亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Derivation A lgebra of the Schrdinger-Viraso ro Lie A lgebra*

        2010-12-25 06:48:40WANGXiaopingGAOShoulan
        關(guān)鍵詞:子代數(shù)導(dǎo)子理學(xué)院

        WANG Xiao-ping,GAO Shou-lan

        (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        The Derivation A lgebra of the Schrdinger-Viraso ro Lie A lgebra*

        WANG Xiao-ping,GAO Shou-lan

        (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        Fo r the perfect Lie algebra w ith one-dimensional center at lest,there is not a general result about the relationship between its derivation algebra and that of its universal central extension.In this paper,we determine the derivation algebra of the Schr?dinger-Viraso ro Lie algebra L,w hich is the universal central extension of the Schrdinger-Virasoro Lie algebraw ith one-dimensional center.It is p roved that L has only one outer derivation,w hilehas three outer derivations[1].Hence,we get one examp le that the derivation algebra of the universal central extension of a Lie algebra,the center of w hich is not zero,is not isomorphism to that of the Lie algebra.

        Schrdinger-Virasoro algebra;central extension;derivation

        MSC 2000:17B40

        0 In troduction

        The Schr?dinger-Viraso ro Lie algebra,o riginally introduced by M.Henkel in[2]during his study on the invariance of the free Schr?dinger equation,is a vecto r space over the comp lex field C w ith a basisand the Lie brackets:

        for all m,n∈Z.Due to its important app lications in many areas of Mathematics and Physics,the structure and rep resentation theory ofhave been extensively studied.For examp le,M.Henkel investigated thathasone-dimensional universal central extension in[2].C.Roger and J.Unterberger p resented a detailed cohomological study and determinedhas three outer derivations[1].And the automorphism group ofis determined in[3].Nowadays,extensions and generalizations related to the Schr?dinger-Virasoro algebra have appeared and their structure and rep resentation theory have been extensively studied,such as[4]~[6].

        The derivation algebra of a centerless perfect Lie algebra is isomorphism to that of the universal central extension of the Lie algebra[7].While for the perfect Lie algebra w ith one-dimensional center at lest,there is not a general result about the relationship between its derivation algebra and that of its universal central extension.In this paper,we determine the derivation algebra of the Schr?dinger-Virasoro Lie algebra L,w hich is the universal central extension of the Schr?dinger-Virasoro Lie algebraw ithone-dimensional center.It show s that L has only one outer derivation,w hilehas three outer derivation[1].Therefo re,the derivation algebra of L is not isomo rphism to that of.

        Throughout the paper,we denote by Z and C*the set of integers and the set of non-zero comp lex numbers respectively,and all the vector spaces are assumed over the comp lex field C.

        1 The Derivation Algebra of L

        [1]ROGER C,UN TERBERGER J.The Schrdinger-Viraso ro Lie group and algebra:Rep resentation theo ry and cohomological study[J].Annales Henri Poincar,2006(7~8):1477~1529.

        [2]HENKEL M.Schrodinger invariance and strongly anisotropic critical systems[J].J Stat Phys,1994,75:1023~1061.

        [3]GAO S.The automorphism group of the Schr?dinger-Virasoro Lie algebra[J].Journal of Huzhou Teachers College,2010,32:1:6~10.

        [4]GAO S,JIANG C,PEI Y.Structure of the extended Schr?dinger-Viraso ro Lie algebra[J].A lgebra Colloq,2009,16:4 549~566.

        [5]L IJ,SU Y.Rep resentations of the Schrodinger-Viraso ro algebras[J].J Math Phys,2008,49,053512:14.

        [6]UNTERBERGER J.On vertex algebra rep resentations of the Schr?dinger-Viraso ro Lie algebra[EB/OL].[2007-03-21].arXiv:cond-mat/0703214v2.

        [7]BEN KART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].A lgebras Groups Geom,1986,3(4):456~492.

        [8]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34~45.

        MSC 2000:17B40

        王曉萍,高壽蘭

        (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

        對(duì)于中心非零的perfect李代數(shù),關(guān)于它的泛中心擴(kuò)張的導(dǎo)子代數(shù)與它本身的導(dǎo)子代數(shù)之間的關(guān)系尚未有一個(gè)一般的結(jié)論.通過(guò)計(jì)算帶有一維中心的 Schr?dinger-Virasoro李代數(shù)的泛中心擴(kuò)張L的導(dǎo)子,證明了L只有一個(gè)外導(dǎo)子,而由文獻(xiàn)[1]知有三個(gè)外導(dǎo)子,從而得到了一個(gè)中心非零的perfect李代數(shù)的導(dǎo)子代數(shù)與其泛中心擴(kuò)張的導(dǎo)子代數(shù)不同構(gòu)的例子.

        Schrodinger-V iraso ro李代數(shù);中心擴(kuò)張;導(dǎo)子

        O152.5

        O152.5 Document code:A Article ID:1009-1734(2010)02-0022-05

        date:2010-01-21

        Biography:WANG Xiao-ping,Undergraduate student of grade 2006,Faculty of Science,Huzhou Teachers College,

        Research Interests:Lie algebra.

        猜你喜歡
        子代數(shù)導(dǎo)子理學(xué)院
        素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
        擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        四元數(shù)辛李代數(shù)MAD子代數(shù)的共軛性
        Cartan型李代數(shù)W(n;m)的一類Borel子代數(shù)
        n-李代數(shù)的廣義Frattini子代數(shù)及其擴(kuò)張
        R0代數(shù)的直覺(jué)模糊子代數(shù)
        亚洲成人小说| 久久99精品久久久大学生| 亚欧中文字幕久久精品无码| 亚洲国产精品特色大片观看完整版| 思思久久96热在精品不卡| 91九色国产在线观看| 日韩精品专区在线观看| 99久久国产综合精品女图图等你| 毛片免费在线观看网址| 国产成人午夜av影院| 97中文字幕精品一区二区三区| 无码欧美毛片一区二区三| 久久青青热| 日本一区二区三区在线观看免费| 在线观看麻豆精品视频| 鲁一鲁一鲁一鲁一曰综合网| 久久精品中文字幕第23页| 久久爱91精品国产一区| 精品亚洲天堂一区二区三区| 曰韩人妻无码一区二区三区综合部 | 中文字幕乱码熟女人妻水蜜桃| 日本亚洲欧美在线观看| 国产自产在线视频一区| 免费a级毛片高清在钱| 午夜成人无码福利免费视频| 亚洲一区二区三区在线观看播放| 日本黄色一区二区三区| 国产午夜精品av一区二区麻豆| 国产成人精品一区二区视频| av在线免费观看你懂的| av日韩高清一区二区| 亚洲av片一区二区三区| 国产va免费精品高清在线观看| 成人av一区二区亚洲精| 麻豆亚洲av熟女国产一区二| 初尝黑人巨砲波多野结衣| 色偷偷亚洲第一综合网| 日本一二三四高清在线| 国产在线精品一区在线观看| 18黑白丝水手服自慰喷水网站| 国产欧美一区二区三区在线看|