王秋蘭,盧育洪,李盛璞,王牡,蔡繼業(yè)
1 暨南大學化學系,廣州 510632
2 暨南大學附屬第一臨床醫(yī)院血液科,廣州 510632
B細胞膜CD20抗原的分布與單分子力譜探測
王秋蘭1,盧育洪2,李盛璞1,王牡1,蔡繼業(yè)1
1 暨南大學化學系,廣州 510632
2 暨南大學附屬第一臨床醫(yī)院血液科,廣州 510632
CD20抗原分子在B細胞上表達下降是慢性B淋巴細胞白血病 (B-CLL) 的標志性特征。采用激光掃描共聚焦顯微鏡 (LSCM) 和量子點標記相結(jié)合的方法對正常和B-CLL外周血CD20+B淋巴細胞膜表面CD20抗原分子的表達及分布進行了熒光成像。同時,采用原子力顯微鏡 (AFM) 對 CD20+B細胞的形貌及超微結(jié)構(gòu)特征進行了表征,并且將AFM針尖用生物素化的單克隆抗體進行修飾,對CD20+B細胞表面的CD20抗原-抗體之間的單分子力譜進行了探測。LSCM熒光圖像顯示,B-CLL CD20+B淋巴細胞上CD20分子的表達量比正常CD20+B淋巴細胞顯著降低。AFM結(jié)果顯示,B-CLL CD20+B淋巴細胞超微結(jié)構(gòu)比正常的粗糙。力譜結(jié)果顯示,CD20抗原-抗體的相互作用力大約是非特異性黏附力的5倍,CD20分子在正常CD20+B淋巴細胞膜上分布比較均勻,小部分有聚集現(xiàn)象,反之,在B-CLL CD20+B淋巴細胞膜表面分布稀疏。利用以上兩種方法能進一步觀察到B-CLL外周血B淋巴細胞的異常,并在一定程度上解釋臨床上B-CLL病人對利妥昔的低反應現(xiàn)象,為針對抗原CD20的治療用藥選擇提供參考。
B-CLL,外周血CD20+B淋巴細胞,CD20分子,LSCM,AFM
Abstract:The lower expression of CD20 antigen molecules on the B cell membrane is the primary characteristic of B-chronic lymphocytic leukemia (B-CLL). In this paper, we combined laser scanning confocal microscopy (LSCM) and quantum dots labeling to detect the expression and distribution of CD20 molecules on CD20+B lymphocyte surface. Simultaneously, we investigated the morphology and ultrastructure of the B lymphocytes that belonged to the normal persons and B-CLL patients through utilizing the atomic force microscope (AFM). In addition, we measured the force spectroscopy of CD20 antigen-antibody binding using the AFMtips modified with CD20 antibody. The fluorescent images indicated that the density of CD20 of normal CD20+B lymphocytes was much higher than that of B-CLL CD20+B cells. The AFM data show that ultrastructure of B-CLL CD20+B lymphocytes became more complicated. Moreover, the single molecular force spectroscopy data show that the special force of CD20 antigen-antibody was four times bigger than the nonspecific force between the naked AFM tip and cell surface. The force map showed that CD20 molecules distributed homogeneously on the normal CD20+B lymphocytes, whereas, the CD20 molecules distributed heterogenous on B-CLL CD20+B lymphocytes. Our data provide visualized evidence for the phenomenon of low-response to rituximab therapy on clinical.Meanwhile, AFM is possible to be a powerful tool for development and screening of drugs for pharmacology use.
Keywords:B-chronic lymphocytic leukemia (B-CLL), peripheral blood CD20+B lymphocytes, CD20 molecule, laser scanning confocal microscopy (LSCM), atomic force microscope (AFM)
CD20分子是一種在細胞周期起始和細胞分化過程中起重要作用的膜蛋白,它在正常B淋巴細胞及大部分B細胞惡性淋巴瘤膜表面均有明顯表達,這為抗 CD20抗體的免疫靶向治療提供了基礎。利妥昔單抗是一種嵌合鼠/人的單克隆抗體,該抗體可與縱貫細胞膜的CD20抗原特異性結(jié)合。已經(jīng)有報道用利妥昔治療慢性淋巴細胞增殖性疾病[1-3],但是在臨床上 B-CLL病人對利妥昔治療出現(xiàn)低反應現(xiàn)象[4],除其他因素外,腫瘤細胞的CD20抗原密度可能是影響治療效果的因素[5-6]。一直以來,表征細胞表面抗原密度最常用的是流式細胞儀,流式表征正常和B-CLL B細胞表面CD20抗原密度的研究結(jié)果表明[7-12],CD20在B-CLL B細胞上的表達比在正常B細胞上的表達還要低,這為解釋B-CLL對利妥昔治療出現(xiàn)低反應提供了一定的依據(jù)。
AFM已經(jīng)被廣泛應用于生物領域中,并作為研究解決生物問題的有力工具。利用AFM可以在細胞水平上對樣品進行成像[13-15]。隨著對AFM功能的深入研究,目前可以利用原子力顯微鏡空間和力譜高分辨的獨特優(yōu)勢,通過細胞和功能化針尖之間抗原抗體的相互作用或受體配體相互作用,來探測蛋白分子間作用力及細胞表面蛋白分子的分布[16-21],這方面研究已經(jīng)成為國內(nèi)外研究的新熱點。對此,本課題組也有相關的報道[22-24]。本文首次嘗試結(jié)合共聚焦顯微鏡和原子力顯微鏡對人正常和慢性淋巴白血病外周血單個B淋巴細胞表面的CD20抗原的分布情況進行分析和比較,為臨床上針對 CD20分子治療的藥物選擇提供一定的參考。
淋巴細胞分離液購自AXIS SHIELD PoC AS公司;RPMI1640培養(yǎng)液購自Gibgo公司;CD20+微珠和MS柱購自Mihenyi Biotech公司;鏈霉親和素偶聯(lián)發(fā)射中心波長655 nm (紅色) 的量子點 (QD565)購自Sigma公司;其他所用的試劑皆為分析純,實驗用水為三次蒸餾水。Zeiss激光共聚焦掃描熒光顯微鏡 (LS M510,Zeiss,德國);原子力顯微鏡 (Autoprobe CP Research,Thermomicroscopes 公司,美國);免疫磁珠分選儀 (Mihenyi Biotech公司,德國)。
1.2.1 外周血取樣
B慢性淋巴白血病病人外周血取自暨南大學附屬第一臨床醫(yī)院血液科,正常外周血取自健康志愿者。
1.2.2 單個核細胞分離
分別抽取健康人和B-CLL病人新鮮外周血,加肝素鈉抗凝,用密度梯度離心法分離獲得外周血單個核細胞。具體如下:以等體積 RPMI1640培養(yǎng)液稀釋肝素抗凝血,小心鋪在細胞分離液之液面上(稀釋液∶淋巴細胞分離液為 2∶1),2 000 r/min離心15 min,收集環(huán)狀乳白色淋巴細胞層,單個核細胞沉淀經(jīng)RPMI1640培養(yǎng)液反復洗2次即得所需細胞。
1.2.3 免疫磁珠分選法分離CD20+B細胞
將得到的單個核細胞用 80 μL的緩沖液對 107個細胞進行重懸,加入20 μL的CD20微珠,混勻,4 ℃~8 ℃孵育15 min,加入1 mL緩沖液洗滌細胞,1 500 r/min離心10 min,完全去除上清,用500 μL緩沖液重懸,所得細胞懸液加入 MS分選柱中,收集先行流出的未標記細胞組分,并用500 μL緩沖液沖洗MS柱,重復3次,此時收集到的懸液為CD20陰性細胞。將分選柱移出磁場,于柱中加1 mL緩沖液,并用活塞快速將分選柱上滯留的細胞洗脫下來,這些細胞是磁性標記的 CD20陽性細胞。由于慢淋病人外周血單個核細胞中CD20+B淋巴細胞占90%以上,故無需進一步純化[25]。
1.2.4 激光掃描共聚焦實驗
使用 Zeiss激光共聚焦掃描熒光顯微鏡對CD20+B淋巴細胞進行成像。將分離出的CD20+B淋巴細胞滴在經(jīng)多聚賴氨酸處理的蓋玻片上,用 PBS清洗3次,4% (質(zhì)量分數(shù)) 多聚甲醛固定15 min,再用PBS清洗3次,加入50 μL 10 mg/L的生物素化的單克隆CD20抗體室溫孵育30 min,PBS清洗除去過量的抗體,加入 50 μL 1 mg/L鏈霉親和素QD655室溫孵育30 min,PBS清洗除去過量的鏈霉親和素QD655,封片,對處理好的載玻片進行共聚焦成像。
1.2.5 針尖修飾
AFM 針尖修飾的過程[26-27]:將 AFM 針尖(UL20B硅探針,力常數(shù)為0.9 N/m) 在乙醇溶液中浸泡5 min,紫外燈下輻照30 min,隨后把針尖浸泡在1 g/L生物素化的牛血清白蛋白溶液中37 ℃孵育過夜,用PBS洗去過量的生物素化牛血清白蛋白溶液,再將針尖浸泡在1 g/L鏈霉親和素溶液中室溫孵育30 min,用 PBS洗去過量的鏈霉親和素,然后將針尖浸泡在10 mg/L生物素化抗人的CD20抗體溶液中4 ℃孵育過夜,PBS清洗過量的抗體,最后將針尖浸泡在PBS溶液中4 ℃保存?zhèn)溆?,在空氣中自然晾干使用?/p>
1.2.6 AFM樣品制備
分別取正常和B-CLL外周血B淋巴細胞,滴于玻片上,使其自然鋪展,吸附10 min,然后用 4%多聚甲醛固定15 min,用蒸餾水沖洗3次,室溫自然干燥。立即進行AFM掃描。
1.2.7 原子力顯微鏡掃描
將載有細胞樣品的玻片固定在 AFM 的掃描臺上,用監(jiān)視器定位所要掃描的樣品區(qū)域,對樣品進行掃描成像,實驗采用100 μm掃描器,空氣中進行掃描,以接觸模式成像。所有圖像僅經(jīng)儀器配置軟件 (Thermomicroscopes proscan image processing software version 2.1) 平滑處理,以消除掃描方向上的低頻背景噪音。原子力顯微鏡的力譜用于分析力曲線測量。所有的力曲線都是在同一加載速率下測量得到。
將量子點標記的細胞樣品放在LSCM下觀察,得到量子點標記的外周血 CD20+B淋巴細胞的激光共聚焦圖像 (圖1),其中A和D為熒光圖,B和E為微分干涉 (DIC) 圖,C和F為疊加圖。由于CD20+B淋巴細胞攜帶CD20分子,圖1A和1D中細胞發(fā)紅光代表 CD20抗原分子表達于該細胞上,且分布在細胞膜表面,核區(qū)未出現(xiàn),該實驗結(jié)果進一步證實了所分離的細胞確為 CD20+B淋巴細胞,并且從圖中可以明顯看出B-CLL外周血CD20+B淋巴細胞表面 CD20抗原分子表達量低于正常外周血 CD20+B淋巴細胞。
對正常和B-CLL外周血CD20+B淋巴細胞進行了AFM成像 (圖2A和2B),高分辨的形貌圖像顯示正常外周血CD20+B淋巴細胞比較光滑,而B-CLL外周血 CD20+B淋巴細胞較粗糙。為了進一步探測單個正常和B-CLL外周血CD20+B淋巴細胞表面受體分子即CD20的分布情況,我們對這2種淋巴細胞分別進行超微結(jié)構(gòu)成像以達到定位的目的 (圖2C和 2D)。利用 AFM 力曲線測量的方法,在 1 μm× 1 μm的膜區(qū)域共測量了256條力曲線,分析檢測這2種細胞的CD20+B淋巴細胞表面CD20抗原-抗體的特異性相互作用(圖 3A和 3B),圖中白色的點代表該位置有很強的黏附力,這些可探測到黏附力的位置就是CD20+B淋巴細胞表面的 CD20抗原分布,其中代表性的力曲線如圖3C (正常B淋巴細胞) 和D(B-CLL B淋巴細胞)。力曲線回收使CD20+B淋巴細胞表面CD20抗原和CD20抗體修飾的AFM針尖作用斷裂。對照實驗使用未修飾 CD20抗體的針尖對正常和 B-CLL CD20+B淋巴細胞進行力曲線測量,發(fā)現(xiàn)2種細胞與針尖間均沒有出現(xiàn)明顯的作用力,具有代表性的力曲線如圖3E (正常B淋巴細胞)和 F (B-CLL B淋巴細胞)。這個結(jié)果說明了 CD20抗原和對應抗體具有特異性和高親和性,并且抗原-抗體特異性作用力約是非特異性4倍。對比圖3A和3B,發(fā)現(xiàn)CD20抗原在正常CD20+B淋巴細胞膜上的分布均勻,小部分有聚集現(xiàn)象,而在 B-CLL CD20+B淋巴細胞膜上的分布相對要稀少,這與用LSCM 觀察到的結(jié)果一致。這很可能是因為,相對于正常外周血B淋巴細胞,B-CLL B細胞是處在B淋巴細胞成熟的早期階段,并且CD20在B-CLL B細胞表達下降是B-CLL的標志性特征[4]。
圖1 CD20+B淋巴細胞CD20分子標記QD655激光掃描共聚圖Fig. 1 LSCM images of CD20 molecules of CD20+B lymphocytes labeled with QD565. (A) Fluorescence image of normal CD20+B lymphocyte. (B) DIC image of normal CD20+B lymphocyte. (C) Merged image of normal CD20+B lymphocyte. (D) Fluorescence image of B-CLL CD20+B lymphocyte. (E) DIC image of B-CLL CD20+B lymphocyte. (F) Merged image of B-CLL CD20+B lymphocyte.
圖2 CD20+B淋巴細胞的原子力圖Fig. 2 AFM images of CD20+B lymphocytes. (A) 3-D image of normal CD20+B lymphocyte (9 μm×9 μm). (B) 3-D image of B-CLL CD20+B lymphocyte (9 μm×9 μm). (C) Ultrastructure image of normal CD20+B lymphocyte (1 μm×1 μm). (D)Ultrastructure image of B-CLL CD20+B lymphocyte (1 μm×1 μm). div: division.
圖3 CD20+B淋巴細胞的力曲線Fig. 3 Force curves of CD20+B lymphocytes. Map of force curves pots (n=256) recorded using anti-human CD20 functionalized AFM tips and cells (A: normal group, B: B-CLL group, fwhite>fblack, white spots represent the location of CD20 molecules). (C) The force distance curves between the functionalized tip and normal CD20+B lymphocytes. (D) The force distance curves between the functionalized tip and B-CLL CD20+B lymphocytes. (E) The force distance curves between the unfunctionalized tip and normal CD20+B lymphocytes. (F)The force distance curves between the unfunctionalized tip and B-CLL CD20+B lymphocytes.
本實驗通過結(jié)合LSCM和AFM兩種方法,分析對比了人正常和外周血單個 CD20+B淋巴細胞膜表面 CD20抗原的表達及分布情況。結(jié)果表明,與正常B淋巴細胞相比,CD20在B-CLL B淋巴細胞上面的表達低,分布不均勻。首先,利用LSCM和AFM能進一步辨別出B-CLL B淋巴細胞的異常,結(jié)合形態(tài)學和其他特征,能夠提高B淋巴細胞異常診斷的精確性。其次,利妥昔治療能改善患B細胞白血病人的病情,但是體內(nèi)確切的治療機制并不清楚,因此B淋巴細胞表面CD20抗原表達的多少與臨床上利妥昔治療有一定的關系[28]。本實驗結(jié)果在一定程度上能解釋臨床上B-CLL病人對利妥昔反應低的原因,并且為針對抗原 CD20的治療用藥選擇提供一定的參考。
REFERENCES
[1] Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol, 2001, 19(8): 2153?2164.
[2] Huhn D, von Schilling C, Wilhelm M, et al. Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood, 2001, 98(5): 1326?1331.
[3] O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol, 2001, 19(8): 2165?2170.
[4] Oscier D, Fegan C, Hillmen P, et al. Guidelines on diagnosis and management of chronic lymphocytic leukemia. Br J Haematol, 2004, 125(3): 294?317.
[5] Wierda WG, Keating MJ, O’Brien S. Refractory chronic lymphocytic leukemia: prognosis and treatment options. Am J Cancer, 2004, 3(3): 163?178.
[6] Rossmann ED, Lundin J, Lenkei R, et al. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J, 2001, 2(5): 300?306.
[7] Almasri NM, Duque RE, Iturraspe J, et al. Reducedexpression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol, 1992,40(4): 259?263.
[8] Marti GE, Faguet G, Bertin P, et al. CD20 and CD5 expression in B-chronic lymphocytic leukemia. Ann N Y Acad Sci, 1992, 651(1): 480?483.
[9] D'Arena G, Dell'Olio M, Musto P, et al. Morphologically typical and atypical B-cell chronic lymphocytic leukemias display a different pattern of surface antigenic density.Leukemia Lymphoma, 2001, 42(4): 649?654.
[10] Wang LL, Abbasi F, Gaigalas AK, et al. Comparison of fluorescein and phycoerythrin conjugates for quantifying CD20 expression on normal and leukemic B-cells. Cytometry B Clin Cytom, 2006, 70(6): 410?415.
[11] Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol, 1998, 51(5): 364?369.
[12] Johnson NA, Boyle M, Bashashati A, et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood, 2009, 113(16):3773?3780.
[13] Scheuring S, Dufrêne YF. Atomic force microscopy:probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol, 2010, 75(6): 1327?1336.
[14] Yuana Y, Oosterkamp TH, Bahatyrova S, et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost, 2010,8(2): 315?323.
[15] Lesoil C, Nonaka T, Sekiguchi H, et al. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study. Biochem Biophys Res Commun, 2010, 391(3): 1312?1317.
[16] Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA, 2007, 104(23):9609?9614.
[17] Girish CM, Binulal NS, Anitha VC, et al. Atomic force microscopic study of folate receptors in live cells with functionalized tips. Appl Phys Lett, 2009, 95(22):223703/1-223703/3.
[18] Moskalenko AV, Yarova PL, Gordeev SN, et al. Single protein molecule mapping with magnetic atomic force microscopy. Biophys J, 2010, 98(3): 478?487.
[19] Duman M, Pfleger M, Zhu R, et al. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging. Nanotechnology, 2010, 21(11):115504.
[20] Soumetz FC, Saenz JF, Pastorino L, et al. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy. Ultramicroscopy, 2010,110(4): 330?338.
[21] Taninaka A, Takeuchi O, Shigekawa H. Site-selective analysis of biotin?streptavidin interactions using dynamic force spectroscopy. Hyomen Kagaku, 2010, 31(1): 41?47.[22] Hu MQ, Wang JK, Cai JY, et al. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+T cells using atomic force microscopy. Biochem Biophys Res Commun, 2008, 374(1): 90?94.
[23] Hu MQ, Chen JN, Wang JK, et al. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+T cell membrane. J Mol Recognit, 2009, 22(6): 516?520.
[24] Huang FC, Gao SJ, Qiu SY, et al. Morphology and force spectroscopy of human peripheral blood CD8+T cells studied by atomic force microscope. J Instr Anal, 2009,28(10):1143?1147.
黃飛程, 郜世雋, 邱思遠, 等. 基于原子力顯微鏡的人外周血 CD8+T細胞形貌觀察與力譜分析. 分析測試學報, 2009, 28(10): 1143?1147.
[25] Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or Ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol, 2008, 181(1):822?832.
[26] Wojcikiewicz EP, Abdulreda MH, Zhang XH, et al. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules, 2006, 7(11): 3188?3195.
[27] Jin Y, Wang KM, Tan WH, et al. Monitoring molecular beacon /DNA interactions using atomic force microscopy.Anal Chem, 2004, 76(19): 5721?5725.
[28] Huh YO, Keating MJ, Saffer HL, et al. Higher levels of surface CD20 expression on circulating lymphocytes compared with bone marrow and lymph nodes in B-cell chronic lymphocytic leukemia. Am J Clin Pathol, 2001,116(3): 437?443.
Distribution and force spectroscopy of CD20 antigen-antibody binding on the B cell surface
Qiulan Wang1, Yuhong Lu2, Shengpu Li1, Mu Wang1, and Jiye Cai1
1 Department of Chemistry, Jinan University, Guangzhou 510632, China
2 Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou 510632, China