亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        中華小苦荬萜類化學成分的研究

        2011-03-17 02:49:52馬雪梅馬文兵
        關鍵詞:艾里烏蘇萜類

        馬雪梅,馬文兵

        中華小苦荬萜類化學成分的研究

        馬雪梅*,馬文兵

        中北大學化工與環(huán)境學院,太原030051

        從中華小苦荬全草的乙酸乙酯提取物中分離得到8個萜類化合物,通過波譜方法及文獻對照分別鑒定為β-香樹脂素(1),3β-羥基-20(30)-蒲公英甾烯(2),熊果-12-烯-3β-醇(3),羽扇豆醇(4),10-羥基艾里莫芬-7 (11)-烯-12,8α-內(nèi)酯(5),烏蘇-12,20(30)-二烯-3β,28-二醇(6),3β,8α-二羥基-6β-當歸?;锬?7(11)-烯-12,8β-內(nèi)酯(7)和烏蘇酸(8),化合物1~8均首次從該植物中分離得到。

        中華小苦荬;萜類;化學成分

        Introduction

        Ixeridium chinense,a herbaceous perennial plant belonging to the Compositae family,is widly distributed in Shanxi,Shandong and Henan provinces of China growing at230-4700 m above sea level.It is valued as delicious and nutritional potherb[1-3].Up to now,its chemical constituents have not been investigated.In a continuing deep investigation of our studies on natural products with free-radical-screening activities and bioactive terpenoids from Ixeridium class[4],we carried out phytochemical studies on this plant and eight terpenoid compounds were isolated from an EtOAc extract of the whole plant of I.chinense.We report herein the isolation and structural elucidation of all these compounds.

        Materials and Methods

        Apparatus and Materials

        1H NMR,13C NMR and DEPT spectra were recorded on Varian INOVA-400 FT-NMR spectrometer.IR were recorded on Nicolet NEXUS-670 FT-IR spectrometer.Column chromatographies(CC)were performed on silica gel(200-300 mesh,Branch of Qingdao Haiyang Chemical Plant).Melting points were recorded X-4 melting point apparatus and uncorrected.

        The Ixeridium chinense were collected from Taiyuan of Shanxi province,in June 2007.It was authenticated by Professor Guo wen-ju,ShanXi Institute for Drug Control.

        Extraction and Isolation

        Ixeridium chinense(4.0 kg)were extracted four times with 75%EtOH at room temperature,and each time lasted three days.The combined extracts were evaporated to dryness under reduced pressure.The residue(120 g)was then suspended in H2O(1.2 L),and extracted with petroleum ether(60-90℃)(1.2 L× 6),ethyl acetate(1.2 L×4)and n-butanol(1.0 L ×4),respectively.The EtOAc extraction was concentrated to a syrup(52 g),and then subjected to chromatographic separation on a silica gel column(100-200 mesh,600 g).The components of the mixture were chromatographyed using petroleum ether with increasing volume of acetone(v/v,from 30∶1 to 1∶1)as eluent to give seven fractions(Fr.1-Fr.7).Rechromatography on silica gel(200-300 mesh)with petroleum ether-EtOAc(v/v,10∶1)as eluent,F(xiàn)r.1(v/v,from 30∶1 to 25∶1)yielded pure compound 1(15 mg).Fr.2 (v/v,from 25∶1 to 20∶1)was eluted with petroleum ether-ethyl acetate(v/v=20∶1)to give crude compound 1(8 mg)and compound 2(6 mg).Fr.3(v/v,from 20∶1 to 15∶1)was eluted with petroleum etherethyl acetate(v/v=15∶1)to give compound 3(12 mg).Fr.4(v/v,from 15∶1 to 12∶1)gave compound 4 (9 mg)after CC on silica gel eluted with petroleum ether-ethyl acetate petroleum ether-ethyl acetate(v/v,10∶1).Fr.5(v/v,from 12∶1 to 10∶1)was chromatographed using petroleum ether-acetone(v/v,12∶1)as eluent to afford compound 5(12 mg).Fr.5(v/v,from 12∶1 to 10∶1)was chromatographed using petroleum ether-acetone(v/v,10∶1)as eluent to give compound 6.Fr.6(v/v,from 10∶1 to 5∶1)was chromatographed using petroleum ether-acetone(v/v,8∶1)as eluent to afford compound 7(10 mg).Fr.7(v/v,from 5∶1 to 1∶1)afforded compound 8(19 mg)after CC on silica gel eluted with petroleum ether-acetone(v/v,2∶1).

        Identification

        β-amyrin(1)Colorless needles,mp.195-197℃.1H NMR(CDCl3,400 MHz)δ:5.14(1H,t,J= 4.0 Hz,H-12),3.22(1H,m,H-3),0.97(3H,s,H-23),0.79(3H,s,H-24),0.77(3H,s,H-25),1.00 (3H,s,H-26),1.14(3H,s,H-27),0.83(3H,s,H-28),0.88(6H,s,H-29,30).13C NMR(CDCl3,100 MHz)δ:38.6(C-1),27.2(C-2),79.1(C-3),38.7 (C-4),55.1(C-5),18.4(C-6),32.8(C-7),39.9(C-8),47.7(C-9),36.8(C-10),23.2(C-11),121.3(C-12),145.5(C-13),42.0(C-14),26.8(C-15),26.6 (C-16),32.7(C-17),48.2(C-18),46.6(C-19),31.6(C-20),34.2(C-21),37.5(C-22),28.1(C-23),15.6(C-24),15.6(C-25),16.8(C-26),26.4 (C-27),28.2(C-28),33.3(C-29),23.4(C-30).The spectral data were in accordance with those of reported[5],then the compound 1 was identified asβ-amyrin.

        3β-hydroxyl-20(30)-taraxastene(2)Colorless crystals,mp.278-280℃.1H NMR(CDCl3,400 MHz) δ:3.17(1H,m,H-3),4.64(1H,brs,H-30β),4.60 (1H,brs,H-30β).13C NMR(CDCl3,100 MHz)δ: 38.6(C-1),27.4(C-2),79.0(C-3),38.8(C-4),55.3(C-5),18.3(C-6),34.2(C-7),14.5(C-8),50.5(C-9),37.1(C-10),21.6(C-11),26.2(C-12),39.2(C-13),42.2(C-14),26.7(C-15),38.3(C-16),34.2(C-17),48.7(C-18),39.4(C-19),154.6 (C-20),25.6(C-21),38.9(C-22),27.9(C-23),15.4(C-24),16.3(C-25),15.9(C-26),14.8(C-27),19.5(C-28),25.5(C-29),107.1(C-30).The data was in accordance of3β-hydroxyl-20(30)-taraxastene[6].

        Olean-12-ene-3β-ol(3)Colorless crystal,mp.307-309℃.1H NMR(CDCl3,400 MHz)δ:3.63(1H,t,J =6.6 Hz,H-3),5.18(1H,m,H-12),0.99(3H,s,H-23),0.80(3H,s,H-24),0.95(3H,s,H-25),0.96(3H,s,H-26),1.14(3H,s,H-27),0.84(3H,s,H-28),0.87(3H,s,H-29),0.88(3H,s,H-30);13C NMR(CDCl3,100 MHz)δ:38.8(C-1),27.5(C-2),79.2(C-3),38.9(C-4),55.4(C-5),18.5(C-6),32.9(C-7),39.6(C-8),47.8(C-9),37.4(C-10),23.2(C-11),121.7(C-12),144.8(C-13),42.0(C-14),26.4(C-15),26.9(C-16),33.1(C-17),47.5 (C-18),46.9(C-19),31.2(C-20),35.1(C-21),38.1(C-22),28.2(C-23),15.6(C-24),15.7(C-25),17.1(C-26),26.5(C-27),29.3(C-28),33.3 (C-29),23.5(C-30).The data were in accordance with those of reported[6],then the compound 3 was identified as olean-12-ene-3β-ol.

        Lupol(4)White needles,mp.208-210℃.1H NMR (CDCl3,400 MHz)β:3.18(1H,m,H-3),0.85(3H,s,H-23),0.76(3H,s,H-24),0.83(3H,s,H-25),1.03(3H,s,H-26),0.91(3H,s,H-27),0.75(3H,s,H-28),4.64(1H,brs,H-29),4.54(1H,brs,H-29'),1.12(3H,s,H-30).13C NMR(CDCl3,100 MHz)δ:36.9(C-1),27.9(C-2),78.9(C-3),38.8 (C-4),55.1(C-5),18.2(C-6),34.1(C-7),40.8(C-8),50.3(C-9),37.25(C-10),20.76(C-11),25.17 (C-12),37.23(C-13),42.1(C-14),27.3(C-15),35.2(C-16),42.5(C-17),48.6(C-18),47.7(C-19),150.4(C-20),30.5(C-21),38.8(C-22),27.9 (C-23),15.3(C-24),16.1(C-25),15.9(C-26),14.6(C-27),17.3(C-28),109.5(C-29),20.6(C-30).The data were in accordance with those of reported[7,8],then the compound 4 was identified as lupol.

        10-hydroxyeremophil-7(11)-en-12,8α-olide(5) Colorless crystals,mp.170-172℃.IRνmarcm-1:3501,1772,675,1445;1H NMR(CDCl3,400 MHz)δ:4.85 (1H,dd,J=6.8,11.2 Hz,H-8),2.60(1H,s,H-6α),2.40(1H,m,H-6β),2.12(1H,dd,J=6.8,14.2 Hz,H-9α),1.86(1H,dd,J=11.2,14.2 Hz,H-9β),1.72(3H,s,CH3-13),1.75(1H,m,H-1α),1.77(1H,m,H-1β),1.42(1H,m,H-2α),1.37(1H,m,H-2β),1.43(1H,m,H-3α),1.36(1H,m,H-3β),1.21(1H,m,H-4),0.96(3H,s,CH3-14),0.80 (3H,d,J=8.4 Hz,CH3-15);13C NMR(CDCl3,100 MHz)δ:36.8(C-1),22.5(C-2),28.2(C-3),32.9 (C-4),45.4(C-5),31.5(C-6),160.9(C-7),79.6 (C-8),41.8(C-9),76.4(C-10),121.5(C-11),174.7(C-12),8.9(C-1),15.4(C-14),16.4(C-15).The NMR data were identical to those of literature,the compound 5 was identified as 10-hydroxyeremophil-7(11)-en-12,8α-olide[9].

        Ursan-12,20(30)-dien-3β,28-diol(6)Colorless crystals,mp.230-231℃.1H NMR(CDCl3,400 MHz) δ:3.64(t,J=6.6 Hz,H-3),5.14(m,H-12),4.68 (brs,H-30),4.58(brs,H-30'),0.75-1.60(CH3or CH2);13C NMR(CDCl3,100 MHz)δ:38.8(C-1),27.5(C-2),79.2(C-3),38.9(C-4),55.4(C-5),18.5(C-6),32.9(C-7),39.6(C-8),47.8(C-9),37.4(C-10),23.5(C-11),124.7(C-12),139.8(C-13),43.0(C-14),29.4(C-15),22.9(C-16),37.1 (C-17),55.5(C-18),38.9(C-19),151.2(C-20),32.1(C-21),38.8(C-22),28.2(C-23),15.6(C-24),15.7(C-25),17.0(C-26),23.5(C-27),63.3 (C-28),16.3(C-29),109.5(C-30).The data were equal to those reported[10],then the compoud 6 was identified ursan-12,20(30)-dien-3β,28-diol.

        3β,8α-dihydroxyl-6β-angloxyeremophil-7(11)-en-12,8β-olide(7)Colorless crystals,mp.196-199℃.1H NMR(CDCl3,400 MHz)δ:3.78(1H,dd,J= 6.0,3.0 Hz,H-3),6.24(1H,brs,H-6),2.36(1H,m,H-9α),2.09(1H,dd,J=14.2,11.2 Hz,H-9β),1.70(3H,d,J=1.2 Hz,CH3-13),1.26(3H,s,CH3-14),0.94(3H,d,J=5.2 Hz,CH3-15),6.35(1H,qq,J=6.6,1.2 Hz,H-3'),2.03(3H,dq,J=7.5,1.2 Hz,CH3-4'),1.92(3H,dq,J=6.0,1.3 Hz,CH3-5');13C NMR(CDCl3,100 MHz)δ:27.8(C-1),29.5(C-2),68.2(C-3),39.9(C-4),47.4(C-5),71.5(C-6),157.8(C-7),105.6(C-8),39.8(C-9),37.4(C-10),127.5(C-11),172.7(C-12),8.8(C-13),20.4(C-14),167.4(C-15),168.2(C-1'),128.5(C-2'),140.2(C-3'),21.9(C-4'),15.4(C-5').The data were in accordance with those of literature[9],then the compound 7 was identified as 3β,8αdihydroxyl-6β-angloxyeremophil-7(11)-en-12,8β-olide.

        Ursolic acid(8)White powder,240-242℃.1H NMR(DMSO-d6,400 MHz)δ:8.34(1H,s,COOH),5.16(2H,t,H-12),3.18(2H,m,H-3);13C NMR (DMSO-d6,100 MHz)δ:38.8(C-1),27.4(C-2),77.8(C-3),38.3(C-4),54.7(C-5),17.9(C-6),32.8(C-7),39.1(C-8),37.9(C-9),36.4(C-10),23.2(C-11),124.5(C-12),138.1(C-13),41.5(C-14),28.1(C-15),23.8(C-16),46.7(C-17),52.2 (C-18),38.4(C-19),38.4(C-20),30.2(C-21),36.2(C-22),28.2(C-23),15.9(C-24),15.2(C-25),16.9(C-26),23.2(C-27),178.1(C-28),22.9 (C-29),19.9(C-30).The data were consistent with those of ursolic acid[11],the compound 8 was identified as ursolic acid.

        1 Flora of China Editorial Committee,Chinese Academy of Sciences.Flora of China,Beijing:Science Press.2005,80:251.

        2 Whang SS,Choi K,Robert SH,et al.A morphometric analysis of infraspecific taxa within the Ixeris chinensis complex (Asteraceae,Lactuceae).Bot Bull Acad Sin,2002,43:131-138.

        3 Beijing institute of botany,Chinese Academy of Sciences.The Picture Index of Senior China Plant.Beijing:Science Press,1975,4:708.

        4 Ma XM,Liu Y,Shi YP.Phenolic derivatives with free-radical-scavenging activities from Ixeridium gracile(DC.)Shih.Chem&Biodiver,2007,9:2172-2181.

        5 Yang AM,Liu X,Lu RH,et al.Triterpenoids from Pyrethrum tatsienense.Pharmazia,2006,61:70-73.

        6 Mahato SB,Kundu AP.13C NMR spectra of pentacyclic triterpenoids-a compilation and some salient features.Phytochemistry,1994,37:1517-1575.

        7 Qi SH,Wu DG,Ma YB,et al.Studies on chemical constituents of Lagerstroemia guilinensis.Chin Tradit Herb Drugs,2002,33:879-880.

        8 Liu RH,Kong LY.Lipid constituents from Euphorbia humifusa wild.Nat Prod Res Dev(天然產(chǎn)物研究與開發(fā)),2005,17:437-439.

        9 Sugama K,Hayashi K,Mitsuhashi H.Eremopilenolides from Petusites japonicus.Phytochemistry,1985,24:1531-1535.

        10 Al-Easa HS,Rizk AM,Ahmed AA.Guaianolides from Picris radicata.Phytochemistry,1996,43:423-424.

        11 Bhandari SPS,Gang HS,Agrawal PK,et al.Ursane triterpenoids from Nepeta eriostachia.Phytochemisty,1990,27: 3956-3958.

        Terpenoids from Ixeridium chinense(Thunb.)Tzvel.

        MA Xue-mei*,MA Wen-bing
        College of Chemical Engineering and Environment,North University of China,Taiyuan 030051,China

        Eight terpenoids have been isolated from the ethyl acetate extract of Ixeridium chinense(Thunb.)Tzvel by using column chromatography and preparative thin layer chromatography.Structures for allthese compounds were proposed on the basis of spectroscopic data,together with comparing their spectral data with those of the corresponding compounds reported in the literature.They were identified asβ-amyrin(1),3β-hydroxyl-20(30)-taraxastene(2),olean-12-ene-3βol(3),lupol(4),10-hydroxyeremophil-7(11)-en-12,8α-olide(5),ursan-12,20(30)-dien-3β,28-diol(6),3β,8αdihydroxyl-6β-angloxyeremophil-7(11)-en-12,8β-olide(7)and ursolic acid(8).Compounds 1-8 were obtained from this plant for the first time.

        Ixeridium chinense;terpenoids;chemical constituents

        October 9,2009;Accepted January 15,2010

        book=2011,ebook=1

        R284.2;Q946.91

        A

        1001-6880(2011)03-0440-04

        *Corresponding author Tel:86-351-3629665;E-mail:maxuemei@live.nuc.edu.cn

        猜你喜歡
        艾里烏蘇萜類
        美麗的九角鹿
        蒼耳子中萜類化學成分的研究
        中成藥(2018年11期)2018-11-24 02:57:04
        深海來源真菌Alternaria tenuissma DFFSCS013中混源萜類化合物及其抗菌活性研究
        艾里走失記
        小主人報(2018年8期)2018-04-24 03:45:49
        可將合成氣轉(zhuǎn)化成燃料的嗜熱微生物
        妙手仁心的白衣天使
        唇槍舌劍下的赤子之心
        郭佳妮作品
        藝術家(2017年9期)2017-05-20 03:21:00
        植物中萜類化合物的提取方法研究進展
        中文信息(2017年2期)2017-04-13 18:02:02
        克爾介質(zhì)中艾里孤子的形成及控制
        男女啪啪动态视频在线观看| 国产最新地址| 在线无码精品秘 在线观看| 高清不卡av在线播放| 色婷婷一区二区三区四区成人网 | 日韩一二三四精品免费| 国产风骚主播视频一区二区| 丁香五月缴情在线| 白天躁晚上躁麻豆视频| 无码片久久久天堂中文字幕 | 九九99国产精品视频| 蜜桃人妻午夜精品一区二区三区| 包皮上有一点一点白色的| 国产精品久久久久久婷婷| 午夜tv视频免费国产区4| 国产精品不卡免费版在线观看| 久久精品国产亚洲av天| 国产麻豆精品一区| 99JK无码免费| 亚洲熟少妇一区二区三区| 国产尤物精品视频| 国产免费久久精品国产传媒| 免费国产在线精品三区| 在线视频中文字幕一区二区三区| 国产精品无码久久久久久| 久久精品国产亚洲AⅤ无码| 蜜臀一区二区av天堂| 激情内射人妻1区2区3区| 欧美性开放bbw| 麻豆人妻无码性色AV专区| 国产视频激情在线观看| 久久成人国产精品免费软件 | 97青草超碰久久国内精品91| 人与动牲交av免费| 超91精品手机国产在线| 亚洲无人区乱码中文字幕| 少妇无码太爽了在线播放| 99久久国产露脸精品竹菊传媒 | 无码人妻久久一区二区三区免费丨 | 欧美丰满熟妇bbbbbb| 亚洲AV色无码乱码在线观看|