亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Dynamic Complexities in a Discrete Predator-prey System

        2010-01-13 03:48:04ZHANGLiminLILing
        關(guān)鍵詞:利用理論系統(tǒng)

        ZHANG Li-min,LI Ling

        (Dept. of Math& Finance-economics, Sichuan Univ. of Arts& Science, Dazhou Sichuan 635000, China)

        Dynamic Complexities in a Discrete Predator-prey System

        ZHANG Li-min,LI Ling

        (Dept. of Math& Finance-economics, Sichuan Univ. of Arts& Science, Dazhou Sichuan 635000, China)

        In this paper, the dynamic behavior of a discrete predator-prey system proposed in [2] is investigated for further study. Firstly, the conditions of existence for Hopf bifurcation are derived by using bifurcation theory. Secondly, the existence of chaotic behaviors in the sense of Marotto’s definition of chaos in certain conditions is proved. Finally, numerical simulations are conducted not only to verify the validity of the theoretical analysis but also reveal other complex dynamics behaviors such as period-doublings,period-halving bifurcations, attractor crises, quasi-periodicity, chaotic bands and periodic windows.

        Hopf bifurcation; Marotto’s chaos; numerical simulation

        1 Introduction

        About the discrete predator-prey models, one of the early works was done by Beddington et al.[1]. After that, many authors have investigated the discrete predator-prey systems[2-6,10-16]. One important reason is that some species have no overlap between successive generations, thus discrete-time models are more realistic than continuous-time models to study these species. Another reason is that people always study population change by one year (month, week, or day) in practice, thus, it is important and necessary to obtain discrete systems from continuous population dynamical models , by which one studies their dynamical properties[9]. Recently, Zhang[2]proposed the following discrete predator-prey system:

        where is the integral step size. The more meaning of system (1) can refer to the reference[2]cited therein. It is shown in [2] that the system generates a flip bifurcation under some conditions.

        In this paper, we continue to study system (1), to study its other dynamic behaviors, such as the existence of Hopf bifurcation and chaos. This paper is organized as follows. In the following section, we show that there exists Hopf bifurcation under some conditions. In Section 3, the existence of chaos in the sense of Marotto’s definition is proved. The numerical simulations are given in section 4.

        2 Hopf bifurcation analysis

        In this section, we establish conditions for the existence of Hopf bifurcation in system (1). Firstly, we introduce the following lemmas which are useful to establish our results

        3 Existence of Marotto’s chaos

        4 Numerical simulations

        [1] Beddington JR, Free CA, Lawton JH. Dynamic complexity in predatorprey models framed in difference equations [J]. Nature, 1975, 255: 58-60.

        [2] Zhang LM. Stability and bifurcation in a discrete predator-prey system with Leslie-Gower type [J]. Si Chuan University of Arts and Science Journal, 2010; 20 (2): 13-15.

        [3] Celik C, Duman O. Allee effect in a discrete-time predator-prey system [J].Chaos, Solitons & Fractals, 2009, 40 (4): 1956-1962.

        [4] Agiza HN, Elabbssy EM. Chaotic dynamics of a discrete prey-predator model with Holling type II [J]. Nonlinear Anal Real World Appl, 2009, 10:116-129.

        [5] Liu Xl, Xiao DM. Complex dynamic behaviors of a discrete-time predator-prey system [J]. Chaos. Solitons & Fractals, 2007, 32: 80-94.

        [6] Jing ZJ, Yang JP. Bifurcation and chaos in discrete-time predator-prey system [J]. Chaos, Solitons & Fractals , 2006, 27:259-277.

        [7] Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[M]. Berlin; Springer-Verlag, 1990.

        [8] Marotto Frederick R. Snap-back repellers imply chaos innR[J]. Math Anal Appl , 1978, 63: 199-223.

        [9] Zhang Y, Zhang QL, Zhao LC, Yang CY. Dynamical behavior and chaos control in a discrete function response model [J]. Chaos, Solitons &Fractals, 2007, 34: 1318-27.

        [10] Francisco JS. Self-limitation in a discrete predator prey model[J]. Math Comput Model, 2008, 48: 191-196.

        [11]Chen XX. Periodicity in a nonlinear discrete predator prey system with state dependent delays [J]. Nonlinear Anal Real World Appl, 2007, 8(2):435-446.

        [12] Yang X. Uniform persistence and periodic solutions for a discrete predator prey system with delays [J]. J Math Anal Appl, 2006, 316:161-177.

        [13] Fang N, Cheng X. Permanence of a discrete multispecies Lotka Volterra competition predator prey system with delays [J]. Nonlinear Anal Real World Appl, 2008, 9(5): 2185-2195.

        [14] Chen FD. Permanence and global attractivity of a discrete multispecies Lotka Volterra competition predator prey systems [J]. Appl Math Comput, 2006, 181: 3-12.

        [15] Xiao Y, Cao JD, Lin M. Discrete-time analogues of predator prey models with monotonic or nonmonotonic functional responses [J].Nonlinear Anal Real World Appl, 2007, 8(4): 1079-1095.

        [16] Huo HF, Li WT. Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model. Math Comput Model 2004, 40:261-269.

        O175.7

        A

        1009-5160(2010)03-0036-05

        一類離散捕食-被捕食系統(tǒng)的動(dòng)力學(xué)復(fù)雜性

        張莉敏,李 玲

        (四川文理學(xué)院 數(shù)學(xué)與財(cái)經(jīng)系,四川 達(dá)州 635000)

        本文對(duì)文獻(xiàn)[2]提出的一類離散捕食系統(tǒng)的動(dòng)力學(xué)行為進(jìn)行進(jìn)一步研究. 首先利用分支理論,探討了系統(tǒng)在一定條件下存在 Hopf分支;隨后證明了系統(tǒng)在一定條件下存在 Marotto’s 混沌吸引子;最后利用數(shù)值模擬,不但驗(yàn)證了理論分析的正確性而且還揭示了系統(tǒng)其它動(dòng)力學(xué)行為,例如:倍周期、到倍周期分岔,吸引子危機(jī),擬周期, 混沌帶和周期窗口.

        Hopf 分支;Marotto’s 混沌;數(shù)值模擬

        Biography:ZHANG Li-min (1982-), female, Lecturer, Research fields: Biological dynamics.

        Supported by the National Natural Science Foundation of China (No.30970305), the Sichuan Provincial Education Department Scientific Research Project (No.TER2009-14),the Sichuan Provincial Old Revolutionary Base Areas Foundation (No.SLQ2010C-17), and the Sichuan University of Arts and Science Natural Scientific Research Project (No. 2009B07Z).

        猜你喜歡
        利用理論系統(tǒng)
        Smartflower POP 一體式光伏系統(tǒng)
        利用min{a,b}的積分表示解決一類絕對(duì)值不等式
        堅(jiān)持理論創(chuàng)新
        神秘的混沌理論
        理論創(chuàng)新 引領(lǐng)百年
        WJ-700無人機(jī)系統(tǒng)
        ZC系列無人機(jī)遙感系統(tǒng)
        北京測繪(2020年12期)2020-12-29 01:33:58
        相關(guān)于撓理論的Baer模
        利用一半進(jìn)行移多補(bǔ)少
        利用數(shù)的分解來思考
        免费无遮挡禁18污污网站| 欧美日韩另类视频| 亚洲国产精品久久久性色av| 久久蜜桃一区二区三区| 视频一区二区三区国产| 夜夜高潮夜夜爽免费观看| 国产熟妇与子伦hd| 国产乱子伦一区二区三区| 9久9久女女热精品视频免费观看 | 极品粉嫩小泬无遮挡20p| 国产爆乳乱码女大生Av| 99精品又硬又爽又粗少妇毛片 | 青青青视频手机在线观看| 国产精品国产三级国产密月| 大肉大捧一进一出好爽视频| 日韩高清毛片| 中文字幕天天躁日日躁狠狠| 日韩黄色大片免费网站| 国产老熟女精品一区二区| 国产狂喷潮在线观看| 色狠狠av老熟女| 亚洲专区一区二区在线观看 | 免费在线观看播放黄片视频| 亚洲一区二区三区播放| a观看v视频网站入口免费| 国产美女被遭强高潮露开双腿| 中文字幕日韩精品永久在线| 亚洲天堂av三区四区不卡| 无码国产精品一区二区免费模式| 日本丰满妇人成熟免费中文字幕| 北岛玲精品一区二区三区| 亚洲国产精品情侣视频| 少妇仑乱a毛片| 久久狠狠高潮亚洲精品暴力打 | 免费网站看av片| 久久精品人人做人人爽| 真人在线射美女视频在线观看| 亚洲av无一区二区三区综合| 亚洲av成人片色在线观看高潮| 中文乱码人妻系列一区二区| 蜜桃伦理一区二区三区|