亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        弗賴登塔爾數(shù)學(xué)教育思想對(duì)幼兒園數(shù)學(xué)教育改革的啟示

        2010-04-12 00:00:00林培淼
        幼兒教育·教育科學(xué)版 2010年5期

        【摘要】弗賴登塔爾的數(shù)學(xué)教育思想集中體現(xiàn)在現(xiàn)實(shí)數(shù)學(xué)、數(shù)學(xué)化和再創(chuàng)造三個(gè)方面。弗賴登塔爾的數(shù)學(xué)教育思想啟示我們,幼兒園的數(shù)學(xué)教育要立足于幼兒的數(shù)學(xué)現(xiàn)實(shí),重視幼兒的數(shù)學(xué)化過(guò)程,追求幼兒的再創(chuàng)造能力。

        【關(guān)鍵詞】現(xiàn)實(shí)數(shù)學(xué);數(shù)學(xué)化;再創(chuàng)造

        【中圖分類號(hào)】G612 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】1004-4604(2010)05-0014-04

        20世紀(jì)后期,我國(guó)幼兒園實(shí)施數(shù)學(xué)教育的主要途徑是計(jì)算課,強(qiáng)調(diào)的是計(jì)算訓(xùn)練與結(jié)果的唯一準(zhǔn)確性。自從2001年實(shí)施《幼兒園教育指導(dǎo)綱要(試行)》以來(lái),我國(guó)對(duì)幼兒園數(shù)學(xué)教育進(jìn)行了改革,取消了以計(jì)算訓(xùn)練為主的數(shù)學(xué)教育,出現(xiàn)了以培養(yǎng)幼兒數(shù)學(xué)興趣為取向的數(shù)學(xué)游戲活動(dòng),教師也認(rèn)識(shí)到培養(yǎng)幼兒良好思維的重要性,但脫離幼兒生活實(shí)際的數(shù)學(xué)教育仍然普遍存在。隨著改革的不斷深入,幼兒園數(shù)學(xué)教育更加需要科學(xué)合理的數(shù)學(xué)教育思想來(lái)指導(dǎo)。筆者認(rèn)為,學(xué)習(xí)與借鑒弗賴登塔爾的數(shù)學(xué)教育思想對(duì)推進(jìn)我國(guó)幼兒園數(shù)學(xué)教育改革具有重要的現(xiàn)實(shí)意義。

        一、弗賴登塔爾數(shù)學(xué)教育思想的基本內(nèi)容

        漢斯·弗賴登塔爾(Hans Freudenthal,1905-1990)是國(guó)際著名數(shù)學(xué)家、數(shù)學(xué)教育家。在長(zhǎng)期的數(shù)學(xué)研究和數(shù)學(xué)教育實(shí)踐中,弗賴登塔爾用數(shù)學(xué)家和數(shù)學(xué)教師的眼光審視數(shù)學(xué)教育問題,抽象概括出了他獨(dú)有的系統(tǒng)見解??梢哉f(shuō)他已經(jīng)擺脫了教育學(xué)(或心理學(xué))加數(shù)學(xué)例子這種“傳統(tǒng)的”數(shù)學(xué)教育研究模式,形成了一套適合兒童心理發(fā)展、符合教育規(guī)律、經(jīng)得起實(shí)踐檢驗(yàn)、具有自己獨(dú)特風(fēng)格的“現(xiàn)實(shí)數(shù)學(xué)教育思想”體系。他的數(shù)學(xué)教育思想主要體現(xiàn)在以下三個(gè)方面。

        1.“現(xiàn)實(shí)數(shù)學(xué)”的數(shù)學(xué)教育思想

        數(shù)學(xué)教育必須“源于現(xiàn)實(shí),寓于現(xiàn)實(shí),用于現(xiàn)實(shí)”?!?〕這是弗賴登塔爾“現(xiàn)實(shí)數(shù)學(xué)”教育思想的基本出發(fā)點(diǎn)。每一個(gè)人都有自己的數(shù)學(xué)現(xiàn)實(shí),即每個(gè)人接觸到的客觀世界中的數(shù)學(xué)規(guī)律以及有關(guān)這些數(shù)學(xué)規(guī)律的知識(shí)結(jié)構(gòu)。〔2〕數(shù)學(xué)教育就是要以這些數(shù)學(xué)現(xiàn)實(shí)為基礎(chǔ)構(gòu)建課程體系,并通過(guò)這些課程擴(kuò)展每個(gè)人的數(shù)學(xué)現(xiàn)實(shí),應(yīng)用于現(xiàn)實(shí)世界,造福于人類。教師的任務(wù)在于了解兒童的數(shù)學(xué)現(xiàn)實(shí),并據(jù)此來(lái)組織數(shù)學(xué)教育活動(dòng)。數(shù)學(xué)教育不能從數(shù)學(xué)家工作的完美結(jié)果作為出發(fā)點(diǎn);不能采用向兒童硬性嵌入一些遠(yuǎn)離現(xiàn)實(shí)生活的抽象數(shù)學(xué)結(jié)構(gòu)的方式進(jìn)行,這種“教學(xué)法的顛倒”不利于兒童對(duì)數(shù)學(xué)知識(shí)的遷移與應(yīng)用?!?〕相反,數(shù)學(xué)應(yīng)該以普通常識(shí)為起點(diǎn),并立足于普通常識(shí)?!?〕從兒童熟悉的現(xiàn)實(shí)生活開始,從生活中的問題到數(shù)學(xué)問題,從具體問題到抽象概念,從特殊關(guān)系到一般規(guī)則,讓兒童逐步通過(guò)自己的發(fā)現(xiàn)去學(xué)習(xí)數(shù)學(xué)、獲取知識(shí),得到抽象化的數(shù)學(xué)知識(shí)之后,再及時(shí)把它們應(yīng)用到新的現(xiàn)實(shí)問題上去?,F(xiàn)實(shí)數(shù)學(xué)教育與傳統(tǒng)數(shù)學(xué)教育的根本區(qū)別在于:傳統(tǒng)數(shù)學(xué)教育是要“教給”兒童數(shù)學(xué)的現(xiàn)成結(jié)果,而現(xiàn)實(shí)數(shù)學(xué)教育是讓兒童從自己的經(jīng)驗(yàn)去“再創(chuàng)造”數(shù)學(xué)的這些結(jié)果。

        2.“數(shù)學(xué)化”的數(shù)學(xué)教育思想

        認(rèn)識(shí)不是從概念開始的,而是從圍繞著它的其他途徑開始的:概念是認(rèn)識(shí)過(guò)程的結(jié)果?!?〕那么何為數(shù)學(xué)化呢?弗賴登塔爾認(rèn)為,數(shù)學(xué)化是一個(gè)過(guò)程,是數(shù)學(xué)地組織現(xiàn)實(shí)世界的過(guò)程。〔6〕換言之,數(shù)學(xué)化即人們?cè)谟^察、認(rèn)識(shí)和改造客觀世界時(shí),運(yùn)用數(shù)學(xué)的思想和方法來(lái)分析和研究客觀世界的種種現(xiàn)象并加以整理和組織,以發(fā)現(xiàn)其規(guī)律的過(guò)程。數(shù)學(xué)產(chǎn)生與發(fā)展本身就是一個(gè)數(shù)學(xué)化過(guò)程。只有經(jīng)過(guò)數(shù)學(xué)化,問題的解決才成為可能;沒有數(shù)學(xué)化,實(shí)際問題將處于一種模糊狀態(tài),無(wú)法定量地表達(dá)它,更不可能去認(rèn)識(shí)、解決它?!?〕人們用手指或石塊的集合形成數(shù)的概念,通過(guò)測(cè)量、繪畫形成圖形的概念,這也是數(shù)學(xué)化。兒童數(shù)學(xué)化的過(guò)程,就是將兒童的數(shù)學(xué)現(xiàn)實(shí)進(jìn)一步提高、組織、抽象的過(guò)程,這個(gè)過(guò)程包含五個(gè)層級(jí)的思維水平:直觀階段、分析階段、抽象階段、演繹階段和嚴(yán)謹(jǐn)階段。〔8〕這是根據(jù)兒童思維發(fā)展與學(xué)習(xí)過(guò)程提出的,并不是要求每個(gè)兒童都要一次完成所有階段。不能過(guò)分強(qiáng)調(diào)公理化的演繹和形式化的證明,而應(yīng)符合兒童的年齡特征。我們從中可以理解,數(shù)學(xué)化的一個(gè)非常重要方面就是兒童不斷反思自己的活動(dòng),改變看問題的角度,并在各種情境、問題、過(guò)程、結(jié)構(gòu)之中尋找其本質(zhì),概括一些數(shù)學(xué)模型,以探討其一般性,并借助不斷發(fā)展的組織化、圖式化與結(jié)構(gòu)化,從而進(jìn)一步達(dá)到形式化、算法化、符號(hào)化與公理化。

        3.“再創(chuàng)造”的數(shù)學(xué)教育思想

        學(xué)游泳的最好方法是在水里學(xué)習(xí)游泳。那么這種方法在數(shù)學(xué)學(xué)習(xí)上是否行得通呢?弗賴登塔爾的回答是肯定的:“學(xué)一個(gè)活動(dòng)的最好方法是做。”〔9〕為此,弗賴登塔爾提出了“再創(chuàng)造”的數(shù)學(xué)教育思想。他認(rèn)為,數(shù)學(xué)教育是一個(gè)活動(dòng)過(guò)程,在整個(gè)活動(dòng)過(guò)程中兒童應(yīng)該處于一種積極、創(chuàng)造的狀態(tài)。兒童首先要參與這個(gè)活動(dòng),感覺到創(chuàng)造的需要,才有可能進(jìn)行再創(chuàng)造;而教師的任務(wù)就是為學(xué)習(xí)者提供自由廣闊的天地,聽任各種不同思維、不同方法自由發(fā)展,不對(duì)內(nèi)容作限制,更不應(yīng)對(duì)學(xué)習(xí)者的發(fā)現(xiàn)作任何預(yù)置的“圈套”?!?0〕因此,數(shù)學(xué)教育要追求再創(chuàng)造,兒童可以在接觸的數(shù)學(xué)現(xiàn)實(shí)中經(jīng)過(guò)數(shù)學(xué)化、反思之后形成更高層次的數(shù)學(xué)現(xiàn)實(shí),在形成高一層次的數(shù)學(xué)現(xiàn)實(shí)的過(guò)程中,通過(guò)再創(chuàng)造得出許多“新數(shù)學(xué)成果”。數(shù)學(xué)教育必須以再創(chuàng)造范式來(lái)進(jìn)行。用“再創(chuàng)造”范式進(jìn)行數(shù)學(xué)教育是弗賴登塔爾數(shù)學(xué)教育思想的核心所在。

        二、對(duì)幼兒園數(shù)學(xué)教育改革的啟示

        筆者認(rèn)為,弗賴登塔爾數(shù)學(xué)教育思想的重心就是把“講數(shù)學(xué)”轉(zhuǎn)變?yōu)椤白鰯?shù)學(xué)”。所謂“做數(shù)學(xué)”,就是在幼兒數(shù)學(xué)現(xiàn)實(shí)的基礎(chǔ)上,通過(guò)“再創(chuàng)造”把生活實(shí)際數(shù)學(xué)化的探究過(guò)程。這些思想對(duì)我國(guó)幼兒園數(shù)學(xué)教育改革具有重要啟示。

        1.了解幼兒的數(shù)學(xué)現(xiàn)實(shí)

        弗賴登塔爾認(rèn)為,每一個(gè)人都有自己的數(shù)學(xué)現(xiàn)實(shí)。也就是說(shuō),每一個(gè)幼兒都有區(qū)別于其他幼兒的數(shù)學(xué)現(xiàn)實(shí)。幼兒數(shù)學(xué)的啟蒙教師在開展數(shù)學(xué)教育活動(dòng)時(shí)應(yīng)該尊重幼兒的數(shù)學(xué)現(xiàn)實(shí),才能使幼兒真正獲得充滿關(guān)系的、富有生命力的數(shù)學(xué)知識(shí)?!?1〕然而,幼兒數(shù)學(xué)現(xiàn)實(shí)的差異是受諸多因素影響的,可能是源于家庭、環(huán)境及其教育的差異,可能是源于心智成熟的先后差異;既受到生理因素的影響,又受到心理因素的影響。這就要求教師首先要了解每個(gè)幼兒的數(shù)學(xué)現(xiàn)實(shí)。教師可以通過(guò)多種途徑獲得幼兒數(shù)學(xué)現(xiàn)實(shí)的信息,如通過(guò)與家長(zhǎng)交流,獲得幼兒在家庭成長(zhǎng)過(guò)程的背景信息;通過(guò)觀察幼兒的一日活動(dòng),特別是數(shù)學(xué)活動(dòng),了解幼兒所說(shuō)、所操作的情況等。不同的幼兒有不同的數(shù)學(xué)現(xiàn)實(shí),比如大班幼兒在進(jìn)行簡(jiǎn)單加法運(yùn)算時(shí)表現(xiàn)出的個(gè)體差異非常明顯:有的用數(shù)手指的策略,有的利用具體物體進(jìn)行計(jì)算,有的利用數(shù)組成與分解的知識(shí)來(lái)解決問題;在思維特點(diǎn)上也表現(xiàn)出具體的、直觀形象的和初步抽象的水平差異。教師只有承認(rèn)幼兒數(shù)學(xué)現(xiàn)實(shí)的差異,通過(guò)各種途徑了解兒童的思維發(fā)展水平的差異,為提升不同幼兒的思維水平制定更有針對(duì)性的數(shù)學(xué)教育方案,才能真正體現(xiàn)因材施教的教育原則。

        2.提升幼兒的數(shù)學(xué)現(xiàn)實(shí)

        在充分了解每個(gè)幼兒的數(shù)學(xué)現(xiàn)實(shí)之后,教師首先要考慮的問題就是如何使每個(gè)幼兒的思維水平都有所提升,選擇哪些數(shù)學(xué)內(nèi)容、準(zhǔn)備哪些輔助材料、采取何種活動(dòng)方式幼兒才會(huì)活動(dòng)得更持久、更專注、更有興趣。然而,當(dāng)前有不少教師過(guò)分強(qiáng)調(diào)幼兒的數(shù)學(xué)現(xiàn)實(shí),往往只是考慮幼兒現(xiàn)有的發(fā)展水平,簡(jiǎn)單地滿足幼兒的需要,其結(jié)果是,數(shù)學(xué)活動(dòng)過(guò)程看起來(lái)熱熱鬧鬧,幼兒的情緒似乎很高漲,而活動(dòng)是否為幼兒的“發(fā)展性”提供有效的幫助、是否有助于揭示數(shù)學(xué)關(guān)系等實(shí)質(zhì)問題則被忽視了。這是對(duì)幼兒最近發(fā)展區(qū)考慮欠缺,不利于提升幼兒的數(shù)學(xué)現(xiàn)實(shí),會(huì)造成資源浪費(fèi),甚至耽誤幼兒數(shù)學(xué)思維發(fā)展的時(shí)機(jī)。比如,幼兒學(xué)習(xí)數(shù)學(xué)時(shí)的現(xiàn)實(shí)差異,不僅表現(xiàn)在思維發(fā)展水平和發(fā)展速度上,還表現(xiàn)在學(xué)習(xí)偏好上,教師不能單一地考慮同一速度,不能單一地追求數(shù)學(xué)結(jié)果的對(duì)與錯(cuò),不能只提供一種思維水平的活動(dòng)材料;相反,教師應(yīng)該為幼兒提供充足的時(shí)間,讓幼兒在不同的思維水平上運(yùn)用不同的方法解決問題,把幼兒自己得出的結(jié)論和幼兒的創(chuàng)造當(dāng)作課程內(nèi)容的一部分。幼兒園數(shù)學(xué)教育既要重視幼兒現(xiàn)有的數(shù)學(xué)現(xiàn)實(shí),更要推進(jìn)幼兒現(xiàn)有的數(shù)學(xué)現(xiàn)實(shí)向最近發(fā)展區(qū)的數(shù)學(xué)現(xiàn)實(shí)發(fā)展。

        3.重視幼兒數(shù)學(xué)教育數(shù)學(xué)化的過(guò)程

        弗賴登塔爾認(rèn)為:“數(shù)學(xué)是系統(tǒng)化了的常識(shí),而常識(shí)并不等于數(shù)學(xué);常識(shí)要成為數(shù)學(xué),必須經(jīng)過(guò)提煉和組織,而凝聚成一定的法則(如加法交換律)。這些法則在高一層次又成為常識(shí),再一次被提煉、組織,而凝聚成新的法則,新的法則又成為新的常識(shí),如此不斷地螺旋式上升,以至于無(wú)窮。”〔12〕這樣數(shù)學(xué)化的發(fā)展過(guò)程就顯出層次性,構(gòu)成許多等級(jí)。因此,對(duì)于幼兒園數(shù)學(xué)教育更應(yīng)該重視數(shù)學(xué)化過(guò)程,這可以從數(shù)學(xué)教育途徑數(shù)學(xué)化和教育方式數(shù)學(xué)化來(lái)體現(xiàn)。

        適當(dāng)?shù)慕逃緩绞菙?shù)學(xué)化的重要保證。幼兒數(shù)學(xué)教育的途徑很多,我們可以歸結(jié)為兩種,即幼兒數(shù)學(xué)教育的生活化和幼兒生活教育的數(shù)學(xué)化。“生活中處處有數(shù)學(xué)”,我們身邊的事物,都能提供諸多的數(shù)學(xué)信息。選擇貼近幼兒生活的教育資源,有助于幼兒在輕松愉快的活動(dòng)中自主學(xué)習(xí)。在教學(xué)設(shè)計(jì)上可以考慮教育目標(biāo)、內(nèi)容、環(huán)境及材料生活化。比如,秋天是豐收的季節(jié),各種水果最能讓幼兒真實(shí)地感受到秋天特征。可通過(guò)設(shè)計(jì)游戲情境——幼兒在輕松愉快的生活化情境中摘水果、分水果、數(shù)水果、運(yùn)水果,引導(dǎo)幼兒感受數(shù)學(xué)與生活的關(guān)系,獲得數(shù)學(xué)知識(shí),提升數(shù)學(xué)經(jīng)驗(yàn),并感受到數(shù)學(xué)在社會(huì)生活中的價(jià)值,從而實(shí)現(xiàn)數(shù)學(xué)來(lái)源于生活、回歸生活、運(yùn)用于生活的教育價(jià)值。正如弗賴登塔爾所指出的:“在代數(shù)和煮土豆之間,在工作地點(diǎn)問題和幾何學(xué)之間,有一條深深的鴻溝,數(shù)學(xué)教育的任務(wù)是要填平這些鴻溝。這里所說(shuō)的填平數(shù)學(xué)和生活的鴻溝,并不是把數(shù)學(xué)變得很簡(jiǎn)化或庸俗,相反的,是建立數(shù)學(xué)的思維與生活的關(guān)系。”〔13〕

        數(shù)學(xué)化的過(guò)程是指幼兒從一個(gè)具體的情境問題開始,到得出一個(gè)抽象數(shù)學(xué)模型的全過(guò)程。弗賴登塔爾指出,這種全過(guò)程包含兩個(gè)層次水平:橫向數(shù)學(xué)化過(guò)程和縱向數(shù)學(xué)化過(guò)程?!?4〕橫向數(shù)學(xué)化是把生活世界引向符號(hào)世界的過(guò)程,具體的進(jìn)程是:從情境中識(shí)別數(shù)學(xué)→圖式化→形式化→尋找關(guān)系和規(guī)律→識(shí)別本質(zhì)→對(duì)應(yīng)到已知的數(shù)學(xué)模型(現(xiàn)實(shí)的,經(jīng)驗(yàn)的);縱向數(shù)學(xué)化是“橫向數(shù)學(xué)化后的數(shù)學(xué)化”,即從低結(jié)構(gòu)數(shù)學(xué)到高結(jié)構(gòu)數(shù)學(xué)的轉(zhuǎn)化過(guò)程,具體的進(jìn)程是:猜想公式→證明一些規(guī)則→完善模型→調(diào)整綜合模型形成新的數(shù)學(xué)概念→一般化過(guò)程(現(xiàn)實(shí)的,構(gòu)造的)。橫向數(shù)學(xué)化與縱向數(shù)學(xué)化兩個(gè)過(guò)程不完全是前后相連的,有時(shí)是交叉進(jìn)行的,而且不同年齡的兒童,數(shù)學(xué)化的側(cè)重點(diǎn)不同,但是對(duì)于幼兒來(lái)說(shuō),主要側(cè)重在橫向數(shù)學(xué)化過(guò)程。

        因此,幼兒園教師在組織數(shù)學(xué)教育活動(dòng)時(shí)采用的教育方式要與橫向數(shù)學(xué)化的過(guò)程相一致,即從幼兒的生活實(shí)際出發(fā),創(chuàng)設(shè)合理的情境或數(shù)學(xué)環(huán)境,讓幼兒在創(chuàng)設(shè)的情境中探索,鼓勵(lì)幼兒互相交流感想與探索體會(huì),教師不要急于給出所謂“正確的結(jié)果”,要讓幼兒用自己的語(yǔ)言表達(dá)自己眼中的數(shù)量關(guān)系,因?yàn)檫@才是幼兒的“數(shù)學(xué)模型”,才是幼兒的數(shù)學(xué)現(xiàn)實(shí),這也是教師為幼兒創(chuàng)設(shè)下一個(gè)數(shù)學(xué)化活動(dòng)的重要基礎(chǔ)和保證有效教育的重要因素。比如,在探究加法等式2+3=5和3+2=5的結(jié)構(gòu)特點(diǎn)時(shí),在傳統(tǒng)教學(xué)中,教師往往直接告訴幼兒加法交換律,這符合數(shù)學(xué)術(shù)語(yǔ)的科學(xué)性教育,但是這種高結(jié)構(gòu)、高度模型化的抽象概念不是幼兒所能內(nèi)化或順應(yīng)的。在現(xiàn)實(shí)數(shù)學(xué)教育中,幼兒只要說(shuō)出或明白兩個(gè)等式的效果是一樣的,或者通過(guò)實(shí)物操作理解位置交換前后所發(fā)生的變化,或者會(huì)用手勢(shì)表示其意義即可。這就要求教師在為幼兒提供適當(dāng)?shù)闹Ъ芎?,把探索的平臺(tái)還給幼兒,因?yàn)闄M向數(shù)學(xué)化的目的是讓幼兒能從情境中探索出屬于自己經(jīng)驗(yàn)層面的數(shù)學(xué)模型。

        4.追求幼兒數(shù)學(xué)教育的再創(chuàng)造

        弗賴登塔爾認(rèn)為,如果給予一定的指導(dǎo),每個(gè)普通的孩子也許都有能力再創(chuàng)造出他在將來(lái)的生活中所需要的那些數(shù)學(xué),有指導(dǎo)的再創(chuàng)造意味著在創(chuàng)造的自由性和指導(dǎo)的約束性之間,在教的強(qiáng)迫性與學(xué)的自由性之間取得一個(gè)微妙的平衡?!?5〕也就是說(shuō),兒童得到自己的樂趣和滿足教師的要求之間達(dá)到一種微妙的平衡,兒童可以創(chuàng)造一些對(duì)他來(lái)說(shuō)是新的,而對(duì)教師卻是熟知的東西,這里的“創(chuàng)造”指的是主觀意義即從幼兒的角度出發(fā)的創(chuàng)造。

        “再創(chuàng)造”數(shù)學(xué)教育要求教師的指導(dǎo)方式更具有創(chuàng)造性。教師要樹立幼兒主體性的意識(shí),承認(rèn)幼兒具有探索發(fā)現(xiàn)的能力。教師要給幼兒提供激發(fā)主動(dòng)探索的材料,鼓勵(lì)幼兒進(jìn)行探索。教師要讓幼兒通過(guò)探索學(xué)具或材料來(lái)“創(chuàng)造”數(shù)量關(guān)系。通過(guò)探索活動(dòng)得到的數(shù)量關(guān)系不是從外界強(qiáng)加給幼兒的,而是幼兒從自身的體驗(yàn)中去認(rèn)知的。“再創(chuàng)造”數(shù)學(xué)教育突出了幼兒的主體性和主動(dòng)性,改變了教師講、幼兒聽的被動(dòng)式學(xué)習(xí),幼兒體驗(yàn)到“創(chuàng)造”學(xué)習(xí)的樂趣。如在計(jì)算物體個(gè)數(shù)守恒的活動(dòng)中,幼兒如何探索出計(jì)算桌面上5個(gè)物體的總數(shù)與幼兒自身計(jì)數(shù)的順序或與物體擺放的空間位置是無(wú)關(guān)的,這就成為幼兒的“創(chuàng)造”,對(duì)幼兒建立數(shù)量守恒具有重要意義?!霸賱?chuàng)造”數(shù)學(xué)教育的教學(xué)方法強(qiáng)調(diào)數(shù)學(xué)與現(xiàn)實(shí)的關(guān)系,強(qiáng)調(diào)從探索或操作活動(dòng)中去“創(chuàng)造”學(xué)習(xí),這對(duì)于打破數(shù)學(xué)的神秘感,使數(shù)學(xué)變得生動(dòng),由抽象變得具體,使幼兒加深對(duì)數(shù)概念的認(rèn)識(shí)和理解是相當(dāng)有用的。對(duì)于處在由直覺、表象思維水平向具體形象思維過(guò)渡的幼兒來(lái)說(shuō),“再創(chuàng)造”數(shù)學(xué)教育更適合他們心理發(fā)展的規(guī)律。

        幼兒園數(shù)學(xué)教育應(yīng)該尊重幼兒的數(shù)學(xué)現(xiàn)實(shí),為幼兒提供數(shù)學(xué)化教育途徑及方式,承認(rèn)幼兒的再創(chuàng)造能力,讓幼兒實(shí)現(xiàn)再創(chuàng)造,進(jìn)一步發(fā)展幼兒的數(shù)學(xué)現(xiàn)實(shí),提升幼兒的思維水平。弗賴登塔爾的這些數(shù)學(xué)教育思想對(duì)于促進(jìn)我國(guó)幼兒園數(shù)學(xué)教育改革,提高幼兒園數(shù)學(xué)教育質(zhì)量具有重要的價(jià)值。

        參考文獻(xiàn):

        〔1〕丁爾升.現(xiàn)代數(shù)學(xué)課程論〔M〕.南京:江蘇教育出版社,1997:332.

        〔2〕〔8〕〔10〕〔11〕唐瑞芬.數(shù)學(xué)教學(xué)理論選講〔M〕.上海:華東師范大學(xué)出版社,2001:17,28-29,39,23.

        〔3〕〔9〕〔12〕弗賴登塔爾.作為教育任務(wù)的數(shù)學(xué)〔M〕. 陳昌平,唐瑞芬,譯.上海:上海教育出版社,1995:3,103,2.

        〔4〕徐斌艷.“現(xiàn)實(shí)數(shù)學(xué)教育”中基于情境性問題的教學(xué)模式分析〔J〕.外國(guó)教育資料,2000,(4):28-33.

        〔5〕〔6〕〔14〕〔15〕弗賴登塔爾.數(shù)學(xué)教育再探:在中國(guó)的講學(xué)〔M〕.劉意竹,楊剛,等,譯.上海:上海教育出版社,1999:27,42,57,77.

        〔7〕劉祥偉.對(duì)弗賴登塔爾“數(shù)學(xué)化”的再認(rèn)識(shí)〔J〕.重慶師范學(xué)院學(xué)報(bào),2001,(2):82-85.

        〔13〕唐瑞芬.弗賴登塔爾關(guān)于數(shù)學(xué)教育的問答〔J〕.數(shù)學(xué)教學(xué),1988,(4):30-33.

        Inspirations of Freudenthal’s Math Education Thoughts for

        Preschool Math Education Reform

        Lin Peimiao

        (Governmental Organ Kindergarten of Foshan Shunde District in Guangdong Province, Foshan, 528300)

        【Abstract】Freudenthal’s math education thoughts are concentrated on three aspects: the realistic mathematics, mathematization and re-creation. This theory enlightens us that preschool math education should be based on the mathematic reality of preschool children, attach importance to children’s mathematization and pursue children’s re-creativity.

        【Keywords】realistic math; mathematization; re-creation

        国产无人区码一码二码三mba | 看黄网站在线| 久久精品国产乱子伦多人| 中文字幕日韩精品人妻久久久| 狂猛欧美激情性xxxx大豆行情| 国产精品自在线拍国产手机版| 欧美成人专区| 国产三级国产精品国产专区| 国产在视频线精品视频二代 | 一级内射免费观看视频| 少妇久久久久久被弄高潮| 国产欧美日韩精品a在线观看| 波多野结衣一区二区三区视频| 久久久亚洲一区二区三区| 国产日产欧产精品精品蜜芽| 国产成人无码一区二区在线观看| 日韩精品欧美激情亚洲综合| 青青草绿色华人播放在线视频| 好吊妞视频这里有精品| 欧美人与动牲交a欧美精品| 午夜国产精品久久久久| 蜜桃在线高清视频免费观看网址| 成人精品一区二区三区电影 | 插我一区二区在线观看| 久久福利青草精品免费| 日本一区二区三区四区在线看| 有坂深雪中文字幕亚洲中文| 人妻少妇精品无码专区动漫| 色999欧美日韩| 国产精品天堂在线观看| 一边做一边说国语对白| 国产精品视频一区二区噜噜| 福利片免费 亚洲| 亚洲高清国产一区二区| 免费观看又色又爽又湿的视频| 久久精品国产99精品国偷| 白丝美女扒开内露出内裤视频 | 日韩精品久久久肉伦网站| 亚洲AV日韩AV无码A一区| 日本国产精品高清在线| 伊人精品久久久久中文字幕|