亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        具有分?jǐn)?shù)Brown運(yùn)動(dòng)的分?jǐn)?shù)階中立型隨機(jī)微分方程解的存在唯一性

        2025-04-03 00:00:00李國平韓婷

        摘 要:研究了一類在Hilbert空間中具有分?jǐn)?shù)Brown運(yùn)動(dòng)的分?jǐn)?shù)階中立型隨機(jī)微分方程,利用Picard逐步逼近法得到了其非Lipschitz條件和弱化的線性增長條件下粘性解的新的存在唯一性的充分條件.所提的研究方法使得先前一些研究結(jié)果得到了拓展.最后通過具有分?jǐn)?shù)Brown運(yùn)動(dòng)的隨機(jī)非線性波動(dòng)方程驗(yàn)證了理論的有效性.

        關(guān)鍵詞:分?jǐn)?shù)階隨機(jī)微分方程;分?jǐn)?shù)Brown運(yùn)動(dòng);粘性解;存在唯一性

        中圖分類號(hào):O175.14 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2025)03-0104-08

        1 預(yù)備知識(shí)

        2 解的存在唯一性

        3 例 子

        4 結(jié) 論

        本文討論了一類具有分?jǐn)?shù)Brown運(yùn)動(dòng)的分?jǐn)?shù)階中立型隨機(jī)微分方程.運(yùn)用逐步逼近法給出了非Lipschitz條件和弱化的線性增長條件下粘性解的存在性和唯一性的充分條件,其中Lipschitz條件視為其特殊情形.并通過具有分?jǐn)?shù)Brown運(yùn)動(dòng)的隨機(jī)非線性波動(dòng)方程的應(yīng)用驗(yàn)證了理論的有效性.本文的方法避免了使用較強(qiáng)的Lipschitz條件,對于研究隨機(jī)非線性系統(tǒng)的解的存在唯一性較為有效.該方法亦可用于討論時(shí)滯中立型隨機(jī)微分方程解的存在唯一性和穩(wěn)定性,為研究其他中立型隨機(jī)微分方程提供了理論依據(jù).

        參 考 文 獻(xiàn)

        [1] GOVINDAN T E.Almost sure exponential stability for stochastic neutral partial functional differential equations[J].Stochastics,2005,77:139-154.

        [2]BAO J H,HOU Z T.Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients[J].Comput Math Appl,2010,59:207-214.

        [3]JIANG F,SHEN Y.A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients[J].Comput Math Appl,2011,61:1590-1594.

        [4] BAO H B,CAO J D.Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay[J].Advances in Difference Equations,2017(1):66.

        [5]AHMADOVA A,MAHMUDOV N I.Existence and uniqueness results for a class of fractional stochastic neutral differential equations[J].Chaos,Solitons and Fractals,2020,139:110253.

        [6]LI Y J,WANG Y J.The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay[J].Journal of Differential Equations,2019,266:3514-3558.

        [7]REN Y,XIA N M.Existence,uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay[J].Applied Mathematics and Computation,2009,210:72-79.

        [8]CARABALLO T,GARRIDO-ATIENZA M J,TANIGUCHI T.The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion[J].Nonlinear Anal TMA,2011,74:3671-3684.

        [9]BOUFOUSSI B,HAJJI S.Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space[J].Statiscics and Probability Letters,2012,82:1549-1558.

        [10]DENG S F,SHU X B,MAO J Z.Existence and exponential stability for impulsive neutral stochastic functional dierential equations driven by fBm with noncompact semigroup via Mnch fixed point[J].Journal of Mathematical Analysis and Applications,2018,467:398-420.

        [11]PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].Berlin:Springer-Verlag,1983.

        [12]PODLUBNY I.Fractional Differential Equations[C]//Mathematics in Science and Engineering.[S.l.:s.n.],1999.

        [13]MAINARDI F.Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models[M].London:Imperial College Press,2010.

        [14]MAO X R.Stochastic Differential Equations and Applications(Second Edition)[M].New York:Academic Press,2006.

        [15]TANIGUCHI T.The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps[J].Stochastics,2010,82:339-363.

        Existence and uniqueness of solutions to fractional neutral stochastic

        differential equations with fractional brownian motionLi Guoping1, Han Ting1,2

        (1. Xinhua College, Ningxia University, Yinchuan 750021, China;

        2. College of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)

        Abstract: In this paper, we consider a class of fractional-order neutral stochastic" differential" equations with fractional Brownian motion by using picard step by step in a Hilbert space. A novel sufficient condition for the existence and uniqueness of mild solutions is obtained in conditions of the non-Lipschitz condition and the weakened linear growth. The result generalizes a few previous known results. An application to the stochastic nonlinear wave equation with fractional Brownian motion is given to illustrate the validity of the obtained theory.

        Keywords: fractional" stochastic" differential" equations; fractional Brownian motion; mild solution; existence and uniqueness

        [責(zé)任編校 陳留院 楊浦]

        五月开心六月开心婷婷网| 国产精品成人无码a 无码 | 日韩精品永久免费播放平台 | 亚洲最新无码中文字幕久久| 亚洲天堂精品成人影院| 一二三四区中文字幕在线| 无码h黄肉3d动漫在线观看| 亚洲中文字幕无码一久久区| 亚洲精品久久一区二区三区777| 乱人伦中文无码视频在线观看| 亚洲精品久久无码av片软件| 躁躁躁日日躁| 国产尻逼视频| 91精品欧美综合在线观看| 在线日本高清日本免费| 大香蕉视频在线青青草| 东北熟妇露脸25分钟| 国产一区二区av免费在线观看| 97成人精品国语自产拍| 门卫又粗又大又长好爽| 欧美精品人人做人人爱视频| 久久久精品人妻一区二区三区| 日本高清色倩视频在线观看| 极品美女扒开粉嫩小泬| 日韩在线第二页| 四虎成人精品国产永久免费| 天天综合色中文字幕在线视频| 亚洲一区二区三区日韩在线观看| 99噜噜噜在线播放| 刺激一区仑乱| 欧美成人精品午夜免费影视| 国产嫖妓一区二区三区无码 | 国内人妖一区二区在线播放| 后入少妇免费在线观看| 不卡av网站一区二区三区| 中文字幕人妻熟女人妻| 妺妺窝人体色www看美女| 国产成人免费一区二区三区| 国产三级欧美| 国产一区二区内射最近人| 国内偷拍精品一区二区|