【特約主持人】孟祥周:教育部“新世紀優(yōu)秀人才支持計劃”入選者
【主持人按語】從環(huán)境管理角度來看,新污染物一般是指新近發(fā)現(xiàn)或被關注,對生態(tài)環(huán)境或人體健康存在風險,尚未納入管理或者現(xiàn)有管理措施不足以有效防控其風險的污染物.新污染物是全球環(huán)境領域研究熱點之一,我國于2022年發(fā)布實施《新污染物治理行動方案》,全面推進新污染物治理工作,是當前我國生態(tài)環(huán)境科技創(chuàng)新的重點領域.環(huán)境中新污染物種類繁多且總體濃度較低,建立新污染物檢測方法是掌握新污染物的環(huán)境暴露水平、治理新污染物的重要基礎.本專欄圍繞新污染物的檢測技術進行討論,其中《PFAS高分辨率質(zhì)譜數(shù)據(jù)的非靶標識別技術綜述》聚焦典型新污染物全氟及多氟烷基物質(zhì)(PFAS),系統(tǒng)梳理了如何基于高分辨質(zhì)譜檢測數(shù)據(jù)建立PFAS的非靶標識別技術,從識別框架、策略、軟件等角度展開討論,可為新污染物篩查提供科技支撐.《基于原位形成低共熔溶劑的酸誘導—分散液液微萃取/高效液相色譜法測定環(huán)境水樣中烷基酚》以癸酸鈉為萃取劑,建立了一種原位檢測水樣中烷基酚的方法,具有簡單、快速、靈敏、低成本和綠色等優(yōu)點,成功應用于黃河水、湖水、衛(wèi)河水樣中烷基酚的測定,也為開發(fā)新污染物原位檢測技術提供了借鑒.
摘 要:全氟及多氟烷基物質(zhì)(per- and polyfluoroalkyl substances,PFAS)使用廣泛,在環(huán)境中難以降解,且具有生物富集性、遷移性和毒性,引發(fā)全球關注.PFAS種類繁多,基于高分辨率質(zhì)譜的非靶標分析是發(fā)現(xiàn)環(huán)境中未知PFAS的主要方法,而高效識別技術是其中的難點.系統(tǒng)梳理了PFAS非靶標識別技術的框架,總結(jié)了不同PFAS非靶標識別策略的應用情況與優(yōu)缺點,比較了不同PFAS非靶標識別開源軟件的特點,以期為環(huán)境未知PFAS的精準識別、溯源和管控提供科技支撐.
關鍵詞:全氟及多氟烷基物質(zhì)(PFAS);高分辨率質(zhì)譜(HRMS);非靶標識別;疑似篩查;新污染物
中圖分類號:X502 文獻標志碼:A文章編號:1000-2367(2025)03-0001-11
收稿日期:2024-11-18;修回日期:2024-11-23.
基金項目:國家自然科學基金(42177378);國家環(huán)境保護城市土壤污染控制與修復工程技術中心開放基金(USCR-202202);嘉興市公益性研究計劃項目(2023AY11053);上海市法醫(yī)學重點實驗室暨司法部司法鑒定重點實驗室開放課題(KF202422).
作者簡介(通信作者):孟祥周(1979-),男,河南濮陽人,同濟大學教授,博士,博士生導師,研究方向為新污染物環(huán)境行為及風險管控,E-mail:xzmeng@#edu.cn.
引用本文:孟祥周,張博暄,韓寶蒼,等.PFAS高分辨率質(zhì)譜數(shù)據(jù)的非靶標識別技術綜述[J].河南師范大學學報(自然科學版),2025,53(3):1-11.(Meng Xiangzhou,Zhang Boxuan,Han Baocang,et al.A review on the nontarget identification technology for PFAS by using high resolution mass spectrometry[J].Journal of Henan Normal University(Natural Science Edition),2025,53(3):1-11.DOI:10.16366/j.cnki.1000-2367.2024.11.18.0003.)
根據(jù)經(jīng)濟合作及發(fā)展組織(organisation for economic co-operation and development,OECD)的定義[1],全氟及多氟烷基物質(zhì)(per- and polyfluoroalkyl substances,PFAS)是含有至少一個全氟甲基或亞甲基碳原子(沒有任何H/Cl/Br/I原子與其相連)的氟化物質(zhì).據(jù)初步統(tǒng)計,具有這種結(jié)構(gòu)的物質(zhì)已超過700萬種[2],廣泛應用于消防、電鍍、食品包裝、紡織印染等工業(yè)領域[3].研究表明,PFAS在全球環(huán)境介質(zhì)中普遍檢出,且已經(jīng)對生態(tài)環(huán)境和人體健康產(chǎn)生不利影響,作為一類新污染物受到全球重點關注[4-6].2012年,PLACE等[7]嘗試使用非靶標分析方法(nontarget analysis)對水成膜泡沫滅火劑中未知PFAS進行識別,鑒定出10類30種PFAS,引發(fā)了研究者興趣.
以“PFAS”,“nontarget OR nontargeted OR suspect screening”為主題詞,在Web of Science數(shù)據(jù)庫進行論文搜索(檢索時間截至2024年10月31日),根據(jù)內(nèi)容相關性篩選出461篇,其歷年發(fā)表的論文數(shù)量如圖1所示.自2019年開始,每年發(fā)表的論文數(shù)量呈現(xiàn)快速增長趨勢,主要集中在2022-2024年.目前,PFAS非靶標分析方法已經(jīng)廣泛應用于水體[8]、大氣[9]、土壤[10]、生物體[11]、人體組織[12]、飲用水[13]、工業(yè)生產(chǎn)過程及工業(yè)品[14-15]、污水處理系統(tǒng)[16]等樣品分析中.
非靶標分析方法一般包括樣品前處理、色譜分離和高分辨率質(zhì)譜分析,而高分辨率質(zhì)譜數(shù)據(jù)處理環(huán)節(jié)是難點.常用的高分辨率質(zhì)譜主要包括四極桿飛行時間質(zhì)譜,靜電場軌道阱質(zhì)譜和傅立葉變換離子回旋共振質(zhì)譜3種.質(zhì)譜數(shù)據(jù)的采集模式主要包括全掃描(full scan)、數(shù)據(jù)依賴性采集(data-dependent acquisition,DDA)和數(shù)據(jù)非依賴性采集(data-independent analysis,DIA)[17].前人已圍繞PFAS非靶標分析中的識別技術進行了較多探討[18-19],但建立全面準確的識別方法仍然面臨挑戰(zhàn).本文從應用的角度梳理了PFAS非靶標識別技術框架,系統(tǒng)綜述了非靶標識別策略及其在開源軟件中的應用,可為PFAS非靶標識別分析方法的發(fā)展與實踐提供科技支撐.
1 非靶標識別方法框架
非靶標識別技術包括未知化合物的特征提取、特征識別與結(jié)構(gòu)鑒定、結(jié)果評估等流程[20],其框架及對應環(huán)節(jié)的參數(shù)如圖2所示.框架主體分為5部分,Ⅰ:峰提??;Ⅱ:特征提??;Ⅲ:疑似篩查與非靶標篩查;Ⅳ:原始數(shù)據(jù)核對;Ⅴ:化合物評級.Ⅰ和Ⅱ?qū)儆诨衔锾卣魈崛?,部分研究者會根?jù)使用的軟件或方法將其合并.Ⅲ為特征識別與結(jié)構(gòu)鑒定,是非靶標識別技術的核心.研究者將9種常用的識別策略分為3組(圖2),早期研究通常使用其中的1組,而目前研究傾向于使用盡可能多的策略來提高識別結(jié)果的覆蓋面和置信度.Ⅳ和Ⅴ為識別結(jié)果評估,即對識別出的未知PFAS進行核對和置信度分級(confidence level).SCHYMANSKI等[21]依據(jù)樣品一級質(zhì)譜(MS)、二級質(zhì)譜(MS2)、色譜保留時間(retention time,RT)、標準品信息、一級質(zhì)譜同位素分布特征等將未知化合物的置信度分為1~5級.CHARBONNET等[22]在分級標準的基礎上,結(jié)合PFAS種類的結(jié)構(gòu)特殊性,細化每個等級的評價標準(圖3).如GHORBANI等[23]通過非靶標方法識別了污染地下水中88種PFAS,其中置信度為1a有22種,2a有20種,2b有7種,3a有37種,3b有2種.隨著識別技術的不斷發(fā)展,PFAS置信度評價體系也可能納入新的指標,如二級質(zhì)譜碎片質(zhì)量差異和碳數(shù)歸一化質(zhì)量虧損等[19].
2 PFAS非靶標識別策略
2.1 疑似篩查
2.1.1 一級質(zhì)譜數(shù)據(jù)庫匹配
數(shù)據(jù)庫匹配是指把檢測出的高分辨率一級質(zhì)譜特征與包含已知化合物的清單或數(shù)據(jù)庫進行比較[24].僅通過數(shù)據(jù)庫匹配的特征置信度為5a.常用的數(shù)據(jù)庫包括公開的清單和研究人員自建清單,包括OECDPFAS(n=4 730)、NISTPFAS(n=4 948)、PRIORISKPFAS(n=4 240)、PFASMASTER(n=8 498)等,每個清單都包含大量獨有的PFAS[25].這些數(shù)據(jù)庫一般包括化合物名稱、分子式和理論精確質(zhì)量數(shù).根據(jù)分子式可以計算出每個化合物的理論同位素分布,匹配過程中會同時比較同位素的精確質(zhì)量偏差與豐度偏差.使用化合物通用數(shù)據(jù)庫匹配(如ChemSpider和PubChem)可以涵蓋更廣泛的PFAS[2,26],但識別假陽性概率也隨之增加.為了最大限度減少假陽性結(jié)果的數(shù)量,應根據(jù)研究對象(區(qū)域污染源特征、PFAS產(chǎn)品信息等)和分析方法對應的PFAS種類和類型(如電離方式,物質(zhì)電離能力等)調(diào)整數(shù)據(jù)庫的內(nèi)容和范圍,以及與其他識別策略進行結(jié)合應用.
2.1.2 化學式分配
質(zhì)量虧損(mass defect,MD)是指原子或分子的精確質(zhì)量與標稱質(zhì)量之差.不同元素如碳(12.000 0 Da)、氫(1.007 8 Da)、氧(15.994 9 Da)、氮(14.003 1 Da)和氟(18.998 4 Da)等有著特定的質(zhì)量虧損,HRMS可以捕捉這樣的微小差異,實現(xiàn)將化學式分配給足夠精確的質(zhì)量測量結(jié)果.僅確定未知特征分子式的置信度為4.如全氟己烷磺酸分子離子的精確質(zhì)量數(shù)為399.943 88,在質(zhì)量偏差為5×10-6時分配的化學式為41個,1×10-6時為7個,0.2×10-6時為4個[27].因此,為了縮小化學式分配范圍,必須合理限制元素數(shù)量與類型,合理運用化學式分配規(guī)則[28].通過比較同位素分布也會大幅減少化學式的可能性,TANG等[29]使用S同位素分布篩選全氟磺酸類物質(zhì),而JIAO等[30]通過特殊同位素分布([M]-/[M+2]-= 3/1)確定化合物中氯元素的存在.在有限的質(zhì)量分辨率和精度下,分配的化學式數(shù)量隨著分子量的增加而呈指數(shù)增加,該方法通常與其他方法結(jié)合使用以增加識別置信度.
2.2 非靶標篩查
2.2.1 質(zhì)量虧損過濾
按照質(zhì)量虧損定義,碳原子不會改變分子的整體MD,其他原子對分子的MD有不同程度的貢獻(如H和N等貢獻微小正值,S,O,F(xiàn),Cl,Br等貢獻微小負值).因此PFAS類物質(zhì)有其特有的MD范圍(如-0.25 Da<MD<0.1 Da,涵蓋OECDPFAS清單中92.8%的PFAS[31]),在規(guī)定范圍內(nèi)保留的特征置信度為5b.KOELMEL等[32]將-0.11 Da<MD<0.12 Da范圍內(nèi)(涵蓋PFASMASTER清單的90%)的特征標記為潛在PFAS特征.使用MD過濾方法僅需特征的精確質(zhì)量數(shù)計算即可有效保留氟質(zhì)量分數(shù)大于60%的PFAS,但對于低氟含量的PFAS與其他碳氫化合物則無法有效分離[33].此外,具有高正質(zhì)量虧損的化合物可能被錯誤地識別為負質(zhì)量缺陷,對識別過程造成干擾.
2.2.2 碳數(shù)歸一化質(zhì)量虧損過濾
KAUFMANN等[34]在2022年提出了篩選一級質(zhì)譜數(shù)據(jù)PFAS特征的新方法.該方法首先估算特征的碳原子數(shù)量:
C=(IM+1/IM)/0.011 145,
式中,C表示特征碳原子數(shù)量,IM+1和IM分別代表第一同位素峰和單同位素峰的豐度.基于特征碳原子數(shù)量,可以用特征質(zhì)量數(shù)除以C計算碳數(shù)歸一化質(zhì)量(mass over carbon,m/C),用特征質(zhì)量虧損除以碳數(shù)歸一化質(zhì)量虧損(mass defect over carbon,MD/C).通過將m/C和MD/C繪制為XY坐標軸圖,研究發(fā)現(xiàn)魚體組織樣品中的PFAS特征與其他的特征產(chǎn)生了有效分離[34].ZWEIGLE等[33]基于此方法對49萬種有機化合物進行了MD/C-m/C表征,發(fā)現(xiàn)含氟量較高的PFAS[n(F)/n(C)>0.8,n(H)/n(F)<0.8,含氟質(zhì)量分數(shù)>55%]可以有效地與其他有機化合物及天然有機物分離.結(jié)構(gòu)相關的化合物(如PFAS同系物)在MD/C-m/C圖中有規(guī)律的排布,可用于后續(xù)同系物篩查.ZWEIGLE等[35-36]也開發(fā)了系列軟件FindPFΔS/PFΔScreen來實現(xiàn)PFAS的MD/C-m/C篩選流程與可視化,進一步證實將該方法納入PFAS置信度評價體系的可行性.
2.2.3 同系物篩查
由于PFAS生產(chǎn)和使用的特點,產(chǎn)品和環(huán)境樣品中的PFAS通常為含有一系列重復單元(如CF2,C2F4,CF20)的同系物[37].Kendrick質(zhì)量虧損(Kendrick mass defect,KMD)分析是用于篩查樣品中PFAS同系物的有效方法[18].Kendrick質(zhì)量(Kendrick mass,KM)是將以碳元素(12.000 0 Da)為基準的質(zhì)量參考體系轉(zhuǎn)換為以任意重復單元為基準的質(zhì)量參考體系:
KM=M(NMRU/MRU),
式中,KM為Kendrick質(zhì)量,M為特征檢測質(zhì)量,NMRU和MRU分別代表重復單元標稱質(zhì)量和精確質(zhì)量.由于碳元素的質(zhì)量虧損為零,因此轉(zhuǎn)換后重復單元的質(zhì)量虧損也為零,特定重復單元同系物的KMD(由標稱Kendrick質(zhì)量與KM相減得到)也是相同的,由該分子的剩余部分決定.在KMD與質(zhì)量XY軸圖中,來自同一化合物類別的同系物出現(xiàn)水平對齊.還可利用不同類別化合物碳鏈長度與保留時間的相關性對KMD識別的特征進一步篩選,這可通過人工或者軟件腳本實現(xiàn)[38].MD過濾方法也可用于過濾KMD,如MUNOZ等[39]保留了-0.15 Da<KMD<0.15 Da范圍內(nèi)的特征來篩選潛在PFAS.與MD隨鏈長增加而減小不同,KMD是穩(wěn)定的,但單一PFAS特征無法通過KMD分析保留,豐度較低的同系物特征也容易被峰提取算法遺漏.同系物特征和保留時間信息通常作為提高置信度評級的輔助手段.
2.2.4 二級質(zhì)譜碎片/數(shù)據(jù)庫匹配
二級質(zhì)譜碎片由質(zhì)譜碰撞池中母離子的化學鍵斷裂產(chǎn)生,全氟或含氟量較高的化合物通常擁有類似的二級質(zhì)譜碎片.CHARBONNET等[22]將PFAS的二級質(zhì)譜碎片分為兩類,其中診斷離子碎片通常為含氟碎片(如[CnF2n+1]-和[CnF2n+1O]-等),子類離子碎片為不同類別PFAS的官能團產(chǎn)生的非氟碎片(如[SO3]-和[PO3]-等).KOELMEL等[32]總結(jié)了PFAS在質(zhì)譜碎裂過程可能產(chǎn)生的777個碎片用于二級質(zhì)譜數(shù)據(jù)匹配.二級質(zhì)譜數(shù)據(jù)庫包括母離子及其對應的二級質(zhì)譜碎片的精確質(zhì)量數(shù),會同時與未知特征進行匹配,匹配特征將分配3級及以上置信度.數(shù)據(jù)庫分為公開數(shù)據(jù)庫(如MassBank[40])、供應商數(shù)據(jù)庫(如mzCloud[41])及自建數(shù)據(jù)庫,其中自建數(shù)據(jù)庫包括實驗數(shù)據(jù)庫[42-43]和計算機算法模擬數(shù)據(jù)庫[44]等.由于較高的置信度分配,二級質(zhì)譜碎片/數(shù)據(jù)庫匹配已成為PFAS非靶標識別的主要方法.
2.2.5 中性丟失/碎片質(zhì)量差異匹配
中性丟失是指分子中不帶電荷的片段在質(zhì)譜分析過程中丟失的現(xiàn)象,在一級質(zhì)譜掃描和二級質(zhì)譜掃描中均會產(chǎn)生.PFAS物質(zhì)的中性丟失通常發(fā)生在極性的頭部基團和非極性的尾部基團[45].TANG等[29]使用[CO2]和[CF2O]作為中性丟失片段對一級質(zhì)譜數(shù)據(jù)中全氟羧酸類PFAS特征進行搜索識別.[HF]是氟調(diào)聚和含氫PFAS等多氟烷基PFAS的常見中性丟失片段,是通過二級質(zhì)譜數(shù)據(jù)推斷物質(zhì)結(jié)構(gòu)的重要依據(jù)[46].碎片質(zhì)量差異源自化合物不同碎片化途徑產(chǎn)生的碎片之間的差異,如碎片[C2F5]-和[C3F7]-間的ΔCF2差異.ZWEIGLE等[35]按照PFAS類別總結(jié)了對應的碎片質(zhì)量差異,應用該方法顯著提高了非靶標PFAS的識別數(shù)量.雖然中性丟失和碎片質(zhì)量差異產(chǎn)生的原理并不相同,但二者都反映為二級質(zhì)譜中兩個碎片之間的中性片段差異,在分析過程中擁有一致的匹配方式,未來可作為置信度評價體系的一個有效指標.
2.3 新興技術
2.3.1 色譜法-保留時間指數(shù)
目前PFAS非靶標分析中,液相色譜耦合高分辨率質(zhì)譜仍是主要方法[47].因此,借助化合物結(jié)構(gòu)與RT的相關性(即保留時間指數(shù)retention time indice,RTI,簡記為IRT)可減少假陽性識別結(jié)果.AALIZADEH等[48]則建立了IRT的計算公式:
IRT=(tRx-tRmin/tRmax-tRmin)×1 000=α·tRC+C,
式中,IRT是保留時間指數(shù),tRx和tRC分別表示校準物質(zhì)和目標化合物的RT,tRmax和tRmin是校準物質(zhì)實際測量的最大和最小RT,α和C分別是置信區(qū)間99%對應的斜率和截距.
目前應用IRT的研究主要包括:(1)機理模型預測[49].使用真實溶劑似導體屏蔽模型(conductor-like screening model for realistic solvents,COSMO-RS)計算PFAS的辛醇水分配系數(shù)(octanol-water partition coefficients,Kow),結(jié)合各向同性極化率與實驗IRT建立多元回歸模型,預測未知PFAS的IRT,但該預測模型不能突破液相條件的限制;(2)機器學習預測.江漢大學丁一[50]基于PFAS分子結(jié)構(gòu)與RT之間的構(gòu)效關系發(fā)展了機器學習算法模型,通過篩選多種分子描述符的重要度增加模型的魯棒性和預測能力.同時,將預測IRT與實測IRT的誤差范圍作為條件對識別結(jié)果進行過濾,過濾效率高達52.5%.
2.3.2 離子淌度質(zhì)譜-碰撞截面面積
離子淌度質(zhì)譜(ion mobility spectrometry,IMS)技術是一種快速氣相分離技術,可根據(jù)離子在緩沖氣體中的大小、形狀和電荷狀態(tài)產(chǎn)生不同的漂移時間,實現(xiàn)離子分離,增加質(zhì)譜的分析維度[51].通過漂移時間計算得到的碰撞橫截面積(collision cross sections,CCS)是一種分子描述符,可為未知化合物識別提供額外證據(jù)[52].DODDS等[51]探究了不同類別PFAS的CCS與質(zhì)荷比的關系,系統(tǒng)驗證了CCS在區(qū)分不同子類和異構(gòu)體PFAS方面的穩(wěn)定性,以及成為未知化合物鑒定指標的潛力.KIRKWOOD-DONELSON等[53]使用IMS開發(fā)了一種基于分子尺寸的DIA質(zhì)譜分析方法,利用CCS與碰撞能量的相關性優(yōu)化了各類PFAS的碰撞能量,同時增強了DIA數(shù)據(jù)反卷積的效果.
2.4 識別方法比較
不同PFAS識別策略的優(yōu)缺點如表1所示.一級質(zhì)譜數(shù)據(jù)經(jīng)full scan得到,包括分子離子及其同位素的精確質(zhì)量數(shù)與離子強度,質(zhì)荷比范圍(m/z)一般在50~1 000,質(zhì)量分辨率大于20 000(m/z=500),質(zhì)量偏差范圍為(1~10)×10-6.基于一級質(zhì)譜數(shù)據(jù)的識別策略較多,主要是將PFAS特征篩選出來,但較少單獨使用,對識別置信度的影響也較小.二級質(zhì)譜數(shù)據(jù)分為單個母離子的MS2數(shù)據(jù)(經(jīng)靶向MS/MS2或DDA得到)和多個母離子的MS2數(shù)據(jù)(經(jīng)DIA得到).二級質(zhì)譜數(shù)據(jù)識別策略可以提升識別置信度,常易受數(shù)據(jù)庫容量和二級質(zhì)譜碎片數(shù)量的限制.兩種新興方法的應用效果已經(jīng)得到證明,但受限于研究數(shù)量,仍處于發(fā)展階段,具有較大應用潛力.綜合應用識別策略可以彌補各自的劣勢,同時應用效果也受到質(zhì)譜數(shù)據(jù)質(zhì)量精確度、碎片豐富度、特征碎裂覆蓋率等儀器分析效果的影響,確保高質(zhì)量質(zhì)譜數(shù)據(jù)的獲取也是PFAS非靶標分析的重要一環(huán).
3 非靶標識別開源軟件
一些高分辨率質(zhì)譜供應商(如Agilent,Thermo Fisher和Waters等)針對各自儀器的數(shù)據(jù)格式開發(fā)了相應的非靶標識別軟件[54].這些軟件配有可視化界面并涵蓋大部分非靶標分析流程,在軟件運行速度上具有優(yōu)勢,成為非靶標分析的主要工具.但是,商業(yè)軟件存在識別算法不透明的缺點(如特征峰提取,峰對齊等算法),用戶無法靈活調(diào)整數(shù)據(jù)解析方式,造成識別結(jié)果不理想,新功能的集成也比較滯后[55].近來,研究者專門針對PFAS非靶標識別開發(fā)了新方法及開源軟件,各具特點.開源軟件在部署環(huán)境和功能模塊設置上更具靈活性,盡管需要使用者掌握R語言、Python、Java等典型編程語言,但已經(jīng)較大程度降低了對編程知識的依賴.
3.1 Fluoromatch
Fluoromatch軟件由耶魯大學KOELMEL領導的團隊于2020年開發(fā)[56],發(fā)布后歷經(jīng)數(shù)次更新,當前版本為5.4(時間截至2024年10月31日).該軟件是首個開源的自動化PFAS高分辨率質(zhì)譜數(shù)據(jù)分析軟件,實現(xiàn)了從特征峰挑選,空白過濾,到PFAS特征注釋與分組的完整工作流.其突出特點是包含大量由標準品產(chǎn)生或計算機預測生成的PFAS碎片信息,初級版本中(Fluoromatch 1.0)包含約7 000個PFAS的母離子與對應的碎片信息.該軟件通過將樣品特征信息(精確質(zhì)量數(shù)、保留時間、二級質(zhì)譜碎片)與軟件數(shù)據(jù)庫匹配,增加對樣品PFAS特征注釋的覆蓋率.研發(fā)者還提供了支持多條件交叉過濾的可視化軟件FluoroMatch visualizer[57],方便使用者進行人工篩查與導出數(shù)據(jù).
3.2 EnviMass
EnviMass由Martin Loos開發(fā),是一種基于R編碼環(huán)境的自動化高分辨率質(zhì)譜數(shù)據(jù)挖掘工具,包含Web瀏覽器中的圖形用戶界面[58].該軟件最初用于從LC-HRMS數(shù)據(jù)中檢測水生系統(tǒng)中已知和未知微污染物的變化趨勢和泄漏信息,在4.4版本增加了針對PFAS分析的腳本,可進行靶向和疑似篩查、源內(nèi)片段識別、同系物篩查、二級質(zhì)譜碎片匹配、質(zhì)量虧損過濾.其中源內(nèi)片段識別會檢查每個特征是否具有其他共洗脫離子,并與自建的源內(nèi)片段庫進行篩選匹配,從而排除因源內(nèi)裂解和加合離子導致的假陽性識別.
3.3 FindPFΔS/PFΔScreen
圖賓根大學ZWEIGLE團隊[35]于2022年開發(fā)了基于Python的開源軟件FindPFΔS,該軟件通過搜索二級質(zhì)譜原始數(shù)據(jù)中碎片質(zhì)量的特定差異(如ΔCF2、ΔCF3等)來發(fā)現(xiàn)相關聯(lián)的PFAS類別.FindPFΔS同時提供二級質(zhì)譜碎片匹配和前體離子同系物篩查等功能.在FindPFΔS功能的基礎上,該團隊又開發(fā)了PFΔScreen軟件[36],該軟件主要增加了一級質(zhì)譜的碳數(shù)歸一化質(zhì)量虧損(MD/C)過濾功能,并增強了色譜圖、質(zhì)譜圖和離子共洗脫等可視化功能.
3.4 APP-ID
南京大學韋斯團隊在2024年開發(fā)了一個自動PFAS識別平臺(APP-ID)[59],該平臺突出亮點是對常規(guī)PFAS非靶標識別流程的特征提取和特征識別環(huán)節(jié)進行改進.這些改進包括使用自主開發(fā)的Flink算法構(gòu)建PFAS分子網(wǎng)絡,開發(fā)一級質(zhì)譜精確搜索模塊和轉(zhuǎn)換搜索模塊,開發(fā)機器學習預測PFAS結(jié)構(gòu)指紋模塊,構(gòu)建候選結(jié)構(gòu)和預測指紋相似性的排序評分系統(tǒng),綜合提高對疑似PFAS特征的提取覆蓋率和未知PFAS的識別準確率.
3.5 SWATH-F/IonDecon
在3.1~3.4節(jié)所列出的軟件主要適用于DDA數(shù)據(jù),且功能已經(jīng)較為完善,而針對DIA數(shù)據(jù)的PFAS非靶標識別軟件仍在不斷開發(fā)中.南京大學韋斯團隊針對SWATH(sequential window acquisition of all theoretical fragment-ion spectra)數(shù)據(jù)(一種DIA數(shù)據(jù))開發(fā)了基于Python的SWATH-F[60],該腳本可以從反卷積與峰提取后的質(zhì)譜數(shù)據(jù)中篩查PFAS同系物,并自動化注釋其結(jié)構(gòu).耶魯大學KOELMEL團隊[61]則開發(fā)了解卷積軟件IonDecon,完成了DIA數(shù)據(jù)到DDA數(shù)據(jù)的轉(zhuǎn)化,并集成Fluoromatch軟件用于后續(xù)PFAS識別.
3.6 應用實踐
表2總結(jié)了幾款軟件的基本信息與特點.已有研究比較了不同軟件(包括商業(yè)軟件與開源軟件)在PFAS非靶標識別效果的差異,不同軟件之間識別結(jié)果的一致性約為70%,其差異主要源自峰提取算法和數(shù)據(jù)庫容量[54,62].軟件的迭代更新可不斷提高PFAS非靶標識別的數(shù)量與準確性,也會進一步減少識別結(jié)果的差異.Fluoromatch軟件更新頻率較高,目前使用該軟件進行PFAS非靶標識別的研究在逐步增加.數(shù)據(jù)采集模式也是影響識別效果的一個主要因素,PARTINGTON等[63]研究表明一級質(zhì)譜掃描、DIA和DDA適用于不同識別目的,需要在掃描精度、鑒定置信度和識別數(shù)量上進行取舍.因此,研究者可根據(jù)實驗數(shù)據(jù)情況和預期功能來選擇軟件進行數(shù)據(jù)分析.
4 結(jié)論與展望
PFAS的廣泛使用及其在環(huán)境中的普遍檢出對生態(tài)環(huán)境與人體健康形成潛在危害,而非靶標PFAS的高效識別是進行PFAS分析和管控的重要基礎.本文系統(tǒng)總結(jié)了利用高分辨率質(zhì)譜數(shù)據(jù)開展PFAS非靶標識別的技術框架、識別策略應用情況及優(yōu)缺點,全面梳理了PFAS非靶標識別開源軟件的特點及應用實踐.對于PFAS非靶標識別技術的研發(fā),將來可從以下方面展開:
(1)擴大非靶標分析涵蓋化學空間.樣品的前處理方法、色譜和質(zhì)譜條件等分析過程均可影響所涵蓋的PFAS種類,但目前尚需構(gòu)建簡易通用工作流程,用于提取樣品中絕大部分PFAS組分.同時,也需要開展與其他分析方法(總可氧化前體、紅外光譜、核磁共振氟譜等)的聯(lián)合使用研究,用來更好解釋樣品中有機氟的組成和來源.
(2)開發(fā)準確高效智能的分析軟件.目前商用軟件和開源軟件在峰提取算法、分析速度、識別置信度等方面均存在優(yōu)化的空間,需要開發(fā)更多數(shù)據(jù)“無損”過濾方法來進一步降低識別假陽性率和人工干擾.人工智能和機器學習可輔助提高PFAS特征的識別覆蓋率和準確率.基于PFAS的數(shù)量和類型,可靠的自動評級、自動分組與數(shù)據(jù)可視化功能也將大幅減少人工處理時間.
(3)拓展PFAS非靶標數(shù)據(jù)的應用.目前納入詳細討論分析的PFAS非靶標數(shù)據(jù)主要用于未知PFAS識別,環(huán)境歸趨與溯源.可以將其他學科如毒理學、醫(yī)學等學科的數(shù)據(jù)與PFAS非靶標數(shù)據(jù)結(jié)合,實現(xiàn)對跨學科問題的多角度研究.如與定量構(gòu)效關系預測和效應導向分析結(jié)合可實現(xiàn)“有毒”PFAS的準確鑒定,與代謝組學非靶標數(shù)據(jù)的結(jié)合可擴大對未知PFAS在化學暴露組中重要性的認識.
參 考 文 獻
[1] WANG Z Y,BUSER A M,COUSINS I T,et al.A new OECD definition for per- and polyfluoroalkyl substances[J].Environmental Science amp; Technology,2021,55(23):15575-15578.
[2]SCHYMANSKI E L,ZHANG J,THIESSEN P A,et al.Per- and polyfluoroalkyl substances(PFAS) in PubChem:7 million and growing[J].Environmental Science amp; Technology,2023,57(44):16918-16928.
[3]GLüGE J,SCHERINGER M,COUSINS I T,et al.An overview of the uses of per- and polyfluoroalkyl substances(PFAS)[J].Environmental Science Processes amp; Impacts,2020,22(12):2345-2373.
[4]COUSINS I T,JOHANSSON J H,SALTER M E,et al.Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances(PFAS)[J].Environmental Science amp; Technology,2022,56(16):11172-11179.
[5]EVICH M G,DAVIS M J B,MCCORD J P,et al.Per- and polyfluoroalkyl substances in the environment[J].Science,2022,375(6580):eabg9065.
[6]ACKERMAN GRUNFELD D,GILBERT D,HOU J,et al.Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters[J].Nature Geoscience,2024,17:340-346.
[7]PLACE B J,F(xiàn)IELD J A.Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military[J].Environmental Science amp; Technology,2012,46(13):7120-7127.
[8]WANG Q,RUAN Y F,YUEN C N T,et al.Tracing per- and polyfluoroalkyl substances(PFASs) in the aquatic environment:target analysis and beyond[J].TrAC Trends in Analytical Chemistry,2023,169:117351.
[9]YU N Y,GUO H W,YANG J P,et al.Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China[J].Environmental Science amp; Technology,2018,52(15):8205-8214.
[10]ZWEIGLE J,BUGSEL B,RōHLER K,et al.PFAS-contaminated soil site in Germany:nontarget screening before and after direct TOP assay by kendrick mass defect and FindPFΔS[J].Environmental Science amp; Technology,2023,57(16):6647-6655.
[11]SPAAN K M,VAN NOORDENBURG C,PLASSMANN M M,et al.Fluorine mass balance and suspect screening in marine mammals from the Northern Hemisphere[J].Environmental Science amp; Technology,2020,54(7):4046-4058.
[12]LI Y Q,YU N Y,DU L T,et al.Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and nontarget screening[J].Environmental Science amp; Technology,2020,54(6):3407-3416.
[13]JIAO E M,LARSSON P,WANG Q,et al.Further insight into extractable(organo) fluorine mass balance analysis of tap water from Shanghai,China[J].Environmental Science amp; Technology,2023,57(38):14330-14339.
[14]CHEN Y J,WANG R D,SHIH Y L,et al.Emerging perfluorobutane sulfonamido derivatives as a new trend of surfactants used in the semiconductor industry[J].Environmental Science amp; Technology,2024,58(3):1648-1658.
[15]HARRIS K J,MUNOZ G,WOO V,et al.Targeted and suspect screening of per- and polyfluoroalkyl substances in cosmetics and personal care products[J].Environmental Science amp; Technology,2022,56(20):14594-14604.
[16]LIU T,HU L X,HAN Y,et al.Non-target discovery and risk prediction of per- and polyfluoroalkyl substances(PFAS) and transformation products in wastewater treatment systems[J].Journal of Hazardous Materials,2024,476:135081.
[17]GUO J,HUAN T.Comparison of full-scan,data-dependent,and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics[J].Analytical Chemistry,2020,92(12):8072-8080.
[18]LIU Y N,D'AGOSTINO L A,QU G B,et al.High-resolution mass spectrometry(HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances(PFASs) in environmental and human samples[J].TrAC Trends in Analytical Chemistry,2019,121:115420.
[19]BUGSEL B,ZWEIGLE J,ZWIENER C.Nontarget screening strategies for PFAS prioritization and identification by high resolution mass spectrometry:a review[J].Trends in Environmental Analytical Chemistry,2023,40:e00216.
[20]錢慧敏,劉艷娜,姚林林,等.非靶標技術在新污染物識別中的應用[J].環(huán)境化學,2024,43(2):363-376.
QIAN H M,LIU Y N,YAO L L,et al.Recent advances in nontarget discovery of emerging pollutants in the environment[J].Environmental Chemistry,2024,43(2):363-376.
[21]SCHYMANSKI E L,JEON J,GULDE R,et al.Identifying small molecules via high resolution mass spectrometry:communicating confidence[J].Environmental Science amp; Technology,2014,48(4):2097-2098.
[22]CHARBONNET J A,MCDONOUGH C A,XIAO F,et al.Communicating confidence of per- and polyfluoroalkyl substance identification via high-resolution mass spectrometry[J].Environmental Science amp; Technology Letters,2022,9(6):473-481.
[23]GHORBANI GORJI S,GóMEZ RAMOS M J,DEWAPRIYA P,et al.New PFASs identified in AFFF impacted groundwater by passive sampling and nontarget analysis[J].Environmental Science amp; Technology,2024,58(3):1690-1699.
[24]PLACE B J,ULRICH E M,CHALLIS J K,et al.An introduction to the benchmarking and publications for non-targeted analysis working group[J].Analytical Chemistry,2021,93(49):16289-16296.
[25]JOERSS H,MENGER F.The complex ′PFAS world′-How recent discoveries and novel screening tools reinforce existing concerns[J].Current Opinion in Green and Sustainable Chemistry,2023,40:100775.
[26]LI X R,CUI D N,NG B,et al.Non-targeted analysis for the screening and semi-quantitative estimates of per- and polyfluoroalkyl substances in water samples from South Florida environments[J].Journal of Hazardous Materials,2023,452:131224.
[27]YOUNG R B,PICA N E,SHARIFAN H,et al.PFAS analysis with ultrahigh resolution 21T FT-ICR MS:suspect and nontargeted screening with unrivaled mass resolving power and accuracy[J].Environmental Science amp; Technology,2022,56(4):2455-2465.
[28]KIND T,F(xiàn)IEHN O.Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry[J].BMC Bioinformatics,2007,8:105.
[29]TANG C M,LIANG Y T,WANG K,et al.Comprehensive characterization of per- and polyfluoroalkyl substances in wastewater by liquid chromatography-mass spectrometry and screening algorithms[J].NPJ Clean Water,2023,6:6.
[30]JIAO Z Y,YU N Y,MAO J D,et al.The occurrence,tissue distribution,and PBT potential of per- and polyfluoroalkyl substances in the freshwater organisms from the Yangtze River via nontarget analysis[J].Journal of Hazardous Materials,2023,458:131868.
[31]MOHAMMED TAHA H,AALIZADEH R,ALYGIZAKIS N,et al.The NORMAN suspect list exchange(NORMAN-SLE):facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry[J].Environmental Sciences Europe,2022,34(1):104.
[32]KOELMEL J P,STELBEN P,MCDONOUGH C A,et al.FluoroMatch 2.0-making automated and comprehensive non-targeted PFAS annotation a reality[J].Analytical and Bioanalytical Chemistry,2022,414(3):1201-1215.
[33]ZWEIGLE J,BUGSEL B,ZWIENER C.Efficient PFAS prioritization in non-target HRMS data:systematic evaluation of the novel MD/C-m/C approach[J].Analytical and Bioanalytical Chemistry,2023,415(10):1791-1801.
[34]KAUFMANN A,BUTCHER P,MADEN K,et al.Simplifying nontargeted analysis of PFAS in complex food matrixes[J].Journal of AOAC International,2022,105(5):1280-1287.
[35]ZWEIGLE J,BUGSEL B,ZWIENER C.FindPFΔS:non-target screening for PFAS-Comprehensive data mining for MS2 fragment mass differences[J].Analytical Chemistry,2022,94(30):10788-10796.
[36]ZWEIGLE J,BUGSEL B,F(xiàn)ABREGAT-PALAU J,et al.PFΔScreen-an open-source tool for automated PFAS feature prioritization in non-target HRMS data[J].Analytical and Bioanalytical Chemistry,2024,416(2):349-362.
[37]BARZEN-HANSON K A,ROBERTS S C,CHOYKE S,et al.Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams(AFFFs) and AFFF-impacted groundwater[J].Environmental Science amp; Technology,2017,51(4):2047-2057.
[38]WANG Y,YU N Y,ZHU X B,et al.Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park[J].Environmental Science amp; Technology,2018,52(19):11007-11016.
[39]MUNOZ G,MICHAUD A M,LIU M,et al.Target and nontarget screening of PFAS in biosolids,composts,and other organic waste products for land application in France[J].Environmental Science amp; Technology,2022,56(10):6056-6068.
[40]HORAI H,ARITA M,KANAYA S,et al.MassBank:a public repository for sharing mass spectral data for life sciences[J].Journal of Mass Spectrometry,2010,45(7):703-714.
[41]VINAIXA M,SCHYMANSKI E L,NEUMANN S,et al.Mass spectral databases for LC/MS- and GC/MS-based metabolomics:state of the field and future prospects[J].TrAC Trends in Analytical Chemistry,2016,78:23-35.
[42]BOATMAN A K,CHAPPEL J R,POLERA M E,et al.Assessing per- and polyfluoroalkyl substances in fish fillet using non-targeted analyses[J].Environmental Science amp; Technology,2024,58(32):14486-14495.
[43]FU Y,JI Y Y,TIAN Y W,et al.Unveiling priority emerging PFAS in Taihu Lake using integrated nontarget screening,target analysis,and risk characterization[J].Environmental Science amp; Technology,2024,58(42):18980-18991.
[44]GETZINGER G J,HIGGINS C P,F(xiàn)ERGUSON P L.Structure database and in silico spectral library for comprehensive suspect screening of per- and polyfluoroalkyl substances(PFASs) in environmental media by high-resolution mass spectrometry[J].Analytical Chemistry,2021,93(5):2820-2827.
[45]CHEN Y J,YANG J S,LIN A Y C.Comprehensive nontargeted analysis of fluorosurfactant byproducts and reaction products in wastewater from semiconductor manufacturing[J].Sustainable Environment Research,2024,34(1):14.
[46]STRYNAR M,MCCORD J,NEWTON S,et al.Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry[J].Journal of Exposure Science amp; Environmental Epidemiology,2023,33(4):575-588.
[47]MANZ K E,F(xiàn)EERICK A,BRAUN J M,et al.Non-targeted analysis(NTA) and suspect screening analysis(SSA):a review of examining the chemical exposome[J].Journal of Exposure Science amp; Environmental Epidemiology,2023,33(4):524-536.
[48]AALIZADEH R,ALYGIZAKIS N A,SCHYMANSKI E L,et al.Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening[J].Analytical Chemistry,2021,93(33):11601-11611.
[49]GUARDIAN M G E,ANTLE J P,VEXELMAN P A,et al.Resolving unknown isomers of emerging per- and polyfluoroalkyl substances(PFASs) in environmental samples using COSMO-RS-derived retention factor and mass fragmentation patterns[J].Journal of Hazardous Materials,2021,402:123478.
[50]丁一.基于機器學習實現(xiàn)全氟及多氟化合物非靶標快速篩查[D].武漢:江漢大學,2023.
DING Y.Rapid non-target screening of Per- and Polyfluoroalkyl Substances based on machine learning algorithm[D].Wuhan:Jianghan University,2023.
[51]DODDS J N,HOPKINS Z R,KNAPPE D R U,et al.Rapid characterization of per- and polyfluoroalkyl substances(PFAS) by ion mobility spectrometry-mass spectrometry(IMS-MS)[J].Analytical Chemistry,2020,92(6):4427-4435.
[52]SONG X C,CANELLAS E,DREOLIN N,et al.Application of ion mobility spectrometry and the derived collision cross section in the analysis of environmental organic micropollutants[J].Environmental Science amp; Technology,2023,57(51):21485-21502.
[53]KIRKWOOD-DONELSON K I,DODDS J N,SCHNETZER A,et al.Uncovering per- and polyfluoroalkyl substances(PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses[J].Science Advances,2023,9(43):eadj7048.
[54]JACOB P,WANG R,CHING C,et al.Evaluation,optimization,and application of three independent suspect screening workflows for the characterization of PFASs in water[J].Environmental Science:Processes amp; Impacts,2021,23(10):1554-1565.
[55]SADIA M,BOUDGUIYER Y,HELMUS R,et al.A stochastic approach for parameter optimization of feature detection algorithms for non-target screening in mass spectrometry[J].Analytical and Bioanalytical Chemistry,2024.DOI:10.1007/s00216-024-05425-3.
[56]KOELMEL J P,PAIGE M K,ARISTIZABAL-HENAO J J,et al.Toward comprehensive per- and polyfluoroalkyl substances annotation using FluoroMatch software and intelligent high-resolution tandem mass spectrometry acquisition[J].Analytical Chemistry,2020,92(16):11186-11194.
[57]KOELMEL J P,STELBEN P,GODRI D,et al.Interactive software for visualization of nontargeted mass spectrometry data—FluoroMatch visualizer[J].Exposome,2022,2(1):osac006.
[58]MARTIN LOOS.EnviMass version 3.5(2019)[CP].
[59]WANG X B,YU N Y,JIAO Z Y,et al.Machine learning-enhanced molecular network reveals global exposure to hundreds of unknown PFAS[J].Science Advances,2024,10(21):eadn1039.
[60]LI L H,GAO R J,WANG X B,et al.SWATH-F:a novel nontarget strategy based on the SWATH-MS deconvolution method assisting in annotating PFAS homologues in multisample studies[J].Analytical Chemistry,2023,95(39):14551-14557.
[61]KOELMEL J P,KUMMER M,CHEVALLIER O,et al.Expanding per- and polyfluoroalkyl substances coverage in nontargeted analysis using data-independent analysis and IonDecon[J].Journal of the American Society for Mass Spectrometry,2023,34(11):2525-2537.
[62]NASON S L,KOELMEL J,ZUVERZA-MENA N,et al.Software comparison for nontargeted analysis of PFAS in AFFF-contaminated soil[J].Journal of the American Society for Mass Spectrometry,2021,32(4):840-846.
[63]PARTINGTON J M,RANA S,SZABO D,et al.Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances(PFAS)[J].Analytical and Bioanalytical Chemistry,2024,416(4):895-912.
A review on the nontarget identification technology for PFAS
by using high resolution mass spectrometryMeng Xiangzhou1,2,3, Zhang Boxuan1,3, Han Baocang1,3, Zhu Qinghe2, Yang Jie2, Zhang Minchao4
(1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Ministry of Ecology and Environment
Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences,
Shanghai 200233, China; 3. Jiaxing Tongji Environmental Research Institute, Jiaxing 314051, China; 4. Technical Center
for Industrial Products and Raw Materials Inspection and Testing of Shanghai Customs District, Shanghai 201210, China)
Abstract: Per- and polyfluoroalkyl substances(PFAS) have been widely used in various commercial products, which raised global concerns because of their persistence, bioaccumulation, mobility, and toxicity. Large unknown PFAS in the environment are generally identified by using nontarget analysis with high-resolution mass spectrometry, however, the development of fast and efficient identification technology is difficult and urgent. This review aims to draw the framework of nontarget identification technology for PFAS, to summarize the application, advantages and disadvantages of different nontarget identification strategies, and to compare the open-source nontarget identification software. The results are helpful for the precise identification, source exploration and control of novel PFAS in the environment.
Keywords: per- and polyfluoroalkyl substances(PFAS); high-resolution mass spectrometry(HRMS); nontarget identification; suspect screening; new pollutants
[責任編校 趙曉華 劉洋]