亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

        2010-09-14 09:46:38GAOShoulan
        關(guān)鍵詞:自同構(gòu)理學(xué)院高壽

        GAO Shou-lan

        (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        The Automorphism Group of the Schr?dinger-Virasoro Lie Algebra*

        GAO Shou-lan

        (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        To study the structure of the Schr?dinger-Virasoro Lie algebrasv,we characterize the structure of the automorphism groupA ut(sv)ofsvby calculating the automorphisms ofsvand determining the relationships between certain subgroups generated by some special automorphisms.

        Virasoro algebra;Schr?dinger-Virasoro algebra;automorphism

        CLC number:O152.5Document code:AArticle ID:1009-1734(2010)01-0006-05

        MSC 2000:08A35

        0 Introduction

        The Schr?dinger Lie algebra plays an important role in mathematical physics and its applications. The Schr?dinger Lie algebra inddimensions,denoted byscd,has a basis

        and others vanish.scdis(d2+d+4)-dimensional with 1-dimensional centerCM0and a 3-dimensional simple Lie subalgebra sl(2,C)generated byX-1,X0,X1.The Schr?dinger Lie algebra has attached considerable interest since it was introduced and investigated as the algebra of symmetries of the free Schr?dinger equation[2~3].Its structure and representations have been extensively studied[4~5].

        In[1],M.Henkel firstly introduced Schr?dinger-Virasoro Lie algebrasvduring his study on the invariance of the free Schr?dinger equation.svis a vector space over the complex fieldCwith a basis

        for allm,n∈Z.It is easy to see thatsvis a semi-direct product of the centerless Virasoro algebraW= span{Ln|n∈Z}and the two-step nilpotent infinite-dimensional Lie algebrah=span{Mn,|n∈Z},Henkel investigated that sv has one-dimensional universal central extension.C.Roger and J.Unterberger studied the structure and representation theory ofsvin[6].They presented a detailed cohomological study and determinedsvhas three outer derivations.But the automorphism group ofsvhas not beenworked out.Recently,extensions and generalizations related to the Schr?dinger-Virasoro algebra have appeared and their structure and representation theory have been extensively studied,such as[7],[8].

        In this paper,we determine the structure of the automorphism groupA ut(sv)of the Schr?dinger-Virasoro algebrasv.Throughout the paper,we denote byZandC*the set of integers and the set of nonzero complex numbers respectively,and all the vector spaces are assumed over the complex fieldC.

        1 The Automorphism GroupAut(sv)

        TheSchr?dinger-VirasoroLiealgebrasvisaperfectLiealgebrawithfinitegenerators

        wheresvn=span{Ln,Mn}and=span{}for alln∈Z.

        Denote byA ut(sv)andIthe automorphism group ofsvand the inner automorphism group ofsvrespectively.Obviously,Iis generated by{exp(kadMm+lad Y),m,n∈Z,k,l∈C}.For convenience, set

        NoteCM0,MandM+Yare all non-trivial proper ideals ofsv,then it is easy to deduce the following lemma.

        lemma 1.1 For allσ∈A ut(sv),we have

        for alln∈Z.

        LetJbe a subgroup ofIgenerated by{exp(k ad Mn)|n∈Z,k∈C}.ThenJis an abelian normal subgroup ofI.As a matter of fact,Jis the center of the groupI.

        For alli,j,k∈Z,it is easy to see that

        Consequently,we can deduce that

        for allα,β∈C.Furthermore,we get

        for allmk∈Z,bmk∈C,1≤k≤t.

        lemma 1.2 For anyσ∈A ut(sv),there exist someτ∈Iandε∈{±1}such that

        Proof By the automorphism group of the classical Witt algebra[9],there exists someε∈{±1}such that

        wherei≠0 andk+l+1≠0.Obviouslyτ,∈I.Note that for anyθ∈I,we haveθ(Mn)=Mnfor alln∈Z. By direct calculation,we obtain

        wherei≠0 andy∈C.Setσ=τ-1σ,then there exists somea0∈Csuch that

        By Lemma 1.1 and the automorphism group of the classical Witt algebra,we can assume that

        where each formula is of finite terms andμ(nk)∈C*,ani,bnj+12,f(ns),h(nt+12)∈C*.From the relation that[σ(L0),σ(Lm)]=mσ(Lm),we have

        Thenni=εnforani≠0 andbnj+12=0 for allj.So

        Letm=1,thennaεn-aε=(n-1)aε(n+1).By induction onn∈Z,we can infer that

        Since[σ(L0),σ(Mn)]=nσ(Mn),we have=0,which implies thatni=εn.Therefore,

        This forces thatni=εnand

        Because[σ(Lm),σ(Mn)]=nσ(Mm+n),we getμ(ε(m+n))=μ(ε(n))forn≠0.Obviously,μ(ε(m))=μ (ε)for allm∈Z.So for allm∈Z,we have

        Comparing the coefficient ofon the both sides of

        we have

        Finally,by the coefficient ofMε(m+n+1)on the both sides of

        wherea,b∈C*andc,d∈C.It is easy to check the converse part of the theorem.

        Denote byσ(ε,a,b,c,d)the automorphism ofsvsatisfying(2)~(4),thenσ(ε1,a1,b1,c1,d1)= σ(ε2,a2,b2,c2,d2)if and only ifε1=ε2,a1=a2,b1=b2,c1=c2,d1=d2,and

        Therefore,Bis a normal subgroup ofA ut(sv)and we have

        lemma 1.3 A,TandBare all subgroups ofA ut(sv)and

        whereT≌Z(yǔ)2={±1},A≌C*×C*andB≌C×C.

        LetC∞={(ai)i∈Z|ai∈C,all but finitely manyai=0},Gthesubgroupgeneratedby{exp}.ThenC∞is an abelian group.DenoteΓ=G/Γthe quotient group ofG.By(1),we have

        It is easy to deduce that

        Proof Define f:Γ→C∞by

        whereaki=αkiforki<0,a0=c,andaki+2=αkiforki≥0,the others are zero,ki∈Zandk1≤k2≤…≤ks.Since every element ofJhas the unique formit is easy to check thatfis an isomorphism of group.

        Similar to the proof above,it is easy to prove thatvia(6).

        [1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].J Stat Phys,1994,75:1023.

        [2]HAGEN C R.Scale and conformal transformations in Galilean-covariant field theory[J].Phys Rev D,1972,5(2):377~388.

        [3]NIEDERER U.The maxiamal kinematical invariance group of the free Schr?dinger equation[J].Helv Phys Acta, 1972,73:802~810.

        [4]FEINSILVER P,KOCIK J,SCHOTT R.Representations of the Schr?dinger algebra and Appellsystems[J]. Fortschr Phys,2004,52(4),343~359.

        [5]FEINSILVER P,KOCIKJ,SCHOTT R.Berezin quantization of the Schr?dinger algebra,InfiniteDimensional Analysis [J].Quantum Probability and related topics,2003,6(1):57~71.

        [6]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:Representation theory and cohomological study[J].Annales Henri Poincaré,2006(7~8):1477~1529.

        [7]GAO S,J IANG C,PEI Y.Structure of the extended Schrodinger-Virasoro Lie algebra[J].Algebra Colloquium,2009, 16(4):549~566.

        [8]UNTERBERGER J.On vertex algebra representations of the Schr?dinger-Virasoro Lie algebra[EB/OL].[2007-03-21].arXiv:cond-mat/0703214v2.

        [9]GAO S.The structures and representations of Schr?dinger-Virasoro algebras and non-graded Virasoro-like Lie algebras [D].Faculty of Science,Shanghai Jiaotong University,2008:11~14.

        MSC 2000:08A35

        一類Schr?dinger-Virasoro李代數(shù)的自同構(gòu)群

        高壽蘭
        (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

        為了研究Schr?dinger-Virasoro李代數(shù)sv的結(jié)構(gòu),通過(guò)計(jì)算sv的自同構(gòu)及確定由某些特殊的自同構(gòu)生成的子群之間的關(guān)系,確定了sv的自同構(gòu)群A ut(sv)的結(jié)構(gòu).

        Virasoro李代數(shù);Schr?dinger-Virasoro李代數(shù);自同構(gòu)

        O152.5

        *Received date:2009-12-21

        Biography:GAO Shou-lan,Doctor,Research Interest:Lie algebra.

        猜你喜歡
        自同構(gòu)理學(xué)院高壽
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        一類無(wú)限?ernikov p-群的自同構(gòu)群
        關(guān)于有限Abel p-群的自同構(gòu)群
        剩余有限Minimax可解群的4階正則自同構(gòu)
        養(yǎng)生篆刻
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        古代長(zhǎng)壽有哪些雅稱
        多病且可高壽一曾國(guó)藩的養(yǎng)生之道
        誰(shuí)最“高壽”?
        国产精品美女黄色av| 国内女人喷潮完整视频| 玩弄丝袜美腿超短裙校花| 国产精东一区二区三区| 台湾自拍偷区亚洲综合| 国产精品丝袜美腿诱惑| 亚洲av高清一区三区三区| 亚洲精品国产av成拍| 国产av无毛无遮挡网站| 亚洲av毛片在线网站| 人妻少妇中文字幕久久| 在线播放av不卡国产日韩| 蜜桃视频插满18在线观看| 女人张开腿让男人桶爽| 色费女人18毛片a级毛片视频| 精品免费久久久久久久| 亚洲色欲久久久综合网| 亚洲va中文字幕无码| 国产精品久久无码一区二区三区网| 少妇高潮喷水正在播放| 色综合另类小说图片区| 免费国产h视频在线观看86| www.尤物视频.com| 国产91熟女高潮一曲区| av网站免费在线浏览| 免费一区二区高清不卡av| 亚洲一区二区女搞男| 午夜免费视频| 国产精品熟女视频一区二区| 国产亚洲日韩在线三区| 国产精品厕所| 日韩最新av一区二区| 亚洲自偷自拍另类第一页| 99久久99久久久精品蜜桃| 五十六十日本老熟妇乱| 国内精品视频在线播放不卡| 欧美亚洲国产片在线播放| 亚洲一区二区三区偷拍女厕| 青青青伊人色综合久久| 日本一区二区免费在线看| 亚洲av综合色区无码一区|