亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于響應(yīng)面法的陽(yáng)離子滌綸混紡織物清潔染色工藝

        2025-04-29 00:00:00周仕航陳楊軼王汝亞葉小柔
        現(xiàn)代紡織技術(shù) 2025年4期

        摘 要:陽(yáng)離子滌綸混紡織物在高端服裝領(lǐng)域具有廣泛的應(yīng)用潛力,但其染色過(guò)程中存在染料利用率低、水耗高的問(wèn)題,限制了其進(jìn)一步的推廣應(yīng)用。為探究陽(yáng)離子滌綸混紡織物在硅基非水介質(zhì)中的染色工藝條件,利用單因素實(shí)驗(yàn)及響應(yīng)面法對(duì)染料用量、十甲基環(huán)五硅氧烷(D5)用量、染色時(shí)間等影響織物色深(K/S值)的工藝進(jìn)行優(yōu)化,并對(duì)染色織物的色牢度進(jìn)行評(píng)價(jià)。結(jié)果表明:在硅基非水介質(zhì)中,當(dāng)染色溫度108 ℃、染料用量1.6%(o.w.f)、D5用量93.5%(o.w.f)、染色時(shí)間60 min及pH為4~5時(shí),染色織物的K/S值達(dá)最高,且明顯高于傳統(tǒng)水浴染色;該染色過(guò)程節(jié)水93.5%,染色織物色牢度在4-5級(jí)以上。研究結(jié)果可為陽(yáng)離子滌綸混紡織物的清潔染色提供有益參考。

        關(guān)鍵詞:陽(yáng)離子滌綸混紡織物;K/S值;響應(yīng)面;清潔染色

        中圖分類號(hào):TQ611

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1009-265X(2025)04-0060-08

        收稿日期:20240604

        網(wǎng)絡(luò)出版日期:20240924

        基金項(xiàng)目:福建省自然科學(xué)基金項(xiàng)目(2022I0042)

        作者簡(jiǎn)介:周仕航(1999—),男,江西景德鎮(zhèn)人,碩士研究生,主要從事紡織品設(shè)計(jì)方面的研究

        通信作者:陳楊軼,E-mail:yy@qztc.edu.cn

        滌綸具有性能穩(wěn)定、強(qiáng)度高且易清洗等優(yōu)點(diǎn)[1-2,在紡織服裝領(lǐng)域占據(jù)了重要的地位,但其致密的結(jié)構(gòu)使其通常需要在高溫高壓或熱熔的條件下進(jìn)行染色,這不僅對(duì)設(shè)備和工藝要求高,還增加了能源消耗。另外,滌綸的親水性較差,染色均勻性往往不夠理想,并容易出現(xiàn)起球等問(wèn)題。采用陽(yáng)離子改性不僅可以有效解決上述問(wèn)題,且生產(chǎn)耗能低、成本低,應(yīng)用廣泛且需求量大,在紡織領(lǐng)域的開(kāi)發(fā)熱度很高[3-4。然而,在陽(yáng)離子滌綸染色過(guò)程中,染料分子結(jié)構(gòu)中的季銨鹽陽(yáng)離子部分具有堿性,在水溶液離解時(shí)會(huì)與酸性物質(zhì)結(jié)合成鹽,導(dǎo)致印染過(guò)程中能耗高、耗水大、效率低、pH不穩(wěn)定等[5-6。此外,各種添加劑的使用增加了后續(xù)織物清洗的難度,染色工藝繁瑣且不環(huán)保,限制了其進(jìn)一步工業(yè)化發(fā)展。因此,開(kāi)發(fā)綠色、環(huán)保的陽(yáng)離子滌綸混紡織物染色工藝成為印染企業(yè)一個(gè)非常重要的課題。

        近年來(lái),一種新型、環(huán)保的硅基染色介質(zhì),即十甲基環(huán)五硅氧烷(D5),進(jìn)入研究者們的視野[7。該染色介質(zhì)性能穩(wěn)定,無(wú)色、無(wú)毒,與水不相容,可作為傳熱介質(zhì)。目前D5已經(jīng)被證實(shí)可應(yīng)用于棉[8、羊毛9-10、滌綸11以及尼龍12等紡織品的染色,該體系染色樣品的染料吸收率、固色率和K/S值均高于水浴染色樣品13。因此,D5有望解決陽(yáng)離子滌綸混紡織物染色污水排放量大、利用率低的問(wèn)題,實(shí)現(xiàn)清潔染色[14-15。且可以提供更加均勻和穩(wěn)定的染色效果,降低染色成本。

        本文以D5為染色介質(zhì),先根據(jù)普拉克特-伯曼(PB)模型篩選出影響陽(yáng)離子滌綸混紡織物色深的3個(gè)顯著因素,再以這些顯著因素作為變量,K/S值作為響應(yīng)值,使用響應(yīng)曲面法(RSM)進(jìn)行陽(yáng)離子滌綸混紡織物染色工藝分析,建立陽(yáng)離子滌綸混紡織物工藝優(yōu)化模型,比較所得響應(yīng)面模型的差別,探討其最佳染色工藝。

        1 實(shí)驗(yàn)

        1.1 材料及儀器

        材料:滌綸/陽(yáng)離子滌綸(40/60)混紡織物(面密度為100 g/m2,晉江連續(xù)興紡織品貿(mào)易有限公司),陽(yáng)離子黃X-8GL(上虞佳英化工有限公司),冰乙酸(山東科源生化有限公司),滲透劑JFC-SF(山東優(yōu)素化工科技有限公司),十甲基環(huán)五硅氧烷(浙江綠宇紡織科技有限公司)。

        儀器:超聲波清洗器KQ3200B(昆山超聲儀器有限公司),紅外染色機(jī)HWX-24(泉州美邦儀器有限公司),Dataclor 800(美國(guó)Datacolor公司),Design Expert 13(美國(guó)Stat-Ease公司)。色牢度摩擦儀YG571-II(泉州美邦儀器有限公司),耐洗色牢度試驗(yàn)機(jī)SW-12B(泉州美邦儀器有限公司)。

        1.2 實(shí)驗(yàn)方法

        1.2.1 單因素實(shí)驗(yàn)

        陽(yáng)離子滌綸混紡織物的標(biāo)準(zhǔn)染色工藝曲線如圖1所示。將陽(yáng)離子染料溶于水中并調(diào)節(jié)至合適的pH,加入適量的D5,超聲攪拌后得到染色微乳液。染液升溫至40 ℃后加入陽(yáng)離子滌綸混紡織物,以2 ℃/min 的加熱速率升溫至設(shè)定溫度開(kāi)始染色。染色完畢,冷卻至室溫后水洗、烘干。染色處方:浴比1∶50,pH=4~5。選擇4個(gè)因素進(jìn)行單因素考察,分別設(shè)置染料用量(0.2%、0.4%、0.8%、1.4%和2.0%)、D5用量(90%、92%、94%、96%和98%)、染色時(shí)間(40、50、60、70 min和80 min)、染色溫度(80、90、100、110 ℃和120 ℃)。

        1.2.2 篩選實(shí)驗(yàn)設(shè)計(jì)

        通過(guò)單因素實(shí)驗(yàn),初步確定每個(gè)因素的高水平和低水平。PB模型設(shè)計(jì)因素水平及編碼見(jiàn)表1。在表1中的條件下進(jìn)行PB模型實(shí)驗(yàn),比較每個(gè)因素對(duì)整體實(shí)驗(yàn)的影響。

        1.2.3 RSM優(yōu)化

        使用RSM實(shí)驗(yàn)設(shè)計(jì)來(lái)確定響應(yīng)值(K/S值)與過(guò)程變量(每種染料PB模型篩選出來(lái)的因素)間的關(guān)系。完成實(shí)驗(yàn)后,通過(guò)數(shù)學(xué)建模和RSM計(jì)算出陽(yáng)離子滌綸混紡織物染色的最佳工藝,并對(duì)此進(jìn)行回歸方程分析。

        1.3 測(cè)試方法

        1.3.1 K/S值測(cè)試

        K/S值代表顏色深度,K/S值越大,織物顏色則越深16。采用Dataclor 800測(cè)配色儀測(cè)定染色織物的K/S值,每個(gè)樣品測(cè)試10次,取平均值,R為可見(jiàn)光的反射率:

        K/S=(1-R)2/2R

        1.3.2 色牢度測(cè)試

        根據(jù)GB/T 3920—2008《紡織品 色牢度試驗(yàn) 耐摩擦色牢度》測(cè)試其摩擦色牢度;按照GB/T 3921—2008《紡織品 色牢度試驗(yàn) 耐皂洗色牢度》對(duì)其耐皂洗色牢度進(jìn)行測(cè)試;按照GB/T 8427—2019《紡織品 色牢度試驗(yàn) 耐人造光色牢度:氙弧》測(cè)定耐日曬牢度。

        1.4 數(shù)據(jù)處理

        通過(guò)Design-Expert13軟件進(jìn)行試驗(yàn)設(shè)計(jì),對(duì)結(jié)果進(jìn)行二次多元回歸擬合和方差分析。所有實(shí)驗(yàn)至少重復(fù)3次。采用PB模型對(duì)單因素進(jìn)行分析,確定以P<0.05為顯著性差異。

        2 結(jié)果與分析

        2.1 單因素實(shí)驗(yàn)

        2.1.1 改變?nèi)玖嫌昧窟M(jìn)行無(wú)水染色

        測(cè)定染色混紡織物的K/S值,結(jié)果如圖2(a)所示。染料用量0.2%~1.4%(o.w.f)時(shí),隨著染料用量的逐漸升高,混紡織物的K/S值明顯增大。這是因?yàn)殡S著染料用量的增加,纖維表面和內(nèi)部能夠吸附更多的染料分子,從而提高了纖維對(duì)染料的吸收能力,表現(xiàn)為K/S值的上升。當(dāng)染料用量為2%(o.w.f)時(shí)纖維表面和內(nèi)部已達(dá)飽和狀態(tài),因此確定在單因素實(shí)驗(yàn)中選取最佳取值為1.4%(o.w.f)。

        2.1.2 改變D5用量進(jìn)行無(wú)水染色

        測(cè)定染色混紡織物的K/S值,結(jié)果如圖2(b)所示。當(dāng)D5用量為0時(shí),為傳統(tǒng)水浴染色,K/S值為2.2左右,當(dāng)D5用量90%~92%(o.w.f)時(shí),其K/S值迅速上升,上升幅度最大,94%之后慢慢趨于緩和。一方面主要是因?yàn)榭椢锝?jīng)過(guò)預(yù)處理,混紡織物有一定的帶液率入染,并且處在pH值相對(duì)穩(wěn)定,在與染液接觸時(shí),高濃度的染液能很快吸附在纖維外的水膜之中,并向纖維內(nèi)部擴(kuò)散,在pH、溫度的共同作用下上染纖維[17;另一方面是由于染料完全不溶于非水介質(zhì)染料表現(xiàn)出棄用介質(zhì)而傾向于吸附含水纖維的強(qiáng)烈傾向18,染色介質(zhì)D5作為陽(yáng)離子染料均勻分散的載體,使混紡織物與陽(yáng)離子染料均勻接觸,相比介質(zhì),染料在纖維上的分布率具有絕對(duì)優(yōu)勢(shì)。因此,在雙重作用下提升了D5用量對(duì)混紡織物K/S值的影響,具有良好的勻染性。因此確定在單因素實(shí)驗(yàn)中選取最佳取值為94%(o.w.f)。

        2.1.3 改變?nèi)旧珪r(shí)間進(jìn)行無(wú)水染色

        測(cè)定染色混紡織物的K/S值,結(jié)果如圖2(c)所示。染色時(shí)間染色溫度的K/S值都呈先上升后平行的趨勢(shì),由于在染色過(guò)程中,隨著時(shí)間的延長(zhǎng),纖維的上染速率基本恒定。在保證染料充分滲透并實(shí)現(xiàn)均勻染色的同時(shí),若染色時(shí)間過(guò)短,會(huì)導(dǎo)致染色效果不佳,因此確定在單因素實(shí)驗(yàn)中選取最佳確定染色時(shí)間為60 min。

        2.1.4 改變?nèi)旧珳囟冗M(jìn)行無(wú)水染色

        測(cè)定染色混紡織物的K/S值,由圖2(d)可知,隨著溫度的升高,染色織物的K/S值也隨之增加,當(dāng)溫度從80 ℃上升到110 ℃時(shí),K/S值由1.8增加到5.6左右,繼續(xù)升高溫度,K/S值變化不明顯。這是由于隨著染色溫度的持續(xù)上升,當(dāng)溫度提高后,纖維的內(nèi)部結(jié)構(gòu)變得松散,染料分子進(jìn)入纖維內(nèi)部,一旦達(dá)到染色的飽和狀態(tài),增加染色溫度對(duì)上染效果影響不大19。因此確定在單因素實(shí)驗(yàn)中選取最佳110 ℃為最佳。

        2.2 顯著性分析

        PB模型設(shè)計(jì)和結(jié)果見(jiàn)表2。對(duì)表2中陽(yáng)離子滌綸混紡織物的PB模型分別進(jìn)行顯著性實(shí)驗(yàn),以K/S值的擬合統(tǒng)計(jì)結(jié)果分見(jiàn)表3。以K/S值的模型的決定系數(shù)R2分別為93.96%,修正決定系數(shù)R2Adj與預(yù)測(cè)決定系數(shù)R2Pred之間的差值都小于0.2,表示二者在合理范圍內(nèi)接近。以K/S值的實(shí)驗(yàn)?zāi)P虵值分別為25.98,大于4,說(shuō)明干擾較小,實(shí)驗(yàn)結(jié)果可靠。因此,染料用量、D5用量、染色時(shí)間和染色溫度可作為PB篩選實(shí)驗(yàn)的響應(yīng)值。

        P值高于0.05的模型項(xiàng)被認(rèn)為是不顯著的,通過(guò)P值可看出:對(duì)陽(yáng)離子滌綸混紡織物染色色深影響最大的是染色溫度、其次是染料用量和D5用量,最后是染色時(shí)間。

        2.3 可靠性分析

        根據(jù)PB模型結(jié)果,選取對(duì)色深值影響顯著的3個(gè)因素,選擇染料用量(X1)、D5用量(X2)、染色溫度(X4)3個(gè)因素為自變量,響應(yīng)面模型的自變量,進(jìn)行Central Composite Design實(shí)驗(yàn)設(shè)計(jì),當(dāng)染料用量為2%(o.w.f)、D5用量為94%(o.w.f)、染色溫度為120℃,其K/S值達(dá)到最大值5.84。表4展示陽(yáng)離子滌綸混紡織物染色時(shí)實(shí)驗(yàn)及相應(yīng)值,其中以K/S值為相應(yīng)值的統(tǒng)計(jì)結(jié)果見(jiàn)表5。

        RSM模型(以K/S值為響應(yīng)值)的總體顯著性P值小0.001,考量3個(gè)因素的P值,染料用量、D5用量、染色時(shí)間的P值均小于0.001,為差異極其顯著,說(shuō)明該因素對(duì)K/S值實(shí)驗(yàn)結(jié)果有極其顯著影響;染料用量和D5用量的交互P值<0.05,則表明其差異顯著。其編碼因子回歸方程式為K/S=5.51+0.3238X1+0.1800X2+0.6438X4+0.1375X1X2+0.0100X1X4-0.0175X2X4-0.2580X12-0.0275X22-0.4900X42。校正系數(shù)R2、R2Adj和R2Pred分別為99.17%、98.11%和95.77%。模型的決定系數(shù)R2都接近1,說(shuō)明模型對(duì)響應(yīng)與各影響因素之間的關(guān)系擬合較好,實(shí)驗(yàn)?zāi)P偷腇值為93.04,說(shuō)明可信度高。

        2.4 響應(yīng)面分析

        圖3(a)為染料用量和D5用量的交互響應(yīng)面圖,從圖中可觀察到隨著染料用量的升高,K/S值呈上升趨勢(shì),但在1.4%~1.7%(o.w.f)左右時(shí)出現(xiàn)拐點(diǎn),這是因?yàn)槔w維上的染座供染料吸附基本飽和,染料上染率趨于基本恒定,隨著染料用量的增加,K/S值成接近線性關(guān)系。等高線的形狀也能反映交互作用的大小,若呈橢圓形,說(shuō)明兩因素的交互作用顯著。

        圖3(b)為染色溫度和染料用量的交互的響應(yīng)面圖,從圖中可觀察到隨著溫度的增加,K/S值上升幅度大,但在105 ℃左右出現(xiàn)拐點(diǎn),這是因?yàn)楸砻鳒囟忍岣吆?,纖維的內(nèi)部結(jié)構(gòu)變得松散,染料分子進(jìn)入纖維內(nèi)部的機(jī)會(huì)加大,纖維染色飽和度提高。適當(dāng)提高溫度可以增強(qiáng)染色的飽和值,但纖維中固定的極性染座數(shù)量限制了染色飽和度的提升,因此染色飽和度不會(huì)無(wú)限增加。

        圖3(c)為染色溫度和D5用量的交互響應(yīng)面圖,從圖中可觀察到隨著D5用量的升高,K/S值緩慢變化。綜合圖3不同因素之間的交互作用對(duì)K/S評(píng)分的三維響應(yīng)面,在這個(gè)三維響應(yīng)面圖中,響應(yīng)面的斜率反映了各因素對(duì)K/S值的影響程度。響應(yīng)面的陡峭程度越高,表示該因素對(duì)K/S值的影響越顯著;反之,陡峭程度越低,則表示其影響程度較小。如果等高線圖呈橢圓形,則表明因素之間的交互作用顯著,不明顯則反之20。如圖3(a)所示染料用量和D5用量交互時(shí),等高線比較陡峭,說(shuō)明這兩個(gè)因素組合參數(shù)變動(dòng)時(shí)對(duì)K/S值影響較大。但從圖3(b)和圖3(c)中可以看出當(dāng)兩個(gè)交互因素的參數(shù)改變時(shí),形成的響應(yīng)曲等高線較為平緩,說(shuō)明染色溫度和染料用量、染色溫度和D5用量的交互影響不顯著。綜合以上分析可以得出交互因素對(duì)K/S的影響大的是X1(染料用量)與X2(D5用量)之間相互影響顯著(P<0.05),X1X4與X2X4之間的交互作用不顯著,與方差顯示結(jié)果一致。

        2.5 染色最優(yōu)工藝和實(shí)驗(yàn)驗(yàn)證

        本文用Design Expert軟件的優(yōu)化功能預(yù)測(cè)了陽(yáng)離子滌綸混紡織物染色的最優(yōu)工藝條件,根據(jù)得到的數(shù)學(xué)模型計(jì)算出色深值最高時(shí)對(duì)應(yīng)的實(shí)驗(yàn)條件,并在RSM實(shí)驗(yàn)條件范圍內(nèi)取值。模型都有足夠的可靠性。預(yù)測(cè)陽(yáng)離子滌綸混紡織物染色最高K/S值為5.91,與之對(duì)應(yīng)的染色條件分別為:染色溫度108 ℃、染料用量為1.6%(o.w.f),D5用量為93.5%(o.w.f),染色時(shí)間60 min和pH=4~5。將計(jì)算出的最優(yōu)工藝條件進(jìn)行驗(yàn)證實(shí)驗(yàn),按此工藝進(jìn)行5次平行實(shí)驗(yàn)測(cè)得陽(yáng)離子滌綸混紡織物染色的K/S值為5.77,這意味著從RSM得出的模型可充分描述陽(yáng)離子滌綸混紡織物染色條件各影響因素與染色結(jié)果之間的關(guān)系。

        2.6 染色織物色牢度

        在最優(yōu)染色工藝染色溫度108 ℃、染料用量為1.6%(o.w.f),D5濃度93.5%(o.w.f),和pH=4~5的染色條件下染得陽(yáng)離子混紡織物及其色牢度等級(jí),如表6所示。結(jié)果表明,染色織物具有良好的耐皂洗、耐摩擦、耐日曬色牢度,均在4級(jí)以上。

        3 結(jié)論

        本文采用陽(yáng)離子滌綸混紡織物進(jìn)行清潔染色,使用PB模型篩選與RSM法結(jié)合對(duì)其染色工藝進(jìn)行優(yōu)化,主要結(jié)論如下:

        a)陽(yáng)離子染色的最優(yōu)工藝條件為染色溫度為108 ℃、染料用量為1.6%(o.w.f)、D5用量為93.5%(o.w.f)。

        b)通過(guò)優(yōu)化工藝條件,陽(yáng)離子滌綸染色織物的K/S值相較于傳統(tǒng)水浴染色明顯提升,且節(jié)水率達(dá)到93.5%,同時(shí)其色牢度在4-5級(jí)以上。

        c)通過(guò)清潔染色能夠?qū)崿F(xiàn)穩(wěn)定的染色效果,有助于降低染色成本,減少環(huán)境污染,實(shí)現(xiàn)生態(tài)染色的目標(biāo)。

        參考文獻(xiàn):

        [1]邵靈達(dá), 申曉, 金肖克, 等. 滌綸纖維表面復(fù)合改性對(duì)其親水性的影響[J]. 絲綢, 2020, 57(2): 19-24.

        SHAO Lingda, SHEN Xiao, JIN Xiaoke, et al. Effect of surface modification of polyester fiber on its properties[J]. Journal of Silk, 2020, 57 (2): 19-24.

        [2]鄧佳雯, 郭穎, 徐利云, 等. 低氣壓等離子體工藝參數(shù)對(duì)制備超疏水滌綸織物的影響[J]. 上海紡織科技, 2019, 47(10): 51-56.

        DENG Jiawen, GUO Ying, XU Liyun, et al. Preparation of super-hydrophobic polyster fabric by low pressure plasma[J]. Shanghai Textile Science amp;Technology, 2019, 47 (10): 51-56.

        [3]石明孝, 吳憶南, 李剛, 等. 第三單體SIPM對(duì)改性PET的熱性能及染色性的影響[J]. 合成纖維工業(yè), 1996, 19(5): 17-21.

        SHI Mingxiao, WU Yinan, LI Gang, et al. Influence of dimethyl-5-sulfoisophthalate as the third monomer on thermal property and dyeing ability of pet[J]. China Synthetic Fiber Industry, 1996, 19(5): 17-21.

        [4]張淑軍, 李剛, 張鴻, 等. 陽(yáng)離子染料可染改性滌綸及其面料的研究進(jìn)展[J]. 現(xiàn)代紡織技術(shù), 2021, 29(4): 115-120.

        ZHANG Shujun, LI Gang, ZHANG Hong, et al. Research progress of cationic dyeable modified polyester and its fabrics [J]. Advanced Textile Technology, 2021, 29 (4): 115-120.

        [5]王美佳, 楊愛(ài)民, 何金. 滌綸/改性滌綸混紡織物的異色花灰染色[J]. 印染, 2020, 46(3): 21-24.

        WANG Meijia, YANG Aimin, HE Jin. Dyeing process of polyester/modified polyester blends with heterochromatic effect[J]. China Dyeing amp; Finishing, 2020, 46(3): 21-24.

        [6]BUVANESWARI N, KANNAN C. Plant toxic and non-toxic nature of organic dyes through adsorption mechanism on cellulose surface[J]. Journal of Hazardous Materials, 2011, 189(1/2): 294-300.

        [7]李深正. 滌綸纖維以D5為介質(zhì)的分散染料非水染色研究[D]. 杭州: 浙江理工大學(xué), 2012.

        LI Shenzheng. Study on Nonaqueous Dyeing of Polyester Fiber with D5 As Medium[D]. Hangzhou: Zhejiang Sci-Tech University, 2012.

        [8]FU C, WANG J, SHAO J, et al. A non-aqueous dyeing process of reactive dye on cotton[J]. The Journal of the Textile Institute, 2015, 106(2): 152-161.

        [9]ALEBEID O K, PEI L, ZHOU W, et al. Sustainable wool fibers dyeing using henna extract in non-aqueous medium[J]. Environmental Chemistry Letters, 2020, 18(2): 489-494.

        [10]ALEBEID O K, PEI L, SLIMAN H, et al. Study the dyeing behavior of wool fabric using henna extract in decamethyl cyclopentasiloxane (D5) medium[J]. The Journal of the Textile Institute, 2021, 112(3): 358-362.

        [11]程文青. 硅基非水介質(zhì)中分散染料對(duì)滌綸纖維的上染特性研究[D]. 杭州: 浙江理工大學(xué), 2021.

        CHENG Wenqing. Study on the Dyeing Characteristics of Disperse Dyes on Polyester Fibers in Silicon-based Bon-aqueous Media [D]. Hangzhou: Zhejiang Sci-Tech University, 2021.

        [12]SALEEM M A, PEI L, SALEEM M F, et al. Sustainable dyeing of nylon fabric with acid dyes in decamethylcy-clopentasiloxane (D5) solvent for improving dye uptake and reducing raw material consumption[J]. Journal of Cleaner Production, 2021, 279: 123480.

        [13]陳靜如, 裴劉軍, 張紅娟, 等. 紡織品非水介質(zhì)染色技術(shù)的研究進(jìn)展[J]. 絲綢, 2021, 58(12): 54-62.

        CHEN Jingru, PEI Liujun, ZHANG Hongjuan, et al. Research progress of textile non-aqueous medium dyeing technology[J]. Journal of Silk, 2021, 58(12): 54-62.

        [14]黃昊, 任燕, 尚玉棟, 等. 節(jié)水染色和非水介質(zhì)染色技術(shù)的研究進(jìn)展[J]. 紡織科技進(jìn)展, 2021(4): 11-14.

        HUANG Hao, REN Yan, SHANG Yudong, et al. Research progress of water-saving dyeing and non-aqueous medium dyeing technology[J]. Progress in Textile Science amp; Technology, 2021(4): 11-14.

        [15]裴劉軍, 施文華, 張紅娟, 等. 非水介質(zhì)活性染料染色關(guān)鍵技術(shù)體系及其產(chǎn)業(yè)化研究進(jìn)展[J]. 紡織學(xué)報(bào), 2022, 43(1): 122-130.

        PEI Liujun, SHI Wenhua, ZHANG Hongjuan, et al. Technology progress and application prospect of non-aqueous medium dyeing systems[J]. Journal of Textile Research, 2022, 43(1): 122-130.

        [16]趙濤. 染整工藝與原理-下冊(cè)[M]. 北京: 中國(guó)紡織出版社, 2009.

        ZHAO Tao. Dyeing and Finishing Technology and Principles-Volume II[M]. Beijing: China Textile amp; Appreal Press, 2009.

        [17]魯鳳鳴, 繆華麗, 李深正, 等. 陽(yáng)離子染料在D5反相微乳體系中的染色性能研究[J]. 浙江理工大學(xué)學(xué)報(bào), 2011, 28(6): 836-840.

        LU Fengming, LIAO Lihua, LI Shenzheng, et al. Study on the cationic in D5 reverse microemulsion system[J]. Journal of Zhejiang Sci-Tech University, 2011,28 (6): 836-840.

        [18]裴劉軍, 劉今強(qiáng), 王際平. 活性染料非水介質(zhì)染色的技術(shù)發(fā)展和應(yīng)用前景[J]. 紡織導(dǎo)報(bào), 2021, (5): 32-40.

        PEI Liujun, LIU Jinqiang, WANG Jiping. Technology development and application prospect of non-aqueous medium dyeing with reactive dyes[J]. China Textile Leader, 2021(5): 32-40.

        [19]韓春艷, 吳旭華, 劉海霆, 等. 陽(yáng)離子可染滌綸短纖維染色性能研究[J]. 合成技術(shù)及應(yīng)用, 2018, 33(1): 42-48.

        HAN Chunyan, WU Xuhua, LIU Haiting, et al. Study on the dyeing performance of cationic dyeable polyester fiber[J]. Synthetic Technology amp; Application, 2018, 33(1): 42-48.

        [20]楊娟亞,劉偉紅,陳朝宏,等.單因素結(jié)合響應(yīng)面法優(yōu)化繭絲多酚含量的測(cè)定方法[J].現(xiàn)代紡織技術(shù),2024,32(11):55-61.

        YANG Juanya, LIU Weihong, CHEN Chaohong, et al. Single factor combined with response surface method was used to optimize the determination method of polyphenol content in cocoon filament[J]. Advanced Textile Technology,2024,32(11):55-61.

        Clean dyeing process of cationic polyester blended fabrics based on a response surface method

        ZHOU Shihang, CHEN Yangyi, WANG Ruya, YE Xiaorou

        (College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China)

        Abstract: The polyester fiber is the largest variety of synthetic fibers in the world, which occupies a very important position in the field of textile and garment. With the improvement of people's living standards, people have also put forward new requirements for polyester blended fabrics, paying more attention to their comfort and functionality. Compared with ordinary polyester, cationic (dyeable) polyester has a softer texture than ordinary polyester, and has a certain hydrophilicity and unique two-color effect. However, in the dyeing process, the energy consumption and water consumption are high, and the production efficiency is low. The wastewater is not conducive to direct discharge, and the wastewater has high color, unstable pH, organic pollutants and high content of refractory components, resulting in a large number of wastewater and wastewater recovery. In addition, the use of various additives increases the difficulty of subsequent fabric cleaning, and the dyeing process is cumbersome and not environmentally friendly, which limits its further industrial development. To explore the dyeing process of cationic polyester blended fabrics, the response surface method (RSM) was used to optimize the process of cationic dyeable polyester, with decamethylcyclopentasiloxane (D5) as the medium and K/S value as the corresponding value. The main factors affecting the dyeing process of cationic dyeable polyester were screened by Plackett-Berman experiment through the influence of single factors on the dyeing process, such as dye dosage, D5 dosage and dyeing time. P value less than 0.05 was considered to have a significant impact on this factor, and P value less than 0.01 was considered to have an extremely significant impact on this factor. According to the P value, it was found that the dyeing temperature was the biggest factor affecting the K/S value, followed by the amount of dye and the amount of D5. On this basis, three factors having a significant effect on the color depth value were selected, and the response surface method (RSM) was established by using the central composite design (CCD) method. The response surface results were obtained and analyzed. On this basis, the influence of the interaction between various factors on the K/S value of cationic polyester blended fabrics was carried out. In summary, the K/S value was used as the response surface to establish the dyeing process optimization of cationic polyester blended fabrics, and the difference of the obtained response surface model was compared. The results show that the optimum dye dosage of cationic polyester blended fabrics is 1.6% (o.w.f), the dosage of D5 is 93.5%, the dyeing time is 60 min, and the dyeing temperature is 108 ℃. The dyeing results show that the K/S value can be increased by increasing the amount of D5 and dyeing temperature, and the dyeing time should not exceed 60 min. RSM experiment predicts the optimal process of cationic polyester blended fabrics. According to this process, the parallel test is carried out, and the comparison error is less than 0.2. It shows that the verification results are basically consistent with the predicted values, which can more accurately reflect the depth of color change. It can fully describe the relationship between the influencing factors of cationic polyester blended fabrics' dyeing conditions and the dyeing results. It shows that the model design is reasonable, stable and reliable. In addition, the color fastness test results of the fabric show that the dyed fabric has good washing resistance, friction resistance and light fastness, all of which are above four levels. RSM provides a simple and effective method to optimize acorn dyeing process. This study provides useful reference for the clean dyeing of cationic polyester blended fabrics.

        Keywords: cationic polyester blended fabric; K/S value; response surface; clean dyeing

        99国产精品无码| 亚洲精品在线97中文字幕| 精品国产日韩一区2区3区| 99久久精品免费观看国产| 免费人成再在线观看网站| 国产丰满乱子伦无码专| 国产三区三区三区看三区| 午夜亚洲av日韩av无码大全| 色爱区综合五月激情| 男人深夜影院无码观看| 国产一区二区三区亚洲| 人妻av无码一区二区三区| 亚洲精品无码av片| 国产一区二区三区亚洲天堂| 亚洲乱码中文字幕视频| 亚洲 卡通 欧美 制服 中文| 久久精品国波多野结衣| 国产自产自现在线视频地址| 精品国产一区二区三区不卡在线| 国产精品成人观看视频| 女的把腿张开男的猛戳出浆 | 激情五月婷婷综合| 国产亚洲激情av一区二区| 男女av一区二区三区| 999久久久国产精品| av狼人婷婷久久亚洲综合| 成年人视频在线观看麻豆| 亚洲精品色午夜无码专区日韩 | 久久久噜噜噜久久熟女| 日本在线 | 中文| 又大又粗弄得我出好多水| 高清av一区二区三区在线| 国产91传媒一区二区三区| 人人妻人人澡人人爽精品欧美| 不卡国产视频| 日产分东风日产还有什么日产| 免费人妻无码不卡中文字幕系| 欧美激情二区| 青青草成人免费播放视频| 亚洲人成网线在线播放va蜜芽| 久久精品国产精品亚洲毛片 |