亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        勾股定理典型題舉例

        2008-10-15 10:53:38朱元生

        朱元生

        勾股定理及其逆定理是初中數(shù)學(xué)中極為重要的定理,揭示了直角三角形三邊之間的數(shù)量關(guān)系,也給出了直角三角形的判別方法,有著十分廣泛的應(yīng)用.現(xiàn)就其在解題中的常見應(yīng)用舉例如下.

        例1如圖1,已知在△ABC中,AB=5,AC=13,BC邊上的中線AD=6,試求BC的長.

        解析:延長AD到E,使DE=AD,連接BE,如圖2,則AE=2AD=12.由SAS易得到 △DBE≌△DCA.

        所以BE=AC=13.在△ABE中,AB=5,AE=12,BE=13,由 52+122=132,即AB2+AE2=BE2,根據(jù)勾股定理的逆定理知△ABE為直角三角形,∠BAE=90°.在Rt△ABD中,BD===.所以BC=2BD=2.

        想一想:三角形中若給出中線,常設(shè)法將中線延長一倍,構(gòu)造全等三角形.同時,這樣做也可把分散的條件集中在一個三角形中.

        例2如圖3,四邊形ABCD中,已知AB⊥BC,AB=BC=4,AD=2,CD=6,試求∠BAD的大小.

        解析:連接AC,如圖4.因為AB⊥BC,AB=BC,所以∠BAC=45°.在Rt△ABC中,由勾股定理得到AC2=32.在△ACD中,AD=2,CD=6,AC2=32,由AD2+AC2=22+32=36=CD2,根據(jù)勾股定理的逆定理,可知△ACD為直角三角形,∠DAC=90°.所以∠BAD=∠BAC +∠DAC =45°+90°=135°.

        想一想:對那些僅給出邊長的題目,往往需要利用勾股定理的逆定理判斷出一些直角.

        例3如圖5,在△ABC中,AB=15,AC=13,D為邊BC上一點,且AD=12,BD=9.試求△ABC的面積.

        解析:在△ABD中,AB=15,BD=9,AD=12,由92+122=152,即BD2+AD2=AB2,根據(jù)勾股定理的逆定理知△ABD為直角三角形.則△ACD也為直角三角形.在Rt△ACD中,CD===5,所以S△ABC=(BD+CD)·AD=84.

        想一想:若去掉“如圖5”,將“D為邊BC上一點”改為“D為直線BC上一點”,則△ABC的面積又有何變化?有沒有鈍角三角形的情況?

        例4直角三角形的一條直角邊長為7,另兩邊長均為自然數(shù),則此三角形周長是().

        A. 49B. 50C. 56D. 不確定

        解析:直角三角形的三邊長應(yīng)滿足勾股定理,而題設(shè)條件中僅知一條邊的長,這給解題帶來了一定的困難.但由于另兩條邊既滿足勾股定理,又均為自然數(shù),故可以構(gòu)造不定方程,求出直角三角形另外兩邊的長,三角形的周長也就可以求出了.

        設(shè)直角三角形的斜邊長為x,另一條直角邊長為y,則x2-y2=72,即(x+y)(x-y)=49.由x+y>x-y,又x+y、x-y都為自然數(shù),由(x+y)(x-y)=49×1,得到x+y=49,x-y=1.解得x=25,y=24.

        所以三角形三邊長分別為7、24、25,則三角形的周長為56,故應(yīng)選C.

        想一想:當題目中出現(xiàn)不定方程時,常常要將方程兩邊分解因式和分解因數(shù),得出有關(guān)的方程組.分解因式后,要注意分析各個因式的大小關(guān)系,以簡化判斷過程.

        例5如圖6,在△ABC中,AD是高,且AD2=BD·CD,試判斷△ABC的形狀.

        解析:在△ABC中,AD是高,所以AB2=BD2+AD2,AC2=AD2+CD2,則AB2+AC2=BD2+2AD2+CD2.而AD2=BD·CD,所以AB2+AC2=BD2+2BD·CD+CD2=(BD+CD)2=BC2.

        根據(jù)勾股定理的逆定理可知,△ABC為直角三角形.

        想一想:本題還可通過把乘積BD·CD化為“和”的形式來解.BD·CD=[(BD+CD)2-BD2-CD2]=(BC2-BD2-CD2).同學(xué)們不妨試試.

        例6如圖7,在正方形ABCD中,E為邊AB的中點,AF∶FD=1∶3,求證:CE⊥EF.

        解析:連接FC,如圖8.設(shè)AF=a,則FD=3a,AE=EB=(a+3a)=2a,BC=CD=4a.在Rt△AEF,Rt△BCE,Rt△CDF中:

        EF2=AE2+AF2=(2a)2+a2=5a2;EC2=BE2+BC2=(2a)2+(4a)2=20a2;CF2=FD2+CD2=(3a)2+(4a)2=25a2.由5a2+20a2=25a2,即 EF2+EC2=CF2,根據(jù)勾股定理的逆定理,可得△CEF為直角三角形,∠CEF=90°,所以CE⊥EF.

        想一想:證明兩線垂直,首先要想到利用勾股定理逆定理構(gòu)造直角三角形.本題也可以延長FE與CB,使它們交于G.則△AEF≌△BEG(ASA).BG=AF.可計算出EG.在△EGC中利用勾股定理逆定理證出EG⊥CE.

        例7如圖9,已知△ABC為等腰直角三角形,D為斜邊BC上一點.求證:BD2+DC2=2AD2.

        解析:要證明的式子與勾股定理相似,可考慮將其變形為BD2+DC2=(AD)2,由此可聯(lián)想到以BD、DC、AD為邊構(gòu)造一個直角三角形.過點C作CE⊥BC,并截取CE=BD.連接AE、DE,如圖10,則∠ACE=∠ABD=45°.又AB=AC,BD=CE,所以△ABD≌△ACE,從而∠BAD=∠CAE,AD=AE,則∠DAE=∠DAC+∠CAE=∠DAC+∠BAD=∠BAC=90°.所以△ADE是等腰直角三角形,則DE2=2AD2.

        在Rt△CDE中,CE2+DC2=DE2,而CE=BD,DE2=2AD2,所以BD2+DC2=2AD2.

        想一想:本題也可以這樣想,把△ABD繞A點逆時針方向旋轉(zhuǎn)90°到△ACE.本題還有一個更簡單的解法:過A點作AF⊥BC于F,設(shè)AF=x,DF=y,則BF=CF=x,BD2=(x-y)2,DC2=(x+y)2,AD2=x2+y2.

        下面有幾道練習題,同學(xué)們不妨試一試:

        1. 如圖11,在△ABC中,∠C=135°,a=,b=2,求c.

        2. 如圖12,點P是等邊△ABC內(nèi)一點,且PA=3,PB=4,PC=5,求∠APB.

        3. 如圖13,四邊形ABCD中,已知AB⊥BC,AB=3,BC=4,CD=12,DA=13.求四邊形ABCD的面積.

        4. 在△ABC中,BC=2n+1,AC=2n2+2n,AB=2n2+2n+1,n為正數(shù),試判斷△ABC的形狀.

        注:本文中所涉及到的圖表、注解、公式等內(nèi)容請以PDF格式閱讀原文

        久久久精品欧美一区二区免费| 亚洲无线码1区| 亚洲精品一区二区视频| 美女扒开腿露内裤免费看| 天天摸夜夜摸摸到高潮| 中文字幕人妻中文av不卡专区| 97超级碰碰碰久久久观看| 亚洲成熟中老妇女视频| 中文字幕午夜精品久久久| 亚洲色中文字幕无码av| 少妇高潮惨叫久久久久久| 国产真人无遮挡免费视频| 最新国产av网址大全| 粉嫩国产av一区二区三区| 极品老师腿张开粉嫩小泬| 亚洲中文字幕在线第二页 | 国产真实乱对白在线观看| 日韩精品成人一区二区三区久久久| 亚洲中文av中文字幕艳妇| 国产乱子伦农村xxxx| 国产成人综合久久精品免费 | 亚洲gv白嫩小受在线观看| 亚洲红杏AV无码专区首页| 日本一二三四区在线观看| 99久久精品无码一区二区毛片| 久久精品人妻无码一区二区三区| AV有码在线免费看| 日韩精品av在线一区二区| 久久精品国产亚洲av麻豆会员| 欧美人牲交| 中国丰满大乳乳液| 九九99国产精品视频| 人妻少妇中文字幕久久hd高清| 亚洲av成人片无码网站| 四虎影视在线影院在线观看| 亚洲精品免费专区| 一本久久a久久精品综合| 激情人妻另类人妻伦| 国产精品无码一区二区在线看| 无码国产精品一区二区免费16| 国色天香精品亚洲精品|