石志城 李 巖
(北京空間機電研究所,北京100076)
地球自轉(zhuǎn)對光機掃描儀成像的影響較大,因為地球自轉(zhuǎn)會影響地物相對光機掃描儀的運動[1]。地球自轉(zhuǎn)速度可以分解為掃描和飛行2個方向的分量,通過分析地球自轉(zhuǎn)沿這2個方向上的速度分量對光機掃描儀掃描條帶的影響,可以更詳盡地研究地球自轉(zhuǎn)對掃描成像的影響。在分析過程中,還要考慮地球自轉(zhuǎn)速度以及星下點飛行方位角隨緯度的變化。
(1)不同地理緯度的地速計算
眾所周知,地球自轉(zhuǎn)的角速度可以視為一個定量,由于地球不同緯度處距地軸的垂直距離不同,且隨著緯度的逐漸增大,這一距離不斷縮短。根據(jù)地球自轉(zhuǎn)地速和星下點所處緯度的幾何關(guān)系,可以得到不同緯度處地速的計算公式,如式(1):式中 Vear表示不同地理緯度的地速;R表示地球的半徑;φ為衛(wèi)星的星下點對應(yīng)的地理緯度;We為地球自轉(zhuǎn)角速度。
圖1表示不同地理緯度對應(yīng)的地速。從圖1可以看出緯度越高,地球自轉(zhuǎn)的地速越小,赤道處地速最大,兩極地速最小。
圖1 不同地理緯度對應(yīng)的地速
(2)飛行方位角的計算
衛(wèi)星飛行方向與地球自轉(zhuǎn)方向的夾角稱為衛(wèi)星的飛行方位角。在將地球自轉(zhuǎn)速度分解的過程中,地球自轉(zhuǎn)速度的大小和星下點所處緯度有關(guān);地球自轉(zhuǎn)分速度的方向與飛行方位角有關(guān)。而飛行方位角的大小取決于星下點緯度、衛(wèi)星軌道傾角和升軌降軌的情況。圖2為衛(wèi)星的飛行方位角示意圖。圖中δ表示飛行方位角。
對于太陽同步軌道的遙感衛(wèi)星而言,可將太陽同步軌道近似看作圓形,并且地心距為r。衛(wèi)星軌道要素分別為:半長軸a=r,偏心率e=0,軌道傾角為 i,近地點幅角為 ω,真近點角 λ和近地點時刻τ。在 t時刻,衛(wèi)星的運動狀態(tài)可以用r和飛行方位角δ表示。根據(jù)衛(wèi)星軌道要素可以用迭代計算Kepler方程[2]求得t時刻衛(wèi)星的運動狀態(tài)參數(shù):
圖2 衛(wèi)星的飛行方位角示意圖
式中 μ為地球引力常數(shù)。由于太陽同步軌道可近似看作圓形,據(jù)此,可以求出偏近點角 E:
真近點角λ可表示為:
將其代入式(2),可得t時刻的軌道幅角u:
在t時刻的星下點地理緯度可表示為:
根據(jù)球面幾何可以得到飛行方位角 δ:
(3)地速分速度的計算
對于擺掃成像的光機掃描儀而言,掃描方向和衛(wèi)星飛行方向相互垂直。在已知星下點飛行方位角的情況下,可以將地球自轉(zhuǎn)速度分解為星下點處地球自轉(zhuǎn)速度沿飛行方向的分速度Valong和掃描方向的分速度Vcross,可以分別用下式表示:
需要注意的是,衛(wèi)星處于升軌和降軌狀態(tài)時,Valong方向始終與衛(wèi)星飛行方向相反,但是Vcross方向相對于單向掃描方向會隨衛(wèi)星升降軌狀態(tài)的變化而變化。
現(xiàn)以“中巴地球資源衛(wèi)星”01星軌道為例說明上述問題。衛(wèi)星軌道為太陽同步軌道,軌道高度為778km,軌道傾角為98.5°[3],衛(wèi)星處于升軌狀態(tài)。地球自轉(zhuǎn)的分速度計算結(jié)果,見表1。
表1 “中巴地球資源衛(wèi)星”星下點地速分速度
從表1中可以看出,掃描方向上的地球自轉(zhuǎn)分速度 Vcross隨緯度變化而變化,緯度越低,分速度越大,在赤道處分速度達(dá)到最大;飛行方向上的地球自轉(zhuǎn)分速度 Valong較小,且變化不大。Vcross會疊加到掃描鏡擺掃形成的地物相對光機掃描儀的速度上,這會導(dǎo)致圖像在掃描方向上發(fā)生畸變,使掃描幅寬發(fā)生變化;Valong分量較小,但會造成相鄰掃描條帶的間距輕微變化。
根據(jù)光機掃描儀的參數(shù)可知,掃描鏡的掃描周期 T,掃描有效率 η,從而可以計算出有效的掃描時間。光機掃描儀對地成像主要在有效掃描時間內(nèi)進(jìn)行[4]。
地球自轉(zhuǎn)會造成掃描條帶沿掃描方向被拉伸或壓縮。造成這一現(xiàn)象的原因是地球自轉(zhuǎn)沿掃描方向的分速度 Vcross疊加到掃描鏡對地物的掃描速度上,其合成速度隨緯度的變化而變化,從而造成掃描條帶的長度隨星下點緯度的變化而不同。由于地物相對于光機掃描儀沿掃描方向的速度是由2個速度合成的,所以掃描條帶幅寬可以分為2部分計算:不考慮地球自轉(zhuǎn)影響的條帶幅寬Lopt和有效掃描時間里沿掃描方向地球自轉(zhuǎn)產(chǎn)生的距離Le。不考慮地球自轉(zhuǎn)影響的條帶幅寬為:
式中 H表示光機掃描儀視軸斜距??捎墒?4)表示:
式中 h表示衛(wèi)星到地表的軌道高度;βmax表示最大掃描角。
有效掃描時間里沿掃描方向地球自轉(zhuǎn)產(chǎn)生的距離Le可表示為:
地球自轉(zhuǎn)影響下的掃描條帶幅寬L可表示為:
條帶的拉伸和壓縮同衛(wèi)星軌道傾角和衛(wèi)星升降軌的狀況以及掃描方向有關(guān)[5]。當(dāng)衛(wèi)星的軌道為太陽同步軌道,并且軌道傾角大于90°時,則計算掃描條帶的Lopt和Le加減情況如表2所示。
表2 掃描條帶的拉伸情況
對于同一顆衛(wèi)星而言,若衛(wèi)星在升軌狀態(tài)時掃描條帶拉伸,則在降軌狀態(tài)時條帶壓縮。由于Vcross變化較大,且隨著緯度的增大速率而減小,所以隨著衛(wèi)星星下點緯度的增大,掃描條帶幅寬的拉伸或壓縮量減小,赤道位置是條帶拉伸和壓縮量最大處。但是對于成像幅寬較小的情況而言,地球自轉(zhuǎn)對掃描條帶的拉伸和壓縮影響不大。
地球自轉(zhuǎn)沿掃描方向的分速度Vcross會引起相鄰掃描條帶的錯動[6]。不考慮地球自轉(zhuǎn)影響時,在掃描方向地物相對于光機掃描儀的移動速度Vs和掃描鏡掃描地物速度Vβ大小相等。在這種情況下相鄰掃描條帶之間不發(fā)生沿掃描方向的錯動。
因為地球自轉(zhuǎn)的影響,使得地球自轉(zhuǎn)沿掃描方向分速度疊加到掃描方向地物相對光機掃描儀的移動速度上。此時,掃描方向地物相對于光機掃描儀的移動速度可表示為:
由于Vcross的存在使得在一個掃描周期里,2條相鄰的掃描條帶的地面掃描起始位置會沿掃描方向發(fā)生一定的位移,從而使得前一個掃描條帶和后一個掃描條帶在掃描方向上產(chǎn)生錯動。假設(shè)錯動寬度為ΔD,可得到Δ D的數(shù)學(xué)表達(dá)式:
根據(jù)式(5)可知,相鄰掃描條帶錯動量同掃描周期與Vcross有關(guān)。掃描周期越長,錯動量越大;Vcross越大,錯動量越大。以“中巴地球資源衛(wèi)星”01星上的光機掃描儀的相關(guān)參數(shù)為例,計算不同緯度的掃描條帶錯動量。光機掃描儀的掃描周期為0.186s。由于“中巴地球資源衛(wèi)星”是雙向掃描,所以為了清晰地描述條帶的錯動,選取相同掃描方向的條帶進(jìn)行計算。以2次相鄰的正掃為例,因此,計算錯動所用的時間為掃描周期的2倍。因為不同緯度處的 Vcross不同,算例中要分別選取表1中的Vcross計算,結(jié)果見下表3。
表3 “中巴地球資源衛(wèi)星”不同緯度掃描條帶錯動量
從表3中可以看出,隨著星下點緯度的升高相鄰掃描條帶的錯動量逐漸減小,在赤道處的錯動量最大。并且表3也反映出Vcross越大,錯動量越大的變化規(guī)律。
地球自轉(zhuǎn)會對掃描條帶重疊率產(chǎn)生一定的影響。地球自轉(zhuǎn)在不同緯度處的線速度不同,以及速度方位角的變化使得地速在不同緯度處沿衛(wèi)星飛行方向的分速度不同。因此,地物相對于光機掃描儀沿衛(wèi)星飛行方向的合速度也會發(fā)生變化,這直接影響了相鄰掃描條帶間的重疊率。
根據(jù)光機掃描儀成像原理可知,計算相鄰掃描條帶重疊率首先需要計算掃描條帶的寬度。假設(shè)A表示條帶寬度,垂直掃描方向的探測器光敏元寬度為a,相鄰光敏元沿垂直掃描方向中心距為b,在此方向上同一級光敏元陣列有K個,光學(xué)系統(tǒng)的焦距為f,根據(jù)投影關(guān)系可知掃描條帶寬度A可表示為:
式中 H的計算可以參考式(4)。根據(jù)式(4)和(6)可知,隨著H的增大,條帶寬度增大,即隨著掃描角度 β的增大,條帶寬度增大。
假設(shè)V表示衛(wèi)星在軌的飛行速度,根據(jù)活力公式可知衛(wèi)星在軌的飛行速度大小為:
則衛(wèi)星星下點速度Vsubp可表示為[7]:
若掃描頻率為F,并且星下點所處緯度的地速沿衛(wèi)星飛行方向的分速度已知,Δ A可表示為:
式(7)反映出由于經(jīng)過一個掃描周期不同掃描角度對應(yīng)的采樣位置沿衛(wèi)星飛行方向移動距離是不變的,所以Δ A隨著掃描角度β的變化而變化。
將A代入式(7)可以求出β角對應(yīng)的掃描條帶的重疊量Δ A,將 Δ A和A求比值可以表示重疊率:
由式(6)、(7)、(8)可知,在光學(xué)系統(tǒng)參數(shù)和光機掃描儀的掃描頻率一定的情況下,分析固定的掃描角度對應(yīng)的相鄰掃描條帶重疊率可以得到以下結(jié)論:衛(wèi)星星下點速度Vsubp和地球自轉(zhuǎn)沿衛(wèi)星飛行方向分速度Valong的合速度越小重疊部分越大,所以重疊率越高;反之,重疊率越小。其中衛(wèi)星軌道確定則 Vsubp確定,所以飛行方向的合速度的變化主要是由Valong引起的。Valong隨緯度的變化量不大,所以由此影響產(chǎn)生的重疊率變化量也不大。
由于地球自轉(zhuǎn)的影響導(dǎo)致掃描條帶幅寬變化、相鄰條帶沿掃描方向錯動和相鄰條帶重疊率變化,進(jìn)而會造成圖像畸變和相鄰條帶圖像拼接錯位。這些問題都可以通過圖像校正的方法解決。
掃描條帶幅寬變化的校正可以通過確定地面控制點求解幾何校正模型(如多項式變換)的各個參數(shù),從而得到坐標(biāo)系變換的關(guān)系,再進(jìn)行圖像重采樣(如雙線性內(nèi)插)計算出新像素的灰度值[8]。
相鄰條帶錯動的校正可以通過整條條帶沿偏移方向移動相應(yīng)錯動量的辦法來解決。首先,根據(jù)式(5)計算相鄰掃描條帶沿掃描方向的錯動量。然后,以其中一條掃描條帶為基準(zhǔn)將另一條掃描條帶沿掃描方向移動,移動量即為錯動量。在進(jìn)行條帶移動時,若以前一掃描周期的條帶為基準(zhǔn),則后一掃描周期的條帶要向地球自轉(zhuǎn)的反方向移動。
相鄰條帶重疊率的校正可以使用相鄰條帶圖像各像素對應(yīng)地面經(jīng)緯度計算重疊的像素行數(shù)的方法或自相關(guān)的方法求解重疊量,然后刪除條帶重疊部分[9];也可以根據(jù)式(7)計算相鄰掃描條帶中任意一條掃描條帶圖像中每一列像素的重疊量,再逐列去除重疊的像素,最后進(jìn)行拼接即可[10]。
地球自轉(zhuǎn)對光機掃描儀成像的影響主要表現(xiàn)在以下幾個方面:1)導(dǎo)致掃描條帶幅寬拉伸或壓縮;2)使相鄰兩條掃描條帶發(fā)生相錯;3)對相鄰掃描條帶的重疊率發(fā)生變化。對以上影響的研究,有助于更好描述在地球自轉(zhuǎn)影響下,光機掃描儀掃描條帶的幾何特征,更準(zhǔn)確的計算掃描條帶沿掃描方向的畸變量以及相鄰掃描條帶重疊率的變化量,也能為單一掃描條帶的幾何校正和多條帶拼接提供技術(shù)參考。
[1]林華寶.國外衛(wèi)星技術(shù)及應(yīng)用[M].北京:宇航出版社,1998.
[2]王志剛,袁建平,陳士櫓,等.高分辨率衛(wèi)星遙感圖像的偏流角及其補償研究[J].宇航學(xué)報,2002,23(5):39-40.
[3]陳宜元.“中巴地球資源衛(wèi)星”及其應(yīng)用[J].國際太空,2001(4):14-15.
[4]陳世平.空間相機設(shè)計與試驗[M].北京:宇航出版社,2003.
[5]USGS EROS Data Center.Landsat-7 Image Assessment System(IAS)Geometric Algorithm Theoretical Basis Document[R].Version.3.2,USA,1997.
[6]Jensen J R.遙感數(shù)字影像處理導(dǎo)論[M].陳曉玲,龔?fù)?李平湘,等譯.北京:機械工業(yè)出版社,2007.
[7]譚維熾,胡金剛.航天器系統(tǒng)工程[M].北京:中國科學(xué)技術(shù)出版社,2009.
[8]趙金玲,劉學(xué)鋒.基于MATLAB的遙感數(shù)字圖像幾何校正方法[J].測繪與空間地理信息,2003,26(2):24-25.
[9]郭廣猛.非星歷表法去除MODIS圖像邊緣重疊影響的研究[J].遙感技術(shù)與應(yīng)用.2003,18(3):172-175.
[10]Du Peng,Liu Chuang,Ma Long.An Analytical Non-ephemeris algorithm for MODIS Bowtie Removal[J].Proc.of SPIE.2004,5573:396-406.