亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有結(jié)構(gòu)不確定的時(shí)延多智能體系統(tǒng)一致性

        2011-07-13 06:02:14楊洪勇
        電子設(shè)計(jì)工程 2011年17期
        關(guān)鍵詞:一致性智能結(jié)構(gòu)

        張 順,楊洪勇

        (魯東大學(xué) 信息科學(xué)與工程學(xué)院,山東 煙臺(tái) 264025)

        所謂多智能體系統(tǒng)的一致性,是指隨著時(shí)間的演化,一個(gè)多主體系統(tǒng)中所有主體的狀態(tài)趨于一致[1]。對(duì)于多智能體系統(tǒng)的建模,Reynolds提出了Boid模型[2],但該模型的一些基本規(guī)則要求限制較多。Vicsek等人從統(tǒng)計(jì)力學(xué)角度提出了一個(gè)經(jīng)典模型模擬粒子涌現(xiàn)的一致性現(xiàn)象。Jadbabaie等人最早對(duì)Vicsek提出的模型用矩陣方法進(jìn)行了理論分析[3]。Olfati-Saber等人比較詳細(xì)地提出了一致性問(wèn)題的理論框架,并給出了基本的一致性協(xié)議,得到了多智能體系統(tǒng)取得平均一致的條件,而且分析了網(wǎng)絡(luò)拓?fù)淝袚Q和系統(tǒng)存在時(shí)延的情況,給出了時(shí)延相關(guān)的一致性收斂條件[4]。Ren和Beard等人[5-7]同樣考慮了一致性的基本問(wèn)題,對(duì)一致性協(xié)議從連續(xù)時(shí)間和離散時(shí)間方面進(jìn)行了描述,并且給出了時(shí)變拓?fù)淦胶鉅顟B(tài)分析。

        本文主要是采用LMI方法對(duì)具有時(shí)變結(jié)構(gòu)不確定性的二階時(shí)延多智能體系統(tǒng)的一致性進(jìn)行分析,為獲得相對(duì)較低的保守性,引入自由權(quán)矩陣的思想,得到了系統(tǒng)取得一致的判據(jù)。

        1 問(wèn)題描述

        1.1 圖論基礎(chǔ)

        假設(shè)對(duì)于兩個(gè)節(jié)點(diǎn) i≠j,若存在下標(biāo)集合{k1,k2,…,kl},且 aik1>0,ak1k2>0, …,ak1j>0 則稱(chēng)節(jié)點(diǎn) i和節(jié)點(diǎn) j之間存在一條有向連通路徑。若對(duì)于圖G中任意兩個(gè)節(jié)點(diǎn)之間都存在至少一條有向連通路徑,則稱(chēng)圖G為強(qiáng)連通圖。

        1.2 一致性協(xié)議

        用 xi(t)表示智能體的位置,vi(t)表示智能體 i的速度,假定任意智能體的狀態(tài)方程為:

        其中 k1>0 為速度的控制增益,Δaij(t)為多智能體系統(tǒng)時(shí)變結(jié)構(gòu)不確定性,τ(t)為兩個(gè)智能體之間的有界時(shí)變時(shí)延且滿足:

        其中時(shí)延上界h>0。當(dāng)且僅當(dāng)任意智能體i,j狀態(tài)方程滿足條件(4)時(shí),稱(chēng)控制協(xié)議(2)漸近可解二階智能體系統(tǒng)(1)的一致性問(wèn)題:

        則有結(jié)構(gòu)不確定性的二階時(shí)延多智能體系統(tǒng)的狀態(tài)方程可表示成如下矩陣形式:

        引理1[9]給定具有適當(dāng)維數(shù)的矩陣Q=QT,H,E則有:

        對(duì)所有滿足 FT(t)F(t)≤I的 F(t)都成立的充要條件是存在一正數(shù)ε>0使得下式成立

        2 主要結(jié)論

        對(duì)于時(shí)延滿足式(3)有強(qiáng)連通拓?fù)浣Y(jié)構(gòu)的時(shí)變結(jié)構(gòu)二階時(shí)延多智能體系統(tǒng):

        則采用一致性協(xié)議(2)的多智能體系統(tǒng)(7)能夠漸近實(shí)現(xiàn)平均一致,其中

        證明:分成兩步來(lái)證明,首先考慮無(wú)結(jié)構(gòu)不確定性的二階時(shí)延多智能體系統(tǒng),即狀態(tài)方程和控制協(xié)議滿足

        故如果 Ψ >0 且 [I]<0,對(duì)于充分小 ε 的有V˙(t,ξ)≤-ε‖ξ(t)‖2。滿足時(shí)延約束(2)時(shí),系統(tǒng)(16)是漸近穩(wěn)定的。而利用shur補(bǔ)定理,得到 [I]<0 與

        等價(jià)。

        然后,在此基礎(chǔ)上考慮系統(tǒng)(7),用 B′=-(L+Lc(t))?U=-(B+DF(t)Eb),替代(22)式中的 B,其中 D,Eb為常數(shù)矩陣,F(xiàn)(t)為未知的時(shí)變矩陣,且滿足?t>,F(xiàn)T(t)F(t)<I對(duì)應(yīng)的式(22)變?yōu)?/p>

        應(yīng)用引理1,式(24)成立的一個(gè)充要條件是存在一個(gè)正數(shù)使得下邊式(25)成立

        應(yīng)用 shur補(bǔ),式(25)等價(jià)于式(11)。

        3 實(shí)例仿真

        考慮如圖1所標(biāo)4個(gè)智能體組成的系統(tǒng)的強(qiáng)連通拓?fù)浣Y(jié)構(gòu)圖,假定無(wú)結(jié)構(gòu)不確定性的鄰接矩陣取值為0,1。

        圖1 四智能體不同的拓?fù)浣Y(jié)構(gòu)形式Fig.1 Topology map of 4 agents

        對(duì)圖1中Ga所示的拓?fù)浣Y(jié)構(gòu),采用控制協(xié)議(2)的二階系統(tǒng)(1)仿真,令k1=2,取智能體間通信時(shí)延均為τ=0.3,初始狀態(tài)位置 x(0)=[50-40-20 30]T,速度 V(0)=[3 2 4 8]。 根據(jù)定理1,可以知道,該具有結(jié)構(gòu)不確定性的二階時(shí)延多智能體系統(tǒng)最終會(huì)趨于穩(wěn)定在圖1所示拓?fù)浠A(chǔ)上人為加入時(shí)變不確定性,拓?fù)錇镚a的四智能體系統(tǒng)的各個(gè)智能體的位置變量和速度變量的演化仿真過(guò)程如下:

        圖2 多智能體系統(tǒng)一致性位置與速度與時(shí)間關(guān)系圖Fig.2 Simulation of states of 4 agents

        可以看到,各個(gè)智能體隨著時(shí)間的變化位置(圖2(a))趨向于某一固定值,速度(圖2(b))收斂于 0。對(duì)于圖1中拓?fù)銰b和其他未描述的拓?fù)浣Y(jié)構(gòu),經(jīng)過(guò)實(shí)驗(yàn)驗(yàn)證,得到類(lèi)似結(jié)果;另外,對(duì)于在時(shí)延上界范圍內(nèi)的不同時(shí)延,也得到了類(lèi)似的結(jié)果。

        4 結(jié) 論

        本文采用了時(shí)域分析方法研究了具有時(shí)變結(jié)構(gòu)不確定性的時(shí)延二階多智能體系統(tǒng)穩(wěn)定性,主要用LMI方法進(jìn)行了分析,并在推導(dǎo)證明結(jié)論過(guò)程中引入了具有較低保守性的自由權(quán)矩陣思想,而且考慮了系統(tǒng)實(shí)際應(yīng)用過(guò)程中可能存在的結(jié)構(gòu)不確定性的因素,得到了相關(guān)穩(wěn)定性判據(jù)。

        [1]楊文,汪小帆,李翔.一致性問(wèn)題綜述[C]//第25屆中國(guó)控制會(huì)議,2006:1482-1486.

        [2]Reynolds C W.Flocks,herds,and schools:a distributed behavioral model[J].Computer Graphics,1987,21(4):25-34.

        [3]Jadbabaie A,JIE L,MORSE A S.Coordination of groups of mobile autonomous agents using nearest neighbor rules[J].IEEE Transactions on Automatic Control,2003,48(6):988-1001.

        [4]Olfati-Saber R,Murray R M.Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control,2004,49(9):1520-1533.

        [5]WEI Ren,Beard R W.Consensus seeking in multiagent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control,2005,50 (5):655-661.

        [6]REN Wei.Multi-vehicle consensus with a time-varying reference state[J].Systems and Control Letters,2007,56 (7-8):474-483.

        [7]WU Min,HE Yong,SHE Jin-hua,et al.Delay-dependent criteria for robust stability of time-varying delay systems[J].Automatica,2004,40(8):1435-1439.

        [8]PENG Lin,JIA Ying-min.Consensus of a class of secondorder multi-agentsystems With time-delay and jointly-connected topologies[J].Automatic Control,IEEE Transactions on,2010,55(3):778-784.

        [9]Petersen I R,Hollot C V.A riccati dquation approach to the stabilization of uncertain linear systems[J].Automatica,1986,22(4):341-397.

        猜你喜歡
        一致性智能結(jié)構(gòu)
        關(guān)注減污降碳協(xié)同的一致性和整體性
        公民與法治(2022年5期)2022-07-29 00:47:28
        注重教、學(xué)、評(píng)一致性 提高一輪復(fù)習(xí)效率
        《形而上學(xué)》△卷的結(jié)構(gòu)和位置
        IOl-master 700和Pentacam測(cè)量Kappa角一致性分析
        論結(jié)構(gòu)
        智能前沿
        文苑(2018年23期)2018-12-14 01:06:06
        智能前沿
        文苑(2018年19期)2018-11-09 01:30:14
        智能前沿
        文苑(2018年17期)2018-11-09 01:29:26
        智能前沿
        文苑(2018年21期)2018-11-09 01:22:32
        論《日出》的結(jié)構(gòu)
        两个人免费视频大全毛片| 777亚洲精品乱码久久久久久| 国产精品成人一区二区三区| 狠狠丁香激情久久综合| 日韩精品久久伊人中文字幕| 精品人妻av一区二区三区| 亚洲人成网址在线播放| 亚洲中文无码久久精品1| 成人影院免费观看在线播放视频| 中文字幕丰满人妻av| 日本精品无码一区二区三区久久久 | av无码天一区二区一三区| 久久亚洲精品成人av观看| 亚洲中文字幕舔尻av网站| 一个人看的视频www免费| 久久国产热精品波多野结衣av| 久久99久久久精品人妻一区二区| 51国产偷自视频区视频| 国产精品沙发午睡系列990531 | 亚洲毛片一区二区在线| 欧洲熟妇色xxxx欧美老妇多毛| 欧美成人免费观看国产| 美女被搞在线观看一区二区三区| 国产午夜激无码av毛片不卡 | 成人精品一区二区三区电影| 久久久久亚洲av无码a片软件| av无码电影一区二区三区| 日韩av天堂一区二区| 欧美午夜刺激影院| 精品视频999| 东京热日本道免费高清| 国产精品一区二区av麻豆| 正在播放国产对白孕妇作爱| 中文字幕日本熟妇少妇| 亚洲av综合av一区| 在线综合亚洲欧洲综合网站| 亚洲V无码一区二区三区四区观看| 看国产亚洲美女黄色一级片| 色综合av综合无码综合网站| 天天天综合网| 偷拍与自偷拍亚洲精品|