亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Generalized N-Semiregular Rings

        2011-04-13 06:23:54YINXiaobinWANGRui
        關(guān)鍵詞:約化安徽師范大學計算機科學

        YIN Xiao-bin,WANG Rui

        (College of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

        Generalized N-Semiregular Rings

        YIN Xiao-bin,WANG Rui

        (College of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China)

        This article introduces a generalization of AP-injective rings-generalized N-semiregular rings,and mainly obtains that Ris a strongly regular ring if and only if Ris a reduced and generalied N-semiregular ring.The paper also studies some properties of generalized N-semiregular rings are extends some results about AP-injective rings.

        AP-injective rings;generalized N-semiregular rings;strongly regular rings

        Throughout this article,Rdenotes an associative ring with identity and modules are unitary.J,Z(resp.Y),Soc(RR)(Soc(RR))will denote respectively the Jacobson radical,the left singular ideal(resp.right singular ideal)the left socle (the right socle)of R.l(X)(r(X))denotes the left (right)annihilator of Xin R.If X={a},we will write it for l(a)(r(a)).Nil(R)denotes the biggest nil ideal.Recall that Ris said to be left(right)nonsingular if Z=0(Y=0).A ring Ris called(von Neumann)regular[1]if for any a∈R,there exists b∈Rsuch that a=aba.A ring Ris called strongly regular[2]if for any a∈R,there exists b∈Rsuch that a=a2b.

        Definition 1 A ring Ris called N-semiregular,if for all a∈R,there exists an idempotent e∈aR such that(1-e)a∈Nil(R).

        Definition 2 a∈Ris call generalized N-semiregular if there exists two right ideals P,Lof R,such that rl(a)=P⊕L with P?aRand aR∩Lis nil.A ring Ris called generalized N-semiregular if each of its elements is generalized N-semiregular.

        Proposition 1 If Ris a left AP-injective or N-semiregular ring,then Ris a generalized N-semiregular.

        Proof 1)Let Rbe a left AP-injective ring.Then rl(a)=aR⊕Lafor any a∈R,where Lais a right ideal of R.Note that aR∩Lais nil,thus Ris generalized N-semiregular.

        2)Let Rbe a N-semiregular ring and a∈R.Then there exists e2=e∈aRsuch that(1-e)a∈Nil(R).Thus R=eR⊕(1-e)R,where eR?aRand(1-e)aRis nil.Note that aR?rl(a).By modular law,we have rl(a)=rl(a)∩R=rl(a)∩(eR ⊕(1-e)R)=eR ⊕(rl(a)∩(1-e)R)and aR∩(rl(a)∩(1-e)R)=aR∩(1-e)R=(1-e)aRis nil.Thus Ris generalized N-semiregular.

        Lemma 1 If Ris a generalized N-semiregular ring and for every a∈Rthere exists e2=e∈Rsuch that l(a)=l(e),then Ris N-semiregular.

        Proof For any a∈R.Since Ris generalized N-semiregular,there exists two right ideals P,Lof R such that rl(a)=P⊕L,where P?aRand aR∩Lis nil.Thus eR=P⊕Lsince l(e)=l(a).As l(e)=l(a),we have rl(a)=rl(e)=eR,this gives a=ea.Take e=g+t,where g=ar∈P?aRand t∈L.Then a=ea=ga+ta=ara+taand ar=arar+tar which implies that ar-arar=tar∈P∩L=0and a-ara=ta∈aR∩L?Nil(R).This shows that g2=g∈aRand(1-g)a∈Nil(R),a is N-semiregular.Hence R is N-semiregular.

        Corollary 1 Let Rbe a generalized N-semiregular element.If Ra?Re,where e2=e,then ais N-semiregular.

        Proof For any a∈R,letφbe the isomorphism of Ra onto Re.By([3],Lemma 2.12),there exists an idempotent fof Rsuch that l(a)=l(f).By Lemma 1,ais N-semiregular.

        If rl(a)is a direct summand of R,then there exists e2=e∈Rsuch that rl(a)=eR.Thus l(a)=lrl(a)=l(e)and so the following results is immediate.

        Corollary 2 If rl(a)is a direct summand of Rfor any a∈Rand Ris generalized N-semiregular,then Ris N-semiregular.

        A ring Rto be Baer[4]if the right annihilator of every non-empty subset of Ris generated,as a right ideal,by an idempotent.This definition is left-right symmetric.A ring Ris called right(resp.left)PP[5]if every principal right(resp.left)ideal of Ris projective.Ris a right PP ring if and only if for every a∈Rthere exists an idempotent e∈Rsuch that r(a)=eR.Clearly,every Baer ring is right and left PP ring.

        Corollary 3 Let Rbe a left PP ring.If Ris generalized N-semiregular,then Ris N-semiregular.

        From ([3],Corollary 2.3),we see that if Ris a right AP-injective ring then J=Y(jié).

        Proposition 2 If Ris a generalized N-semiregular ring,then Z?J.

        Proof Let 0≠a∈Z.For any b∈R,we have that ba∈Z.Put u=1-ba.Then u≠0,and l(u)=0 since l(ba)∩l(u)=0.Thus R=rl(u)=P⊕L,where P?uRand uR∩Lis nil.We have that P=eR with e2=e∈R.Hence it is sufficient to prove that e=1.If not,then there exists 0≠r(1-e)∈R(1-e)∩l(ba)since l(ba)is essential in R.This gives r(1-e)u=r(1-e).Put u=es+t for some s∈R,t∈L.Then r(1-e)u=r(1-e)t.Hence r(1-e)=r(1-e)t and therefor r(1-e)(1-t)=0.Note that t=ues∈uR∩L?Nil(R).Then 1-t is unit,which implies r(1-e)=0,a contradiction.So we have that e=1and R=P=uR.Thus a∈J.

        Corollary 4 If Ris a N-semiregular ring,then Z?J.

        A ring Ris called left mininjective,if every isomorphism between simple left ideals is given by multiplication by an element of R[6].Equvivalently,if rl(K)=Kfor every right ideals K=kRfor which Rkis simple.

        Theorem 1 If Ris a generalized N-semiregular,left miniinjective ring and Soc(RR)is an essential submodule ofRR,then J=Z.

        Proof Since Ris left mininjective,Soc(RR)?Soc(RR)by[6].By([6],Proposition 2.8(1)),J?Z.Since Ris generalized N-semiregular,By Proposition 2,Z?J.Thus J=Z.

        An idempotent element e∈Ris left(resp.right)semicentral[7]in Rif Re=eRe(resp.eR=eRe).

        Proposition 3 Let R be a generalized N-semiregular ring.If an idempotent e of Ris left semicentral,then eReis generalized N-semiregular.

        Proof Let a∈eRe,then there exists two right ideals Pand Lof R,such that rl(a)=P ⊕L,where P?aRand aR∩Lis nil.We claim that reReleRe(a)=Pe⊕Le.In fact,Pe∩Le?P∩L=0.Take any y∈Pe?ePe,where y=y(tǒng)1e,y1∈P?rl(a).Then for any x∈leRe(a)?l(a),xy1=0,which gives xy=xy1e=0.Hence y∈reReleRe(a),Pe?reReleRe(a).Similarly,we have Le?reReleRe(a),on the other hand,take x∈reReleRe(a),then for any y∈l(a),we have eyea=0since a∈eRe.So eyex=0,which gives yx=eyex=0since x∈eRe and eis left semicentral.Thus reReleRe(a)?rl(a).Take x=s+t,where s∈P,t∈L.Then x=xe=se+te∈Pe+Le.This shows that reReleRe(a)=Pe⊕Le.

        It remains to prove that aeRe∩Leis nil.Since Pe?aRe=aeRe.Since e is left semicentral,we have aeRe∩Le?e(aeRe∩Le)e?eRe.But aeRe∩Le?aR∩Lis nil.Thus eReis generalized N-semiregular.

        Theorem 2 Let e be an idempotent of Rsuch that ReR=R.If Ris a generalized N-semiregular ring,eReis generalized N-semiregular.

        Proof Let a∈eRe,then there exists two right ideals Pand Lof Rsuch that rl(a)=P⊕L,where P?aRand aR∩Lis nil.We claim that reReleRe(a)=ePe⊕eLe.Since 1-e∈l(a),we see that(1-e)t=0for any t∈L,which implies L=eL.Similarly,P=eP,Thus ePe∩eLe=0.Clearly,ePe?reReleRe(a)and eLe?reReleRe(a)since eP=Pand eL=L.On the other hand,take x∈reReleRe(a),and write 1=∑n

        i=1aiebifor some ai,biin R.Then for any y∈l(a),we get ebiyea=ebiya=0for each i.This implies that ebiyex=0for each i,which give yx=y(tǒng)ex=∑ni=1aiebiyex=0since x∈eRe.Thus reReleRe(a)?rl(a).Take x=s+t,where s∈P,t∈L.Hence x=exe=ese+ete∈ePe+eLe.This shows that reReleRe(a)=ePe⊕eLe,and the claim is complete.It remains to prove that aeRe∩eLeis nil since ePe?aeRe.Since L=eL,we have aeRe∩eLe?aR∩Lis nil.Thus eReis generalized N-semiregular.

        Proposition 4 If Nil(R)=0,then Ris a generalized N-semiregular ring if and only if Ris a left AP-injective ring.

        Proof One direction is obvious.Conversely,for any a∈R,rl(a)=P⊕L,where P?aRand aR∩Lis nil.By assumption,Nil(R)=0,hence aR∩L?Nil(R)=0.It is clearly that rl(a)=aR+L.So rl(a)=aR ⊕L,and this implies that Ris a left AP-injective ring.

        Proposition 5 Ris a reduced and generalized N-semiregular ring if and only if Ris a strongly regular.

        Proof One direction is obvious.Conversely,since Ris reduced,Z=0.By Proposition 4,Ris left AP-injective and Z=J=0.Let any 0≠a∈R,then a2≠0and there exists a right ideal La2of Rsuch that rl(a2)=a2R⊕La2.But l(a)=l(a2)since Ris reduced,thus a=a2r+x with r∈Rand x∈La2,which implies a2-a2ra=xa∈a2R⊕La2=0,so a2=a2ra.Then 1-ra∈r(a2)=r(a),so a=ara.This proved that Ris a strongly regular ring.

        Lemma 2[8]Let c∈C(R),where C(R)is center of R.If cis von Neumann regular in R,then so is cin C(R).

        Theorem 3 Let Rbe a semiprimitive and generalized N-semiregular ring,then the center C(R)of R is von Neumann regular.

        Proof By Proposition 2,Ris left nonsingular,thus Rhas von Neumann regular maximal left quotient rings(see,e.g.Corollary 2.31[1]).Consequently,the center C(S)of Sis von Neumman regular by Lemma 2.For any a∈C(R)?C(S),there exists s∈C(S)such that a=asa=a2s=sa2.Then C(R)is reduced.By Proposition 4,Ris left AP-injective.Thus there exists a right ideal La2of Rsuch that a∈rl(a)=rl(a2)=a2R ⊕La2.As in the proof of Proposition 5,ais a von Neumann regular element in R.Using Lemma 2again,we conclude that ais von Neumann regular in C(R).

        [1]Goodear K R.Ring theory:nonsingular rings and modules[J].Pure and Appl Math,1976,8:206.

        [2]Goodear K R.Von Neumann regular rings[M].Florida:Krieger Publishing Company,1991.

        [3]Page S S,Zhou Yiqiang.Generalizations of principally injective rings[J].J Algebra,1998,206(2):706-721.

        [4]Kaplansky I.Rings of operators[M].New York:W.A.Benjamin,1968.

        [5]Armendariz E P.A note on extensions of Bear and P.P.-rings[J].J Austral Math Soc,1974,18:470-473.

        [6]Nicholson W K,Yousif M F.Mininjective rings[J].J Algebra,1997,187:548-578.

        [7]Birkenmeier G F.Idempotents and completely semiprime ideals[J].Comm Algebra,1983,11:567-580.

        [8]Xiao Guangshi,Tong Wenting.Generalizations of semiregular rings[J].Comm Algebra,2005,33:3447-3465.

        [9]Nicholson W K.Semiregular modules and rings[J].Can J Math,1976,28(5):1105-1120.

        [10]Xiao Guangshi,Yin Xiaobin,Tong Wenting.A note on AP-injective rings[J].J Math,2003,21(4):401-412.

        [11]Anderson F W,F(xiàn)uller K R.Rings and categories of modules[M].New York:Springer-Verlag,1974.

        廣義N-半正則環(huán)

        殷曉斌,王 瑞
        (安徽師范大學數(shù)學與計算機科學學院,安徽 蕪湖 241000)

        介紹了AP-內(nèi)射環(huán)的推廣-廣義N-半正則環(huán),主要得到了R是強正則環(huán)當且僅當R是約化的廣義N-半正則環(huán).文章研究了廣義N-半正則環(huán)的性質(zhì)且對AP-內(nèi)射環(huán)的某些結(jié)果進行了推廣.

        AP-內(nèi)射環(huán);廣義N-半正則環(huán);強正則環(huán)

        O153.3 MSC2010:16E50Article character:A

        1674-232X(2011)02-0097-04

        date:2010-09-10

        Supported by National Natural Science Foundation of China(10871106,10901002)and NSF of Anhui Province Education Committee(KJ2008A026).

        Biography:YIN Xiao-bin(1972—),male,born in Zongyang,Anhui province,associate professor,engaged in algebra.E-mail:xbyinzh@gmail.com

        10.3969/j.issn.1674-232X.2011.02.001

        猜你喜歡
        約化安徽師范大學計算機科學
        約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
        《安徽師范大學學報》(人文社會科學版)第47卷總目次
        探討計算機科學與技術(shù)跨越式發(fā)展
        Hemingway’s Marriage in Cat in the Rain
        淺談計算機科學與技術(shù)的現(xiàn)代化運用
        電子制作(2017年2期)2017-05-17 03:55:01
        重慶第二師范學院計算機科學與技術(shù)專業(yè)簡介
        《安徽師范大學學報( 自然科學版) 》2016 年總目次
        M-強對稱環(huán)
        淺談在計算機科學中的創(chuàng)新精神
        河南科技(2014年23期)2014-02-27 14:19:15
        (3+1)-維廣義Kadomtsev-Petviashvili方程的對稱約化與精確解
        双腿张开被9个黑人调教影片 | 色yeye免费视频免费看| 免费a级毛片无码a∨免费| 性感的小蜜桃在线观看| 伊人久久综合无码成人网| 中文成人无字幕乱码精品区| 天堂中文资源在线地址| 神马不卡一区二区三级| 亚洲av伊人久久综合性色| 一本色道久久88加勒比| 内射人妻少妇无码一本一道| 97色伦综合在线欧美视频| 夜夜综合网| 一区二区日本影院在线观看| 公厕偷拍一区二区三区四区五区| 久久久精品国产sm调教网站| 97视频在线观看免费| 国产内射视频免费观看| 无遮挡激情视频国产在线观看| 欧美成人午夜精品久久久| 精品少妇人妻av免费久久久| 亚洲欧美在线观看一区二区| 亚洲av男人免费久久| 国产精品天天看天天狠| 国产大陆亚洲精品国产| 不卡无毒免费毛片视频观看| 精品少妇一区二区三区入口| 久久伊人最新网址视频| 精品国产一区二区三区免费 | 先锋影音av最新资源| 久久精品国产亚洲一区二区| 日本韩国一区二区高清| 色综合久久久久综合99| 性夜影院爽黄a爽在线看香蕉| av蜜桃视频在线观看| 男女无遮挡高清性视频| aaa级久久久精品无码片| 国产成人香蕉久久久久| 中文字幕女同人妖熟女| 久久久老熟女一区二区三区| 亚洲色成人WWW永久在线观看|