亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Note on Diagonalizable Linear Operators

        2010-12-23 03:07:58HUANGYunbao
        關(guān)鍵詞:杭州

        HUANG Yun-bao

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        The Note on Diagonalizable Linear Operators

        HUANG Yun-bao

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        A linear operatorτ∈()on a finite-dimensional vector spaceis diagonalizable if and only if its minimal polynomial is the product of different linear factors.The paper gives a new proof for the result with elementary symmetric polynomials of its eigenvalues.

        vector space;linear operator;diagonalizable operator

        Theorem 1 ([1],Theorem 8.11)A linear operatorτ∈()on a finite-dimensional vector spaceis diagonalizable if and only if its minimal polynomial mτ(x)is the product of distinct linear factors.

        In what follows,we provide a new proof of Theorem 1by making use of elementary symmetric polynomials of the eigenvalues of the operatorτ.

        For a positive integern,let i∈{1,2,…,n},k∈{1,2,…,n-1}and letσk(i)(x1,x2,…,xn)(or σk(i))denote the kth elementary symmetric polynomial in n-1variables x1,x2,…,xi-1,xi+1,…,xn,

        that is,

        From (1)it immediately follows that

        where for m<i,2≤k,σk-1(m,i)denotes the(k-1)th elementary symmetric polynomial in n-2 variables x1,x2,…,xm-1,xm+1,…,xi-1,xi+1,…,xn,andσ0(m,i)=1.

        Now we need to establish the following surprising result on the determinant composed of elementary symmetric polynomials.

        Conversely,if mτ(x)is the product of distinct linear factors,then without loss of generality,we assume mτ(x)is of the form (8).It is sufficient to check(5)holds.

        To do so,first,from mτ(τ)=0it follows that

        as a linear combination of the vectorsξ,σ(ξ),…,σk-1(ξ)in order to obtain the following identical relation:

        whereσm(i)=σm(i)(λ1,λ2,…,λk).

        Now we consider the following system of equations in k variables a1,a2,…,ak:

        Note that the coefficient determinant of the system of equations(11)is exactly equal toΔ(λ1,λ2,…,λk).Sinceλ1,λ2,…,λkare different from each other,from Lemma 2we obtainΔ(λ1,λ2,…,λk)≠0.

        Thus it follows that the system of equations(11)has a unique solution,which implies there are a1,a2,…,ak∈such that

        according to(10)and(9).Thus(5)holds.

        [1]Steven Roman.Advanced linear algebra[M].3th ed,Germany:Springer,2008:196-198.

        [2]Zhang Herui,Hao Bingxin.Advanced algebra[M].5th ed,Peking:Advanced Education Press,2007:255-287.

        關(guān)于可對角化線性算子的一點注記

        黃允寶
        (杭州師范大學 理學院,浙江 杭州 310036)

        域F上有限維向量空間的線性算子τ∈L()可對角化當且僅當它的極小多項式mτ(x)是F上互異一次因式之積.文章將利用線性算子τ的特征值的初等對稱多項式給出此結(jié)果的一個新證明.

        向量空間;線性變換;可對角化線性變換

        O151.2 MSC2010:47A15,47A75Article character:A

        1674-232X(2010)05-0321-03

        date:2010-06-04

        Biography:Huang Yun-bao(1963—),male,born in Yiwu,Zhejiang Province,associate professor,mainly engaged in combinatorics of words.E-mail:huangyunbao@gmail.com

        10.3969/j.issn.1674-232X.2010.05.001

        猜你喜歡
        杭州
        走,去杭州亞運會逛一圈兒
        科學大眾(2023年17期)2023-10-26 07:38:38
        杭州
        幼兒畫刊(2022年11期)2022-11-16 07:22:36
        杭州明達玻璃纖維有限公司
        玻璃纖維(2022年1期)2022-03-11 05:36:12
        杭州亥迪
        杭州復工復產(chǎn)進行時
        杭州(2020年6期)2020-05-03 14:00:51
        杭州宣言
        G20 映像杭州的“取勝之鑰”
        傳媒評論(2017年12期)2017-03-01 07:04:58
        杭州
        汽車與安全(2016年5期)2016-12-01 05:21:55
        杭州江干區(qū)的醫(yī)養(yǎng)護一體化
        杭州舊影
        看天下(2016年24期)2016-09-10 20:44:10
        国产伦精品一区二区三区视| 久久精品国产亚洲av麻豆长发| 69一区二三区好的精华| 中国极品少妇videossexhd| 美女裸体无遮挡黄污网站| 精品黄色国产一区二区| 午夜不卡无码中文字幕影院| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交| 国产在线视欧美亚综合| 久久91精品国产91久久跳舞| 色综合天天综合欧美综合| 伊人色综合视频一区二区三区| 精品国产91久久综合| 亚洲av无吗国产精品| 人妻激情偷乱视频一区二区三区 | 又粗又硬又黄又爽的免费视频 | 91久久精品国产性色tv| 中文字幕人妻在线少妇| 精品人妻无码视频中文字幕一区二区三区 | 国产精品久久国产精品久久 | 青青草精品在线免费观看| 亚洲精品无码不卡在线播he| 久久人人爽天天玩人人妻精品| 亚洲欧洲综合有码无码| 色婷婷久久综合中文蜜桃| 免费无码高潮流白浆视频| 无码不卡高清毛片免费 | 内射爆草少妇精品视频| 一二三四日本中文在线| 亚洲综合AV在线在线播放| av成人资源在线观看| 婷婷色综合视频在线观看| 永久免费av无码网站性色av| 亚洲AV专区一专区二专区三| 亚洲一区二区三区99| 国产免费人成视频在线观看| 国产剧情福利AV一区二区| 自拍偷拍亚洲视频一区二区三区| 国产成a人亚洲精品无码樱花| 国产av国片精品| 日韩高清av一区二区|