唐志勇,何 芳,部麗娟,谷鐵安,楊大威,傅迎春,謝青季,姚守拙
(湖南師范大學(xué)化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,湖南長(zhǎng)沙410081)
配位聚合物及其在分析傳感方面的應(yīng)用
唐志勇,何 芳,部麗娟,谷鐵安,楊大威,傅迎春,謝青季*,姚守拙
(湖南師范大學(xué)化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,湖南長(zhǎng)沙410081)
該文簡(jiǎn)要綜述了配位聚合物(即金屬有機(jī)框架)及其用于分析傳感的近期進(jìn)展,包括電分析、光分析和色譜分析等方面的應(yīng)用,引用文獻(xiàn)83篇。
配位聚合物;分析傳感應(yīng)用;綜述
配位聚合物(Coordination Polymer)指具有結(jié)構(gòu)重復(fù)單元、含有金屬離子配位鍵的聚合物,主要指金屬中心離子與有機(jī)配體通過(guò)自組裝而形成的具有周期性網(wǎng)絡(luò)結(jié)構(gòu)的金屬有機(jī)骨架材料[1],有時(shí)也叫金屬有機(jī)框架 (metal organic frameworks,MOFs)、多孔配位網(wǎng)絡(luò)結(jié)構(gòu)(porous coordination networks,PCNs)、雜化有機(jī)-無(wú)機(jī)材料(hybrid organic-inorganic materials,HOIMs)、或者金屬有機(jī)聚合物 (metal-organic polymers,MOPs)。與通過(guò)共價(jià)鍵形成的常規(guī)聚合物不同,配位聚合物的形成主要是通過(guò)金屬離子與有機(jī)配體的配位作用,也涉及到氫鍵、靜電作用、范德華力、π-π堆積作用等分子間弱相互作用力。配位聚合物一詞最早由Bailer在上世紀(jì)60年代提出[2~3],近年來(lái)發(fā)展迅速[4]。在ISI Web of Science中,分別以coordination polymers和metal organic frameworks為主題,搜出近十年來(lái)出版的論文數(shù),發(fā)現(xiàn)該領(lǐng)域的論文數(shù)量呈逐年增加趨勢(shì)(圖1)。
因其具有獨(dú)特的結(jié)構(gòu)和性質(zhì),配位聚合物可用于載藥和給藥[5]、多相催化[6~7]、化學(xué)/生物傳感[8]及氣體儲(chǔ)存與分離[9~15]等諸多領(lǐng)域,受到了極大的關(guān)注。目前已有一些有關(guān)配位聚合物的綜述報(bào)道[16~26]。但是,配位聚合物的分析傳感應(yīng)用似乎是一個(gè)很新的研究領(lǐng)域,鮮見相關(guān)綜述。故此,該文主要綜述配位聚合物及其在分析傳感方面的應(yīng)用。
從配位聚合物主要組分上來(lái)看,構(gòu)筑配位聚合物的配體已經(jīng)由最初的含氮雜環(huán)配體拓展到目前研究比較多的含氧、含磷的多功能配體甚至混合配體[27~43],構(gòu)筑配位聚合物的金屬中心離子也已經(jīng)從常見的過(guò)渡金屬離子拓展到主族和鑭系元素[44~47]。同時(shí),配位聚合物也從單一的同金屬發(fā)展到含有兩種乃至兩種以上金屬離子的雜金屬配位聚合物[48~53]。
圖1 在ISI Web of Science中分別以“配位聚合物”和“配位聚合物和金屬有機(jī)框架”為主題搜索到的近十年發(fā)表的論文數(shù)量Fig.1 Number of publications of subjects of“coordination polymers”and“coordination polymers and metal organic frameworks”in recent 10 years(Source:ISI Web of Science,retrieved November 26,2012)
從配位聚合物的制備和構(gòu)筑方法來(lái)看,目前常用的合成方法有溶液法,擴(kuò)散法和水、溶劑熱法,簡(jiǎn)述如下。
溶液法[54~55]:反應(yīng)物溶解在溶劑中,在室溫或加熱回流條件下制得配位聚合物。該法操作簡(jiǎn)便,反應(yīng)較為快速。但要求金屬離子和配體可共溶于某一溶劑或混合溶劑,生成的副產(chǎn)物和同分異構(gòu)體也較多,難以控制。
擴(kuò)散法[56~57]:常用于培養(yǎng)配位聚合物單晶。主要有兩種,一是兩種反應(yīng)液分別置于反應(yīng)器的兩端,靜置,兩種反應(yīng)液通過(guò)擴(kuò)散相互反應(yīng)生成配位聚合物。二是在兩種反應(yīng)液中加入緩沖溶液進(jìn)行擴(kuò)散反應(yīng)。
水、溶劑熱法[58~60]:在水或有機(jī)溶劑存在的條件下,利用高溫高壓反應(yīng)合成配位聚合物及培養(yǎng)高質(zhì)量的晶體。在這種較為極端的反應(yīng)條件下,水或溶劑的粘度降低,擴(kuò)散過(guò)程加快,從而可獲得一些常規(guī)方法難以得到的配位聚合物。
1998年,Robson等將配位聚合物框架結(jié)構(gòu)分為三大類:一維鏈狀聚合物、二維層狀聚合物和三維網(wǎng)狀聚合物[61]。常見的配位聚合物結(jié)構(gòu)有:一維結(jié)構(gòu)有直線形、梯形、鐵軌形、書架形和雙繩鏈等;二維結(jié)構(gòu)有長(zhǎng)方形和方格形、磚墻形和蜂窩形結(jié)構(gòu)等;三維有金剛石結(jié)構(gòu)、八面體和類八面體結(jié)構(gòu),以及其它的三維結(jié)構(gòu)[62]。
配位聚合物具有獨(dú)特的孔洞、形狀和表面性質(zhì),如具有高孔隙率、大容量的孔體積、大的表面積、多種規(guī)格的孔徑和結(jié)構(gòu)豐富的拓?fù)浣Y(jié)構(gòu),在分子識(shí)別、氣體吸附和催化方面表現(xiàn)出誘人的發(fā)展前景。另外,以發(fā)光的有機(jī)物作為配體,或以鐵、鈷、鎳、猛等為金屬中心離子的配位聚合物,表現(xiàn)出獨(dú)特的光學(xué)、磁性性能[63~64]。同時(shí),選擇合適的金屬離子和配體,能改善配位聚合物的生物兼容性,有利于研發(fā)新型藥物載體[23,65~66]。
配位聚合物在電化學(xué)分析中的主要應(yīng)用可分為以下兩方面:基于目標(biāo)分子直接電化學(xué)的分析檢測(cè)和用作電分析中的載體材料。
2.1 基于目標(biāo)分子直接電化學(xué)的分析檢測(cè)
配位聚合物及其復(fù)合材料對(duì)某些電活性分子具有電催化活性,藉此可構(gòu)筑信號(hào)增強(qiáng)型電化學(xué)傳感器。
Hosseini等[67]基于3-(三甲氧基甲硅烷基)-1-丙硫醇在SiO2納米顆粒表面的水解,制得巰基化的SiO2納米顆粒SH-SiO2,再通過(guò)均苯三甲酸(BTC)、SH-SiO2以及Cu(NO3)2的混合反應(yīng),制得銅的金屬有機(jī)框架支撐的SH-SiO2納米顆粒SH-SiO2@Cu-MOF,然后再吸附固定納米金制得Au-SH-SiO2@Cu-MOF,如圖2。在pH=5.0的0.1 mol/L磷酸緩沖溶液中,相對(duì)于裸玻碳電極及修飾Cu-MOF或者SH-SiO2@Cu-MOF的玻碳電極,Au-SH-SiO2@Cu-MOF的玻碳電極對(duì)L-半胱氨酸表現(xiàn)出更強(qiáng)的電催化氧化活性。該法檢測(cè)L-半胱氨酸的線性范圍為0.02~300 μmol/L,檢測(cè)下限為0.008 μmol/L。該工作可能是MOF金屬納米顆粒電催化用于檢測(cè)生物小分子的第一例。同時(shí),這種傳感器對(duì)肼也具有很強(qiáng)的電催化活性[68],線性范圍為0.04~500 μmol/L,靈敏度為0.1 μA/(μmol/L),檢測(cè)下限為0.01 μmol/L。
圖2 石墨烯-金屬配位聚合物復(fù)合物納米片作為電化學(xué)生物傳感的增強(qiáng)材料[67]Fig.2 Graphene-metal coordination polymer composite nanosheet as enhanced material for electrochemical biosensing
Yang等[69]以結(jié)構(gòu)聚合物光纖(MPOFs)的氣孔為模板,用葡萄糖化學(xué)還原銀氨溶液,制得管狀A(yù)g-MPOF復(fù)合材料。相比于常用的銀電極,這種修飾了管狀銀納米晶結(jié)構(gòu)聚合物的光纖電極表現(xiàn)出更高的電化學(xué)活性。在NO3-或NO2-的溶液中,在-0.4~1.3 V區(qū)間的循環(huán)伏安圖只表現(xiàn)出一對(duì)氧化還原峰,因而可以用于NO3-或NO2-傳感。Kumar等[70]使用電化學(xué)方法合成Cu3(BTC)2,用兩塊銅電極在含BTC、支持電解質(zhì)和甲醇的混合溶液中恒電位電解,得到天藍(lán)色的Cu3(BTC)2。在-3.0~0V電勢(shì)范圍的循環(huán)伏安掃描過(guò)程中,修飾了Cu3(BTC)2的玻碳電極對(duì)CO2表現(xiàn)出電催化還原活性。Xu等[71]用溶劑熱法,通過(guò)5-(1H-間二氮茂-4-基甲基)氨基間苯二甲酸(H3L)、Cu(NO3)2或 AgNO3、 NaOH和H2O分別合成了{[Cu(HL)(H2O)]·H2O}n和[Ag(H2L)]n。修飾了這類配位聚合物的玻碳電極,對(duì)H2O2表現(xiàn)出優(yōu)良的電催化性能,可實(shí)現(xiàn)其高性能電化學(xué)傳感。
2.2 用作電分析的載體材料
配位聚合物具有多孔、內(nèi)表面積大等特點(diǎn),因而可用于固定酶和無(wú)機(jī)納米材料,實(shí)現(xiàn)一些小分子的電分析。
Fu等[72]發(fā)現(xiàn)在中性磷酸緩沖溶液中,NaAuCl4或Na2PtCl6可與2,5-二巰基-1,3,4-噻二唑(DMcT)形成金屬-有機(jī)配位聚合物(MOCPs)。采用紫外、紅外、拉曼、電化學(xué)和石英晶體微天平(QCM)等方法詳細(xì)研究了其配位聚合機(jī)制。以所制得的MOCPs固定葡萄糖氧化酶或酪氨酸酶用于葡萄糖或者酚類化合物的安培生物傳感 (圖3),分析性能優(yōu)異。例如,采用NaAuCl4與DMcT形成的配位聚合物固定酪氨酸酶,對(duì)氫醌安培傳感的線性范圍為0.025 nmol/L~1.09 μmol/L,檢測(cè)下限為15 nmol/L。因?yàn)镸OCPs具有多孔結(jié)構(gòu)和強(qiáng)吸附能力,用于酶的固定具有酶固定量大、酶活性好、酶膜傳質(zhì)效率高等優(yōu)勢(shì),可望在生物催化、生物分析和環(huán)境監(jiān)測(cè)等領(lǐng)域獲得應(yīng)用。
圖3 基于金屬有機(jī)配位聚合物和酶的生物復(fù)合材料的生物傳感[72]Fig.3 Illustration of the preparation of the MOCPs-enzyme biocomposites-based biosensor and the biosensing mechanism
Guo等[73]用聚乙烯吡咯烷酮(PVP)、氧化石墨烯(GO)和肼的氨溶液,通過(guò)劇烈攪拌制得PVP功能化的石墨烯納米片(PVP-GNs),然后將制得的功能化石墨烯分別與間苯二胺和H2PtCl6、間苯二胺、H2PtCl6和葡萄糖氧化酶(GOD)攪拌反應(yīng)得到金屬配位聚合物-石墨烯納米片 (MCPGHs)和修飾了葡萄糖氧化酶的金屬配位聚合物-石墨烯納米片(MCPGHs/GOD)。這種納米復(fù)合材料不但具有石墨烯的獨(dú)特性能(卓越的導(dǎo)電性和高的比表面積),而且具有了配位聚合物(MCPs)的獨(dú)特性質(zhì)(可調(diào)的孔徑和大的內(nèi)表面積),能夠高效固定葡萄糖氧化酶。與石墨烯相比,MCPGNs對(duì)H2O2的還原有更好的電催化活性。所制葡萄糖生物傳感器響應(yīng)葡萄糖的線性范圍為50 nmol/L~ 1 mmol/L,檢測(cè)下限為5 nmol/L。
特殊設(shè)計(jì)的配位聚合物可作為光分析的敏感材料,實(shí)現(xiàn)高性能的化學(xué)生物傳感分析。
Lan等[74]用Zn(NO3)2·6H2O、聯(lián)苯-4,4’-草酸(H2bpdc)和1,2-雙吡啶基乙烯(bpee)在二甲基甲酰胺中加熱制得無(wú)色塊狀的晶體 [Zn2(bpdc)2(bpee)]·2DMF(1),依次浸入甲醇和二氯甲烷進(jìn)行溶劑交換,真空去除溶劑得到[Zn2(bpdc)2(bpee)],具有熒光活性。氣相中,用這種微孔晶體金屬-有機(jī)材料通過(guò)氧化還原淬滅機(jī)理可痕量檢測(cè)爆炸物,如0.18 ppm的2,4-二硝基甲苯(DNT)和2.7 ppm的2,3-二甲基-2,3-二硝基丁烷(DMNB)。在10 s內(nèi),DNT的熒光淬滅效率為85%,DMNB的為84%,如圖4。在150℃加熱條件下,可恢復(fù)到初始的熒光強(qiáng)度。
An等[75]合成了一種新型多孔金屬-腺嘌呤材料[Zn8(腺嘌呤)4(聯(lián)苯雙酯)6O·2Me2NH2,8DMF, 11H2O](bio-MOF-1),通過(guò)將其多次在Ln(NO3)3(Ln=Tb,Sm,Eu或Yb)浸泡,陽(yáng)離子交換得到Ln3+@bio-MOF-1。Yb3+@bio-MOF-1固體可通過(guò)熒光淬滅來(lái)檢測(cè)氧氣,同時(shí),在氮?dú)庵校軌蚧謴?fù)熒光強(qiáng)度,分析性能優(yōu)異。Dang等[76]用水熱法,以四羧基配體tetrakis[4-(carboxyphenyl) oxamethyl]methane acid(H4L)和Eu(NO3)3為原料在二甲基甲酰胺(DMF)中合成了Eu-MOF。這種金屬有機(jī)框架可作為Fe3+的高敏高選擇性冷光傳感器,基于陽(yáng)離子交換引起Eu的冷光淬滅。Xie等[77]利用具有高磷光強(qiáng)度的銥苯基吡啶的衍生物合成的多孔磷光配位聚合物,作為化學(xué)傳感器傳感氧氣。氧氣能夠在這種配位聚的孔道快速擴(kuò)散,且能可逆地淬滅銥的配位聚合物的磷光。Doty等[78]通過(guò)Zn(NO3)2和4,4’-反-二苯乙烯二羧酸(H2SDC)分別以N,N-二甲基甲酰胺(DMF)或N, N-二乙基甲酰胺(DEF)為溶劑合成黃色針形晶體Zn3(SDC)3(DMF)2(MOF-S2)和無(wú)色棱柱形晶體Zn4O(SDC)3(MOF-S1)。通過(guò)X射線單晶衍射等一系列表征,發(fā)現(xiàn)MOF-S1為多孔、3D互相貫通拓?fù)浣Y(jié)構(gòu),MOF-S2為2D片狀納米多孔結(jié)構(gòu)。用3 MeV質(zhì)子引起的輻射發(fā)光,以及α粒子引起的閃爍來(lái)證實(shí)了電離輻射引起的發(fā)射與二苯乙烯的順~反異構(gòu)途徑,引起的量子產(chǎn)率增加,具有相似性質(zhì)。Feng等[79]以4,4’-反-二苯乙烯二羧酸 (H2SDC)為有機(jī)配體合成了兩種發(fā)光體的MOF[78],研究了光致發(fā)光性能。Guo等[80]用 Yb (NO3)3和聯(lián)苯-3,4’,5-三羧酸鹽(H3BPT)在DMF、乙醇和水混合溶劑中,得到近紅外冷光Yb(BPT) (H2O)·(DMF)1.5(H2O)1.25的MOF1材料。在溫度25~ 200℃下,MOF1失去溶劑分子變成 MOF1a。MOF1a對(duì)C2H2,CO2和CH4的吸附量不同,可以用來(lái)分離C2H2/CH4或CO2/CH4。同時(shí),其熒光光譜依賴溶劑分子,DMF和丙酮分別可以顯著增強(qiáng)或淬滅熒光,可用做小分子傳感器。
圖4 時(shí)間-熒光淬滅圖a)2,4-二硝基甲苯(DNT)和b)2,3-二甲基-2,3-二硝基丁烷(DMNB,激發(fā)波長(zhǎng)為320 nm)。插圖:暴露在分析物蒸氣前和10 s后的熒光光譜(左),以及三個(gè)連續(xù)淬滅/再生周期(右)[74]Fig.4 Time-dependent fluorescence quenching by a)2,4-dinitrotoluene(DNT)and b)2,3-dimethyl-2,3-dinitrobutane(DMNB;excitation wavelength=320 nm). Insets:the corresponding fluorescence spectra before and after exposure to the analyte vapors for 10 s(left)and three consecutive quench/regeneration cycles(right)
相比于常規(guī)的固定相材料,配位聚合物具有可控和可剪裁的孔隙結(jié)構(gòu),表現(xiàn)出更優(yōu)異的分離性能。尤其在分離小分子方面,具有典型微孔結(jié)構(gòu)的配位聚合物引人注目。
Chen等[81]用1,4-苯二甲酸、4,4’-聯(lián)吡啶和Zn(NO3)2在DMF和乙醇混合溶劑中,通過(guò)溶劑熱法制得MOF-508,可用來(lái)分離天然氣。用MOF-508填充的色譜柱,能分離正戊烷、正己烷、2-甲基丁烷、2-戊烷和2,2-二甲基丁烷。Jiang等[82]通過(guò)控制溶劑量或者反應(yīng)時(shí)間和溫度,用Cd(NO3)2、4,4’-二吡啶(bpy)和2-氨基-1,4-苯二羧酸(L)在二甲基甲酰胺(DMF)中,合成了三種不同通道大小(納米,微米和介孔)的金屬-有機(jī)框架同分異構(gòu)體Cd(L)(bpy),Cd(L)(bpy)·4H2O·2.5DMF和Cd(L)(bpy)·4.5H2O·3DMF。用單晶X射線衍射、熱重分析和元素分析進(jìn)行了表征。同時(shí),通過(guò)對(duì)溶劑或溫度的控制,實(shí)現(xiàn)了微孔到介孔MOFs的可逆轉(zhuǎn)化。微孔的MOF可用作冷光探針用于檢測(cè)小分子,介孔MOF可用做高效液相色譜的固定相,用于分離染料分子。此外,Yan等[83]填充有機(jī)金屬框架材料MIL-101到石英柱,通過(guò)高分辨氣相色譜分離了二甲苯同分異構(gòu)體和苯乙烷。
配位聚合物作為通過(guò)有機(jī)配體和金屬離子間的配位鍵形成的聚合物,具有高度規(guī)整的長(zhǎng)程網(wǎng)絡(luò)結(jié)構(gòu),屬于無(wú)機(jī)、有機(jī)、固態(tài)、材料化學(xué)的前沿研究領(lǐng)域。對(duì)配體和金屬中心離子的多種選擇和調(diào)控極大地豐富了配位聚合物材料的多樣性和功能性,為其理論研究和實(shí)際應(yīng)用提供了廣闊的發(fā)展空間。近年來(lái),配位聚合物作為分析傳感新材料的應(yīng)用已初見端倪,并呈現(xiàn)出良好的發(fā)展前景。設(shè)計(jì)和合成具有良好分析應(yīng)用性能的配位聚合物,提高其分子識(shí)別特性和信號(hào)轉(zhuǎn)換能力,將成為配位聚合物分析應(yīng)用的研究前沿和熱點(diǎn)。
[1]Champness N R,Schr?der M.Extended networks formed by coordination polymers in the solid state[J].Current Opinion in Solid State and Materials Science,1998,3(4): 419~424.
[2]Kitagawa S,Kitaura R,Noro S.Functional porous coordination polymers[J].Angewandte Chemie International Edition,2004,43(18):2 334~2 375.
[3]Janiak C.Engineering coordination polymers towards applications[J].Dalton Transactions,2003,(14):2 781~ 2 804.
[4]Li H,Eddaoudi M,O'Keeffe M,et al.Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J].Nature,1999,402(18):276~279.
[5]Taylor-Pashow K M L,Della Rocca J,Huxford R C,et al.Hybrid nanomaterials for biomedical applications[J]. Chemical Communications,2010,46(32):5 832~5 849.
[6]Zhang S,Liu Q,Shen M,et al.A facile route for preparing a mesoporous palladium coordination polymer as a recyclable heterogeneous catalyst[J].Dalton Transactions, 2012,41(15):4 692~4 698.
[7]Babu K F,Kulandainathan M A,Katsounaros I,et al. Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures[J].Electrochemistry Communications,2010,12(5):632~635.
[8]Allendorf M,Bauer C,Bhakta R,et al.Luminescent metal-organic frameworks[J].Chemical Society Reviews, 2009,38(5):1 330~1 352.
[9]Keskin S,Liu J,Rankin R B,et al.Progress,opportunities,and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials[J].Industrial&Engineering Chemistry Research,2008,48(5):2 355~2 371.
[10]Düren T,Bae Y S,Snurr R Q.Using molecular simulation to characterise metal-organic frameworks for adsorption applications[J].Chemical Society Reviews,2009,38(5): 1 237~1 247.
[11]Mendoza-Cortés J L,Goddard III W A.Recent advances on simulation and theory of hydrogen storage in metalorganic frameworks and covalent organic frameworks[J]. Chemical Society Reviews,2009,38(5):1 460~1 476.
[12]Babarao R,Jiang J.Molecular screening of metal-organic frameworks for CO2storage[J].Langmuir,2008,24(12): 6 270~6 278.
[13]Li J R,Kuppler R J,Zhou H C.Selective gas adsorption and separation in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1 477~1 504.
[14]Keskin S,Sholl D S.Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations[J].The Journal of Physical Chemistry C, 2007,111(38):14 055~14 059.
[15]Keskin S,Sholl D S.Assessment of a metal?organic framework membrane for gas separations using atomically detailed calculations:CO2,CH4,N2,H2mixtures in MOF-5[J].Industrial&Engineering Chemistry Research, 2008,48(2):914~922.
[16]Ruckenstein E,Hong L.Binding catalytic sites to the surface of porous polymers and some catalytic applications[J].Chemistry of Materials,1992,4(1):122~127.
[17]James S L.Metal-organic frameworks[J].Chemical Society Reviews,2003,32(5):276~288.
[18]Tranchemontagne D J,Mendoza-Cortés J L,O’Keeffe M, et al.Secondary building units,nets and bonding in the chemistry of metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1 257~1 283.
[19]Long J R,Yaghi O M.The pervasive chemistry of metalorganic frameworks[J].Chemical Society Reviews,2009, 38(5):1 213~1 214.
[20]Wang Z,Cohen S M.Postsynthetic modification of metal -organic frameworks[J].Chemical Society Reviews, 2009,38(5):1 315~1 329.
[21]Cohen S M.Modifying MOFs:New chemistry,new materials[J].Chemical Science,2010,1(1):32~36.
[22]Huxford R C,Della Rocca J,Lin W.Metal-organic frameworks as potential drug carriers[J].Current Opinion in Chemical Biology,2010,14(2):262~268.
[23]Keskin S,K?z?lel S.Biomedical applications of metal organic frameworks[J].Industrial and Engineering Chemistry Research,2011,50(4):1799.
[24]Zhang J P,Huang X C,Chen X M.Supramolecular isomerism in coordination polymers[J].Chemical Society Reviews,2009,38(8):2 385~2 396.
[25]Dhakshinamoorthy A,Garcia H.Catalysis by metal nanoparticles embedded on metal-organic frameworks [J].Chemical Society Reviews,2012.
[26]Czaja A U,Trukhan N,Müller U.Industrial applications of metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1 284~1 293.
[27]Fleischer E B,Shachter A M.Coordination oligomers and a coordination polymer of zinc tetraarylporphyrins[J]. Inorganic Chemistry,1991,30(19):3 763~3 769.
[28]Neels A,Neels B M,Stoeckli-Evans H,et al.Synthesisand X-ray powder structures of nickel(Ⅱ)and copper (Ⅱ)coordination polymers with 2,5-bis(2-pyridyl) pyrazine[J].Inorganic Chemistry,1997,36(16):3 402~3 409.
[29]Wang Q M,Guo G C,Mak T C W.A coordination polymer based on twofold interpenetrating three-dimensional four-connected nets of 42638 topology,[CuSCN(bpa)] [bpa=1,2-bis(4-pyridyl)ethane]?[J].Chemical Communications,1999,(18):1 849~1 850.
[30]Withersby M A,Blake A J,Champness N R,et al.Assembly of a three-dimensional polyknotted coordination polymer[J].Journal of the American Chemical Society, 2000,122(17):4 044~4 046.
[31]Chen Z F,Xiong R G,Zhang J,et al.The first chiral 2-D molecular triangular grid[J].Journal of the Chemical Society,Dalton Transactions,2000,22:4 010~4 012.
[32]Barnett S A,Blake A J,Champness N R,et al.Synthesis and structural characterisation of cadmium(Ⅱ)and zinc (Ⅱ)coordination polymers with an angular dipyridyl bridging ligand:parallel interpenetration of two-dimensional sheets with 4.82topology[J].Journal of the Chemical Society,Dalton Transactions:Inorganic Chemistry, 2001,5:567~573.
[33]Du M,Chen S T,Bu X H.{[Cd(bpo)(SCN)2]·CH3CN}n:A novel three-dimensional(3D)noninterpenetrated channel-like open framework with porous properties[J]. Crystal Growth&Design,2002,2(6):625~629.
[34]Paz F A A,Klinowski J.Supramolecular architecture of a novel salt of trimesic acid and 1,2-bis(4-pyridyl)ethane [J].CrystEngComm,2003,5(41):238~244.
[35]Al-Raqa S Y,Cook M J,Hughes D L.1,4-dibutoxy-2,3-di(4-pyridyl)-8,11,15,18,22,25-hexakis(hexyl)phthalocyaninato zinc,a self-assembled coordination polymer in the solid state[J].Chemical Communications,2003,1: 62~63.
[36]Siemeling U,Scheppelmann I,Neumann B,et al.Spontaneous chiral resolution of a coordination polymer with distorted helical structure consisting of achiral building blocks[J].Chemical Communications,2003,17:2 236~2 237.
[37]Qu Z R,Chen Z F,Zhang J,et al.The first highly stable homochiral olefin-copper(Ⅰ)2D coordination polymer grid based on quinine asa building block[J]. Organometallics,2003,22(14):2 814~2 816.
[38]Lee E W,Kim Y J,Jung D Y.A coordination polymer of cobalt(Ⅱ)-glutarate:Two-dimensional interlocking structure by dicarboxylate ligands with two different conformations[J].Inorganic Chemistry,2002,41(3):501~506.
[39]Kl?ui W,Mocigemba N,Weber-SchusterA,et al. [(C5H5)Co{P(O)(OH)2}3H]:A novelorganometallic trisphosphonic acid that dissolves glass to form a six-coordinate silicon complex[J].Chemistry-A European Journal,2002,8(10):2 335~2 340.
[40]Natarajan R,Savitha G,Dominiak P,et al.Corundum,diamond,and PtS metal-organic frameworks with a difference:Self-assembly of a unique pair of 3-connecting D2d-symmetric 3,3′,5,5′-tetrakis(4-pyridyl)bimesityl [J].Angewandte Chemie International Edition,2005,44 (14):2 115~2 119.
[41]Xue X,Wang X S,Xiong R G,et al.A cluster rearrangement of an open cubane(Cu4Br4)to a prismane(Cu6Br6)in a copper(Ⅰ)-olefin network[J].Angewandte Chemie, 2002,114(16):3 068~3 070.
[42]Yilmaz V T,Guney S,Andac O,et al.Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol:Synthesis,spectroscopic,thermal and structural characterization[J].Polyhedron,2002,21 (23):2 393~2 402.
[43]Kobayashi K,Sato A,Sakamoto S,et al.Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene[J]. Journal of the American Chemical Society,2003,125 (10):3 035~3 045.
[44]Murugavel R,Baheti K,Anantharaman G.Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions:Synthesis,spectral studies,and single-crystal X-ray structures of calcium,strontium,and barium complexes of 2,2'-dithiobis(benzoic acid)[J].Inorganic Chemistry,2001,40(27):6 870~6 878.
[45]Ren Y P,Long L S,Mao B W,et al.Nanoporous lanthanide-copper(Ⅱ)coordination polymers:Synthesesand crystal structures of[{M2(Cu3(iminodiacetate)6)}·8H2O]n(M=La,Nd,Eu)[J].Angewandte Chemie,2003,115(5): 550~553.
[46]Paz F A A,Klinowski J.Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium-organic framework[J].Chemical Communications,2003,13: 1 484~1 485.
[47]Liu C B,Yu M X,Zheng X J,et al.Structural change of supramolecular coordination polymers of itaconic acid and 1,10-phenanthroline along lanthanide series[J]. Inorganica Chimica Acta,2005,358(9):2 687~2 696.
[48]Kou H Z,Zhou B C,Gao S,et al.A 2D cyano-and ox-amidato-bridged heterotrimetallic CrⅢ-CuⅡ-GdⅢcomplex[J].Angewandte Chemie International Edition, 2003,42(28):3 288~3 291.
[49]Cai Y P,Su C Y,Li G B,et al.Syntheses and characterizations of two lanthanide(Ⅲ)-copper(Ⅱ)coordination polymers constructed by pyridine-2,6-dicarboxylic acid[J].Inorganica Chimica Acta,2005,358(4):1 298~1 304.
[50]Calvez G,Bernot K,Guillou O,et al.Sterically-induced synthesis of 3d-4f one-dimensional compounds:A new route towards 3d-4f single chain magnets[J].Inorganica Chimica Acta,2008,361(14):3 997~4 003.
[51]Ma J,Huang X,Song Y,et al.From metalloligand to interpenetrating channels:Synthesis,characterization,and properties of a 2p-3d-4f heterometallic coordination polymer{[Na5Cu8Sm4(NTA)8(ClO4)8(H2O)22]·ClO4·8H2O}n[J].Inorganic Chemistry,2009,48(14):6 326~6 328.
[52]Cai Y P,Zhou X X,Zhou Z Y,et al.Single-crystal-tosingle-crystal transformation in a one-dimensional Ag-Eu helical system[J].Inorganic Chemistry,2009,48(14): 6 341~6 343.
[53]Gheorghe R,Andruh M,Costes J P,et al.A rational synthetic route leading to 3d-3d′-4f heterospin systems: Self-assembly processes involving heterobinuclear 3d-4f complexes and hexacyanometallates[J].Chemical Communications,2003,22:2 778~2 779.
[54]Shekhah O,Liu J,Fischer R,et al.MOF thin films:Existing and future applications[J].Chemical Society Reviews,2011,40(2):1 081~1 106.
[55]Aoyagi M,Biradha K,Fujita M.Quantitative formation of coordination nanotubes templated by rodlike guests[J]. Journal of the American Chemical Society,1999,121 (32):7 457~7 458.
[56]Hong X L,Li Y Z,Hu H,et al.Synthesis,structure,luminescence,and water induced reversible crystal-toamorphous transformation properties of lanthanide(Ⅲ) benzene-1,4-dioxylacetates with a three-dimensional framework[J].Crystal Growth & Design,2006,6(6): 1 221~1 226.
[57]Zheng S L,Tong M L,Song-De Tan,et al.Syntheses, structures,and properties of three novel coordination polymers of silver(Ⅰ)aromatic carboxylates with hexamethylenetetramine exhibiting unique metal-π interaction [J].Organometallics,2001,20(25):5 319~5 325.
[58]Lu J Y,Babb A M.A simultaneous reduction,substitution,and self-assembly reaction under hydrothermal conditions afforded the first diiodopyridine copper(Ⅰ) coordination polymer[J].Inorganic Chemistry,2002,41 (6):1 339~1 341.
[59]Hu X X,Xu J Q,Cheng P,et al.A new route for preparing coordination polymers from hydrothermal reactions involving in situ ligand synthesis[J].Inorganic Chemistry,2004,43(7):2 261~2 266.
[60]劉冰.界面組裝配位聚合物納米結(jié)構(gòu)材料[D].上海:復(fù)旦大學(xué)博士論文,2008.
[61]王宇婷.柔性含芳環(huán)梭酸構(gòu)筑的配位聚合物的研究[D].鄭州:鄭州大學(xué)博士論文,2007.
[62]馬景新.多羧酸配體金屬配位聚合物的設(shè)計(jì)、合成、結(jié)構(gòu)及性質(zhì)的研究[D].蘭州:蘭州大學(xué)博士論文,2009.
[63]Falcaro P,Lapierre F,Marmiroli B,et al.Positioning an individual metal organic framework particle using a magnetic field[J].Journal of Materials Chemistry C,2013.
[64]Zeng M H,Feng X L,Zhang W X,et al.A robust microporous 3D cobalt(Ⅱ)coordination polymer with new magnetically frustrated 2D lattices:Single-crystal transformation and guest modulation of cooperative magnetic properties[J].Dalton Transactions,2006,44:5 294~5 303.
[65]Horcajada P,Serre C,McKinlay A C,et al.Biomedical applications of metal-organic frameworks[J].Metalorganic frameworks:Applications from catalysis to gas storage,2011,213~250.
[66]McKinlay A C,Morris R E,Horcajada P,et al.BioMOFs: Metal-organic frameworks for biological and medical applications[J].Angewandte Chemie International Edition,2010,49(36):6 260~6 266.
[67]Hosseini H,Ahmar H,Dehghani A,et al.A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine[J].Biosensors and Bioelectronics,2012.
[68]Hosseini H,Ahmar H,Dehghani A,et al.Au-SH-SiO2nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF)as a sensor for electrocatalytic oxidation and determination of hydrazine[J].Electrochimica Acta,2012.
[69]Yang X,Wang L.Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing[J].Optics Communications,2007,280(2): 368~373.
[70]Senthil Kumar R,Senthil Kumar S,Anbu Kulandainathan M.Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst[J].Electrochemistry Communications, 2012.
[71]Xu J,Su Z,Chen M S,et al.New metal complexes with 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid:Syntheses,structures,electrochemistry and electrocatalysis [J].Inorganica Chimica Acta,2009,362(11):4 002~ 4 008.
[72]Fu Y,Li P,Bu L,et al.Exploiting Metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing [J].Analytical Chemistry,2011,83(17):6 511~6 517.
[73]Guo Y,Han Y,Shuang S,et al.Rational synthesis of graphene -metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing[J].J.Mater.Chem.,2012.
[74]Lan A,Li K,Wu H,et al.A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives[J].Angewandte Chemie International Edition,2009,48(13):2 334~2 338.
[75]An J,Shade C M,Chengelis-Czegan D A,et al.Zincadeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations[J].Journal of the American Chemical Society,2011,133(5):1 220~1 223.
[76]Sun Z,Dang S.A layer-structured Eu-MOF as highly selective fluorescent probe for Fe3+detection through cation-exchange approach[J].Journal of Materials Chemistry,2012.
[77]Xie Z,Ma L,deKrafft K E,et al.Porous phosphorescent coordination polymers for oxygen sensing[J].Journal of the American Chemical Society,2009,132(3):922~923.
[78]Doty F,Bauer C,Skulan A,et al.Scintillating metal-organic frameworks:A new class of radiation detection materials[J].Advanced Materials,2009,21(1):95~101.
[79]Feng P L,Branson J V,Hattar K,et al.Designing metalorganic frameworks for radiation detection[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment,2011,652(1):295~298.
[80]Guo Z,Xu H,Su S,et al.A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules[J].Chemical Communications,2011, 47(19):5 551~5 553.
[81]Chen B,Liang C,Yang J,et al.A microporous metal-organic framework for gas-chromatographic separation of alkanes[J].Angewandte Chemie,2006,118(9):1 418 ~1 421.
[82]Jiang H L,Tatsu Y,Lu Z H,et al.Non-,micro-,and mesoporous metal-organic framework isomers:Reversible transformation,fluorescence sensing,and large molecule separation[J].Journal of the American Chemical Society,2010,132(16):5 586~5 587.
[83]Gu Z Y,Yan X P.Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomersand ethylbenzene[J].Angewandte Chemie International Edition,2010,49(8):1 477~1 480.
Coordination polymers for analysis and sensing applications
Tang Zhi-yong,He Fang,Bu Li-juan,Gu Tie-an,Yang Da-wei,Fu Ying-chun,Xie Qing-ji*,Yao Shou-zhuo
(Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research(Ministry of Education),College of Chemistry and Chemical Engineering,Hunan Normal University,Changsha 410081,China)
In this article,we briefly review the recent research progress of coordination polymers(i.e.metal organic frameworks),involving their applications in electroanalysis,optical analysis,and chromatographic analysis,with 83 references cited.
coordination polymers;analysis and sensing applications;review
國(guó)家自然科學(xué)基金(21075036,21175042,21105026)
*通訊聯(lián)系人,E-mail:xieqj123@yahoo.com.cn