朱旭生,李芳娥,俞銀晶
(華東交通大學(xué)基礎(chǔ)科學(xué)學(xué)院,江西南昌 330013)
關(guān)于三維可壓縮Euler方程組[1-2]研究成果已有很多,主要集中在各種形式的弱解以及經(jīng)典解的爆破[3-8],其結(jié)論是在某些指標(biāo)數(shù)據(jù)較大時(shí)經(jīng)典解必定在有限時(shí)間內(nèi)爆破;在有阻尼的情形下獲得小初值時(shí)的經(jīng)典解的整體存在性,例如Sideris TC研究了三維可壓縮歐拉方程組解的奇異性的形成,即在某些初始數(shù)據(jù)較大的情形下經(jīng)典解的爆破,以及王維克等在初始數(shù)據(jù)較小時(shí)得到了帶阻尼項(xiàng)的多維可壓縮歐拉方程組經(jīng)典解的整體存在性,并研究了解的點(diǎn)態(tài)估計(jì)等。本文繼續(xù)研究三維空間中等熵Euler方程組的初值問題,在Sideris TC研究了三維空間中可壓縮歐拉方程組經(jīng)典解爆破的基礎(chǔ)上,對(duì)條件進(jìn)行適當(dāng)?shù)恼{(diào)整,結(jié)合文獻(xiàn)[6-7],通過構(gòu)造泛函,證明其經(jīng)典解在有限時(shí)間內(nèi)必定爆破的結(jié)論。
結(jié)論及證明
考慮三維等熵可壓縮Euler方程組:
[1]柯朗,弗里德里克斯.超聲速流與沖擊波[M].李維新,等,譯.北京:科學(xué)出版社,1986.
[2]MAJDA A.Compressible fluid flow and systems of conservation laws in several space variables[M].New York:Springer-Verlag,1984.
[3]SIDERIS T C.Formation of singularities in three dimensional compressible fluids[J].Comm.Math.Phys.,1985,101(4):475-485.
[4]LIU T P.The development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations[J].J Differential Equations,1979,33(2):92-111.
[5]SIDERIS T C.The life span of smooth solutions to the three dimensional compressible Euler equations and the incompressible limit[J].Indiana Univ Math,1991,40(2):535-550.
[6]ALINHAC S.Blowup for nonlinear hyperbolic equations[M].Bostn,Birkhauser:1995:33-36.
[7]XIONGFENG YANG,WEIKE WANG.The suppressible property of the solution for three-dimensional Euler equations with damping[M].Nonlinear Analysis,2007,8(1):53-61.
[8]ZHU XUSHENG,WANG WEIKE.The regular solutions of the isentropic Euler equations with degenerate linear damping[J].Chin Ann Math,2005,26B(4):583-598.
[9]WANG WEIKE,YANG TONG.The pointwise estimates of solutionsfor Euler equationswith damping inMulti-Dimensions[J].Journal of Differential Equations,2001,173(2):410-450.
[10]SIDERIS T C,THOMASES B,WANG DEHUA.Long time behavior of solutions to the 3D compressible Euler equations with damping[J].Comm.Partial Diff.Eqns.,2003,28(3&4):795-816.