鐘登杰
(重慶理工大學(xué) 化學(xué)化工學(xué)院,重慶400054)
在金屬加工過程中經(jīng)常會(huì)用到切削液,其主要作用是降低摩擦、潤滑表面、冷卻、帶走刨花等。切削液主要含有油、水、表面活性劑和各種添加劑(防泡劑、殺菌劑和防銹劑)。切削液在使用過程中由于熱降解和加工過程中所產(chǎn)生的微粒增多而失去潤滑和冷卻作用,所以需要替換,從而會(huì)產(chǎn)生大量的廢液。這些廢液如果不經(jīng)處理直接排放,其所含的重金屬和熱降解所產(chǎn)生的有害物質(zhì)將對土壤和水體造成污染。處理切削液廢水的傳統(tǒng)方法主要有蒸發(fā)[1]、冷凍[2]、膜過濾[3-6]和吸附等,但這些方法只是將有害物質(zhì)從廢水中分離出來,有害物質(zhì)并沒有被降解成無害物質(zhì)。另外,切削液廢水具有毒性,所以很難用生物法去處理[7-10]。水熱氧化法能有效地處理切削液廢水[11-12],但該法所需條件苛刻,難以滿足。
電化學(xué)方法是一種“綠色高級氧化”廢水處理技術(shù),具有經(jīng)濟(jì)、高效、所需空間小等優(yōu)點(diǎn)。電化學(xué)方法已被成功應(yīng)用于各種廢水處理中,如染料廢水[13-15]、壬基酚廢水[16]、含酚廢水[17]、含氰廢水[18-19]、制革廢水[19]和橄欖油廢水處理[20-21]。
為了提高電化學(xué)反應(yīng)的效率、降低副反應(yīng)的發(fā)生,近年來研究者們發(fā)現(xiàn)了新的電極材料[22-25]和反應(yīng)器[26]。對于電化學(xué)反應(yīng)而言,傳質(zhì)速率和溶解氧濃度都是重要的影響因素,會(huì)限制整個(gè)反應(yīng)速率。本文設(shè)計(jì)了一種新型電化學(xué)反應(yīng)裝置,并用于處理切削液廢水。陽極和陰極交替均勻地分布在一個(gè)圓盤上,用導(dǎo)線分別連接。通過轉(zhuǎn)動(dòng)圓盤,電極表面靜止液膜的厚度減少,這在很大程度上會(huì)提高傳質(zhì)速率。同時(shí),轉(zhuǎn)盤有一半暴露在空氣中,另一半在溶液中,這樣隨著轉(zhuǎn)盤的轉(zhuǎn)動(dòng),可以加速氧氣從空氣中溶解到主體溶液中,加速氧化[27]。在陰陽極之間分布活性炭顆粒。處理廢水時(shí),活性炭顆粒在電場作用下產(chǎn)生極化,生成很多微小電池。這樣就可以加大反應(yīng)器的有效電極面積,縮短有機(jī)物的遷移距離。
從某機(jī)械廠所取的切削液廢水的主要成分為:COD 14 356 mg/L,含油量4 326 mg/L,pH值為7.75。COD采用重鉻酸鉀氧化法測定,含油量采用420 oil IR紅外分析儀測定,pH值采用PHS-3B酸度計(jì)測定。
電化學(xué)反應(yīng)裝置如圖1所示,主要包括1個(gè)弧形電解槽、電化學(xué)轉(zhuǎn)盤和直流電源。電化學(xué)轉(zhuǎn)盤是一個(gè)直徑為18 cm,厚度為3.6 mm的有機(jī)玻璃盤。陰極為6 cm長、1.2 cm寬、2.1 cm厚的鐵片。陽極為6 cm長、1.2 cm寬、2.7 cm厚的石墨片。顆粒活性炭(平均粒度為1.0 mm)分布在陰陽極之間,陽極和陰極通過導(dǎo)線分別與電源的正負(fù)極相連。通過調(diào)速器來控制轉(zhuǎn)盤的轉(zhuǎn)速。圖2是一個(gè)傳統(tǒng)的電化學(xué)反應(yīng)器,電極材料和面積均與電化學(xué)轉(zhuǎn)盤法相同,采用磁力攪拌。
每次實(shí)驗(yàn)所用水樣為400 mL。顆粒活性炭在使用之前先用切削液廢水浸泡,達(dá)到飽和。電解電壓控制在10 V。
在電壓為10 V的條件下,將轉(zhuǎn)盤的轉(zhuǎn)速分別控制在0,30,60和90 r/min。從圖3可以看出,隨著轉(zhuǎn)速的提高,切削液廢水中油的去除率得到提高。這是由于電化學(xué)轉(zhuǎn)盤的轉(zhuǎn)動(dòng)能加快主體溶液和電極表面之間的傳質(zhì)。當(dāng)轉(zhuǎn)速超過60 r/min后,油的去除率相對穩(wěn)定,提高電化學(xué)轉(zhuǎn)盤的轉(zhuǎn)速不再能大幅度提高廢水中油的去除率。
圖3 轉(zhuǎn)盤轉(zhuǎn)速對廢水中油去除的影響
從圖4可以看出,在去除切削液廢水中的油量方面,電化學(xué)轉(zhuǎn)盤法明顯優(yōu)于傳統(tǒng)電解法。
圖4 電化學(xué)轉(zhuǎn)盤法與傳統(tǒng)電解法在油含量去除效果方面的比較
從圖5可以看出,切削液廢水COD去除率隨反應(yīng)時(shí)間的延長而上升。在反應(yīng)的前90 min內(nèi),COD去除率上升很快。反應(yīng)90 min后,COD去除率上升不明顯。經(jīng)過90 min電解,切削液廢水中的COD去除率能達(dá)到83.7%,但切削液廢水剩余的COD還有約2 000 mg/L,所以,電化學(xué)轉(zhuǎn)盤法可以作為切削液廢水的預(yù)處理方法。
圖5 電化學(xué)轉(zhuǎn)盤法去除廢水中的COD
電化學(xué)方法總是有自由基參與反應(yīng)[14,29-30]。自由基反應(yīng)是有機(jī)物氧化的關(guān)鍵[29]。電化學(xué)反應(yīng)過程中所產(chǎn)生的自由基一旦生成,就立即無選擇性地與反應(yīng)介質(zhì)中的有機(jī)物發(fā)生反應(yīng)。反應(yīng)的初步機(jī)理為:有機(jī)物分子吸附到電極表面→電化學(xué)反應(yīng)過程中產(chǎn)生的自由基將有機(jī)物分子氧化→有機(jī)物分子降解成有機(jī)小分子、最后降解成無害的無機(jī)小分子(如CO2和H2O)。
1)電化學(xué)轉(zhuǎn)盤法是一種新電化學(xué)方法,陽極和陰極交替分布,轉(zhuǎn)盤的轉(zhuǎn)動(dòng)可以加強(qiáng)傳質(zhì)、加快空氣中的氧氣溶解于主體溶液,有利于有機(jī)物的降解。
2)電化學(xué)轉(zhuǎn)盤法能有效地去除切削液廢水中的油量和COD。當(dāng)轉(zhuǎn)速為60 r/min,電壓為10 V,pH值為7.75時(shí),電解120 min,油和COD去除效率能分別達(dá)到94.9%和83.7%。與傳統(tǒng)的電解法相比,電化學(xué)轉(zhuǎn)盤法在去除切削液廢水的含油量方面具有優(yōu)勢。
3)由于切削液廢水的初始COD太高,COD去除率達(dá)到83.7%,其剩余的COD還有2 000 mg/L,所以電化學(xué)轉(zhuǎn)盤法用于切削液廢水的預(yù)處理。
[1]Hadj-Ziane Z A,Moulay S.Microemulsion breakdown using the pervaporation technique:application to cutting oil models[J].Desalination,2004,170:91-97.
[2]Lorain O,Thiebaud P,Badorc E.Potential of freezing in wastewater treatment:soluble pollutant application[J].Water Research,2001,35(2):541-547.
[3]Hu XG,Bekassy-Molnar,Erika Vatai Gyula.Ultrafiltration of oily emulsion for metal cutting fluid:role of feed temperature[J].Environment Protection Engineering,2005,31(3/4):109-118.
[4]Lin S W,Heriberto E G.Development of energy-saving spinning membrane system and negatively charged ultrafiltration membranes for recovering oil from waste machine cutting fluid[J].Desalination,2005,174(2):109-123.
[5]Madaeni,Sayed Siavash,Yeganeh.Microfiltration of emulsified oil wastewater[J].Journal of Porous Materials,2003,10(2):131-138.
[6]Nidal Hilal,Gerald Busca,F(xiàn)ederico Talens-Alesson,et al.Treatment of waste coolants by coagulation and membrane filtration[J].Chemical Engineering and Processing,2004,43:811-821.
[7]Taylor G T.Evaluation of the potential of biodegradation for the disposal of cutting fluid from the machining of uranium[J].International Biodeterioration&Biodegradation,2001,47(4):215-224.
[8]Van der Gast C J,Whiteley A S,Thompson I P.Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid[J].Environmental microbiology,2004,6(3):254-263.
[9]Van der Gast C J,Knowles C J,Starkey M,et al.Selection of microbial consortia for treating metal-working fluids[J].Journal of Industrial Microbiology&Biotechnology,2002,29(1):20-27.
[10]Karimov R R,Shulaev M V,Emel'yanov V M,et al.Study of biosorption treatment of spent cutting fluids under anaerobic conditions using various adsorbents[J].Khimicheskaya Promyshlennost(St.Petersburg,Russian Federation),2004,81(9):485-488.
[11]Juan R P,López J,Nebot E,et al.Elimination of cutting oil wastes by promoted hydrothermal oxidation[J].Journal of Hazardous Materials,2001,B88:95-106.
[12]Juan R P,Sanchez-Onet,Jezabel,et al.Hydrothermal oxidation of oily wastes:An alternative to conventional treatment methods[J].Engineering in Life Sciences,2003,3(2):85-89.
[13]Wang A,Qu J,Liu H,et al.Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electrooxidation process[J].Chemosphere,2004(55):1189-1196.
[14]Shen Z,Wang W,Jia J P,et al.Degradation of dye solution by an activated carbon fiber electrode electrolysis system[J].Journal of Hazardous Materials,2001,84(1):107-116.
[15]Roessler A,Jin X.State of the art technologies and new electrochemical methods for the reduction of vat dyes[J].Dyes and Pigments,2003,59:223-235.
[16]Kuramitza H,Jun S,Toshiaki H.Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode[J].Water Research,2002,36:3323-3329.
[17]Korbahti B,Tanyolac A.Continuous electrochemical treatment of phenolic wastewater in a tubular reactor[J].Water Research,2003,37(7):1505-1514.
[18]Lanza M,Bertazzoli R.Cyanide oxidation from waste-water in a flow electrochemical reactor[J].Industrial&Engineering Chemistry Research,2002,41(1):22-26.
[19]Rao N,Somasekhar K,Kaul S.Electrochemical oxidation of tannery wastewater[J].Journal of Chemical Technology and Biotechnology,2001,76(11):1124-1131.
[20]Israilides C J,Vlyssides A G,Mourafeti V N,et al.Olive oil wastewater treatment with the use of an electrolysis system[J].Bioresource Technology,1997,61(2):163-170.
[21]Gotsi M,Kalogerakis N,Psillakis E,et al.Electrochemical oxidation of olive oil mill wastewaters[J].Water Research,2005,39(17):4177-4187.
[22]Subbiah A,Chellammal S,Basha C M.Electrochemical treatment of xylenol orange dye wastewater at RuO2/Ti anode[J].Bulletin of Electrochemistry,2003,19(3):127-132.
[23]Polcaro A,Mascia M,Palmas S,et al.Electrochemical degradation of diuron and dichloroaniline at BDD electrode[J].Electrochimica Acta,2004,49:649-656.
[24]Zanta C,Michaud P,Comninellis C,et al.Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5based anodes for wastewater treatment[J].Journal of Applied Electrochemistry,2003,33(12):1211-1215.
[25]Zollinger D,Griesbach U,Putter H,et al.Electrochemical cleavage of 1,2-diphenylethanes at borondoped diamond electrodes[J].Electrochemistry Communications,2004,6(6):605-608.
[26]Xiong Y,He C,An T C,et al.Removal of formic acid from wastewater using three-phase three-dimensional electrode reactor[J].Water Air and Soil Pollution,2003,144(1):67-79.
[27]Zhong D J,Yang J,Jia J P,et al.Degradation of dye wastewater containing reactive brilliant blue X-BR using a rotating electrochemical disc process[C]//Progress in Natural Science.[S.l.]:special issue,2005:149-154.
[28]Zhou K,Zhou D.Promoting the electrolysis efficiency of a bipolar electrolyser by adding a coated activated carbon[J].China Journal of Environmental Science,1994,15(2):38-40.
[29]Yang J,Jia J P,Liao J,et al.Removal of Fulvic Acid from Water Electro-chemically Using Active Carbon Fiber Electrode[J].Water Research,2004,38(20):4353-4360.
[30]Jia J P,Yang J,Liao J,et al.Treatment of dying wastewater with ACF electrodes[J].Water Research,1999,33(3):881-884.