ultramicroscopy, 2010,110(4): 330?338.
[21] Taninaka A, Takeuchi O, Shigekawa H. Site-selective analysis of biotin?streptavidin interactions using dynamic force spectroscopy. Hyomen Kagaku, 2010, 31(1): 41?47.[22] Hu MQ, Wang JK, Cai JY, et al. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+T cells using atomic force microscopy. Biochem Biophys Res Commun, 2008, 374(1): 90?94.
[23] Hu MQ, Chen JN, Wang JK, et al. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+T cell membrane. J Mol Recognit, 2009, 22(6): 516?520.
[24] Huang FC, Gao SJ, Qiu SY, et al. Morphology and force spectroscopy of human peripheral blood CD8+T cells studied by atomic force microscope. J Instr Anal, 2009,28(10):1143?1147.
黃飛程, 郜世雋, 邱思遠(yuǎn), 等. 基于原子力顯微鏡的人外周血 CD8+T細(xì)胞形貌觀察與力譜分析. 分析測(cè)試學(xué)報(bào), 2009, 28(10): 1143?1147.
[25] Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or Ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol, 2008, 181(1):822?832.
[26] Wojcikiewicz EP, Abdulreda MH, Zhang XH, et al. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules, 2006, 7(11): 3188?3195.
[27] Jin Y, Wang KM, Tan WH, et al. Monitoring molecular beacon /DNA interactions using atomic force microscopy.Anal Chem, 2004, 76(19): 5721?5725.
[28] Huh YO, Keating MJ, Saffer HL, et al. Higher levels of surface CD20 expression on circulating lymphocytes compared with bone marrow and lymph nodes in B-cell chronic lymphocytic leukemia. Am J Clin Pathol, 2001,116(3): 437?443.
Distribution and force spectroscopy of CD20 antigen-antibody binding on the B cell surface
Qiulan Wang1, Yuhong Lu2, Shengpu Li1, Mu Wang1, and Jiye Cai1
1 Department of Chemistry, Jinan University, Guangzhou 510632, China
2 Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou 510632, China