【摘要】 對(duì)于分化良好以及早期甲狀腺癌,通過手術(shù)、促甲狀腺激素抑制治療和放射性碘治療等常規(guī)治療方案,通常可以顯著延長患者的總體生存期和無進(jìn)展生存期,其預(yù)后可接近正常人群。對(duì)于無法手術(shù)切除或?qū)Ψ派湫缘庵委煙o反應(yīng)的晚期或未分化甲狀腺癌,則通常需要全身治療。傳統(tǒng)的細(xì)胞毒性全身化學(xué)治療或外照射放射治療對(duì)這些患者的療效甚微。近十年來,甲狀腺癌的靶向治療經(jīng)歷了快速發(fā)展期,盡管這些治療方案取得了可喜的成果,但許多晚期甲狀腺癌患者最終會(huì)因獲得性耐藥性而病情惡化。文章總結(jié)了甲狀腺癌靶向藥物的相關(guān)耐藥機(jī)制以及克服耐藥性的手段,以期為未來靶向治療的臨床實(shí)踐提供參考,并指導(dǎo)后續(xù)研究方向。
【關(guān)鍵詞】 甲狀腺癌;靶向治療;耐藥;絲裂原活化蛋白激酶;鼠類肉瘤病毒癌基因同源物B1
Mechanisms of drug resistance to targeted drugs in thyroid cancer
WEN Xinyun, WU Juekun
(Department of Thyroid and Breast Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China)
Corresponding author: WU Juekun, E-mail: wujuekun@mail.sysu.edu.cn
【Abstract】 For well-differentiated and early-stage thyroid cancer, conventional treatment options such as surgery, thyroid-stimulating hormone suppression therapy, and radioactive iodine therapy can usually significantly extend patients’ overall survival and progression-free survival, with prognosis approaching that of the general population. In contrast, for advanced or undifferentiated thyroid cancer that cannot be surgically resected or is unresponsive to radioactive iodine treatment, systemic therapy is typically required. Traditional cytotoxic chemotherapy or external radiation therapy has limited efficacy in these patients. Over the past decade, targeted therapies for thyroid cancer have undergone rapid development. Despite these treatments yielding promising results, many patients with advanced thyroid cancer ultimately experience disease progression due to acquired resistance. In this paper, we summarize the mechanisms of resistance to targeted drugs in thyroid cancer and explore strategies to overcome resistance, aiming to provide reference for future clinical practice in targeted therapy and guide directions for subsequent research.
【Key words】 Thyroid cancer; Targeted therapy; Resistance; Mitogen-activated protein kinase (MAPK);
V-raf murine sarcoma viral oncogene homolog B1(BRAF)
甲狀腺癌(thyroid cancer,TC)是一種起源于甲狀腺濾泡上皮或?yàn)V泡旁上皮細(xì)胞的惡性腫瘤。根據(jù)2021年全球疾病負(fù)擔(dān)研究(Global Burden of Disease Study 2021)數(shù)據(jù),2021年全球TC的估計(jì)發(fā)病人數(shù)為249 538例,死亡人數(shù)為44 799例;在中國,估計(jì)發(fā)病人數(shù)為48 105例,死亡人數(shù)為7 692例。總體來看,全球和中國TC的發(fā)病率均呈上升趨勢(shì)。然而,隨著診斷和治療水平的不斷提高,病死率則呈現(xiàn)下降趨勢(shì)[1]。
根據(jù)腫瘤的起源及分化差異,TC可分為甲
狀腺乳頭狀癌(papillary thyroid carcinoma,PTC)、
甲狀腺濾泡狀癌(follicular thyroid carcinoma,
FTC)、甲狀腺髓樣癌(medullary thyroid carcinoma,
MTC)、甲狀腺低分化癌(poorly differentiated thyroid
carcinoma,PDTC)以及甲狀腺未分化癌(anaplastic thyroid cancer,ATC)。前兩者被稱為分化型甲狀腺癌(differentiated thyroid carcinoma,DTC),通過采用常規(guī)療法如手術(shù)、促甲狀腺激素抑制治療和放射性核素碘(radioactive iodine,RAI)治療,通??梢匝娱L早期或分化良好的TC(如PTC和FTC)患者的總體生存期(overall survival,OS)和無進(jìn)展生存期(progression free survival,PFS),患者的預(yù)期壽命可接近正常人群。然而,對(duì)于無法手術(shù)切除或?qū)AI無反應(yīng)的晚期TC或ATC患者,則通常需要全身治療,而傳統(tǒng)的細(xì)胞毒性全身化學(xué)治療(化療)或外照射放射治療(放療)對(duì)這些患者的效果甚微。
近十年來,TC的靶向治療經(jīng)歷了快速發(fā)展。靶向藥物通過抑制導(dǎo)致癌癥發(fā)生的異常激活信號(hào)通路來抑制腫瘤增殖,然而,這一抑制作用在TC中似乎并不持久。主要原因是受抑制的信號(hào)通路以及其他平行信號(hào)通路在這些靶向藥物的作用下發(fā)生了異常激活。本文綜述了TC靶向治療中耐藥性機(jī)制的研究進(jìn)展,并探討了當(dāng)前克服耐藥性的策略,以供臨床治療TC提供參考。
1 靶向藥物介紹
1.1 多靶點(diǎn)激酶抑制劑
對(duì)于局部復(fù)發(fā)或轉(zhuǎn)移的進(jìn)展性放射性碘難
治性DTC(radioiodine-refractory DTC,RR-DTC)患者,多靶點(diǎn)激酶抑制劑已成為首選的治療方案,DTC不僅涉及血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)及其受體(vascular endothelial growth factor receptor,VEGFR)的高表達(dá),其他促進(jìn)腫瘤血管生成和腫瘤發(fā)生的分子,如成纖維生長因子受體(fibroblast growth factor receptor,F(xiàn)GFR)、血小板衍生生長因子受體(platelet-derived growth factor receptor,PDGFR)、快速加速纖維肉瘤(rapidly accelerated fibrosarcoma,RAF)激酶、激酶插入域受體(kinase insert domain receptor,KIT)、轉(zhuǎn)染期間重排(rearranged during transfection,RET)激酶等,也在此過程中起到關(guān)鍵作用。因此,靶向這些分子的藥物能夠有效抑制腫瘤的增殖和轉(zhuǎn)移。
目前美國食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)已批準(zhǔn)用于RR-DTC的3種多靶點(diǎn)激酶抑制劑,包括侖伐替尼(lenvatinib)、索拉非尼(sorafenib)和卡博替尼(cabozantinib),見表1。其中,侖伐替尼被認(rèn)為是首選藥物。一項(xiàng)Ⅲ期臨床研究(NCT01321554)顯示,侖伐替尼在RR-DTC患者中的應(yīng)答率達(dá)到64.8%,提高了中位PFS至18.3個(gè)月,而安慰劑組的PFS僅為3.6個(gè)月[2]。然而,侖伐替尼的不良反應(yīng)較為顯著,超過40%的患者出現(xiàn)治療相關(guān)不良反應(yīng),如高血壓、腹瀉、惡心及疲勞等,并且有6例患者的死亡被認(rèn)為與藥物有關(guān)。相比之下,索拉非尼在RR-DTC中的應(yīng)答率較低,僅為12.2%,但同樣在PFS方面顯示出改善作用,達(dá)到了10.8個(gè)月,優(yōu)于安慰劑組的5.8個(gè)月(NCT00984282)[3]。卡博替尼則主要用于侖伐替尼或索拉非尼治療失敗后的患者,臨床試驗(yàn)數(shù)據(jù)(NCT03690388)顯示,卡博替尼組的中位PFS為11.0個(gè)月,高于安慰劑組的1.9個(gè)月,且應(yīng)答率為11.0%[4-5]。這表明,卡博替尼在VEGFR靶向治療失敗后仍具有顯著的臨床療效。
對(duì)于不可切除的局部晚期或轉(zhuǎn)移性MTC,目前FDA批準(zhǔn)使用的多靶點(diǎn)激酶抑制劑為凡德他尼(vandetanib)和卡博替尼(cabozantinib),見表1。凡德他尼通過Ⅲ期臨床研究 (NCT00410761)驗(yàn)證了其在治療進(jìn)展性MTC中的療效[6]。該研究顯示,凡德他尼能夠顯著延長患者的中位PFS(30.5個(gè)月vs. 19.3個(gè)月)。然而,凡德他尼的使用受到其不良反應(yīng),特別是心臟毒性的限制。在2012 年,F(xiàn)DA批準(zhǔn)卡博替尼用于治療進(jìn)展性、轉(zhuǎn)移性MTC患者,一項(xiàng)Ⅲ期臨床研究(NCT00704730)的數(shù)據(jù)顯示,卡博替尼改善了中位PFS(11.2個(gè)月vs. 4.0個(gè)月),且與安慰劑組相比,卡博替尼組的應(yīng)答率和疾病控制率均有所提高[7]。
1.2 選擇性BRAF和MEK抑制劑
TC的發(fā)生與絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase, PI3K/ serine/threonine protein kinase,AKT)信號(hào)通路密切相關(guān)[8]。MAPK通路的主要分子包括大鼠肉瘤(rat sarcoma,RAS)蛋白、快速加速纖維肉瘤(rapidly accelerated fibrosarcoma,RAF)激酶、絲裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)。其中,RAF激酶是由3種絲氨酸/蘇氨酸特異性蛋白激酶(ARAF、BRAF、CRAF)組成的家族。細(xì)胞外生長因子與多種受體酪氨酸激酶(receptor tyrosine kinase,RTK)結(jié)合后,通過 MAPK通路進(jìn)行信號(hào)傳導(dǎo)。2002年研究首次發(fā)現(xiàn)BRAF在黑色素瘤中的突變,證明其是致癌基因,能夠激活MAPK通路,促進(jìn)癌細(xì)胞增殖[9]。此后,BRAF突變也被發(fā)現(xiàn)在多種腫瘤類型中,包括TC、卵巢癌、結(jié)直腸癌等[9]。
達(dá)拉非尼(dabrafenib)是一種競爭性ATP抑制劑,專門針對(duì)BRAF V600E突變和CRAF,而曲美替尼(trametinib)則是一種MEK抑制劑。兩者聯(lián)合已獲得FDA批準(zhǔn),用于治療BRAF V600E突變的ATC。達(dá)拉非尼通過特異性結(jié)合BRAF V600E突變后的激酶結(jié)構(gòu)域,抑制其磷酸化活性,從而阻斷MAPK通路的下游信號(hào)傳導(dǎo)。曲美替尼則選擇性抑制MEK1和MEK2,進(jìn)一步阻止信號(hào)從RAF傳導(dǎo)至ERK,見表1。聯(lián)合使用這兩種藥物不僅能夠抑制MAPK通路,還能避免通過其他受體或下游通路(如PI3K/AKT)激活所致的耐藥性。一項(xiàng)Ⅱ期開放標(biāo)簽臨床試驗(yàn)(NCT02034110)評(píng)估了16例BRAF V600E突變的晚期ATC患者使用達(dá)拉非尼和曲美替尼聯(lián)合治療的療效和安全性[10-11]。結(jié)果顯示,總體應(yīng)答率為69%[10]。更新后的分析包括36例患者,結(jié)果顯示總體應(yīng)答率為56%,中位PFS為6.7個(gè)月,中位OS為14.5個(gè)月,12個(gè)月OS和PFS的估計(jì)值分別為43.2%和51.7%。常見的不良事件包括疲勞、發(fā)熱和惡心。該聯(lián)合治療在BRAF V600E突變的ATC患者中表現(xiàn)出顯著的臨床療效,并且耐受性良好,為這一罕見疾病提供了有效的治療選擇。盡管FDA并未批準(zhǔn)該聯(lián)合治療用于BRAF V600E突變的DTC,但在NCCN指南中,若DTC患者在使用侖伐替尼或索拉非尼治療后出現(xiàn)疾病進(jìn)展,并且確定有BRAF V600E突變,仍推薦達(dá)拉非尼與曲美替尼的聯(lián)合療法作為治療選擇。
1.3 選擇性TRK抑制劑
神經(jīng)營養(yǎng)受體酪氨酸激酶(neurotrophic receptor tyrosine kinase,NTRK)基因包括NTRK1、NTRK2和NTRK3,分別編碼肌球蛋白受體激酶(tropomyosin receptor kinase,TRK)家族成員TRKA、TRKB和TRKC。NTRK基因在多種腫瘤中常發(fā)生染色體重排,導(dǎo)致TRK蛋白與其他蛋白質(zhì)的融合。這種融合生成的嵌合蛋白具有去配體依賴性的持續(xù)激活功能,從而驅(qū)動(dòng)腫瘤的發(fā)生和進(jìn)展[12]。FDA自2018年起批準(zhǔn)了3種TRK抑制劑:拉羅替尼(larotrectinib)、恩曲替尼(entrectinib)和瑞普替尼(repotrectinib),用于治療所有NTRK基因融合陽性的實(shí)體瘤,見表1。在一項(xiàng)聯(lián)合分析中(NCT02122913、NCT02637687、NCT02576431),拉羅替尼在治療NTRK基因融合陽性腫瘤患者中的療效得到了驗(yàn)證[13]。該研究涵蓋了不同類型的腫瘤患者,其中包括5例TC患者。結(jié)果顯示,5例TC患者均對(duì)治療產(chǎn)生應(yīng)答,其中包括1例完全緩解和4例部分緩解。這一數(shù)據(jù)表明,拉羅替尼在NTRK融合陽性的TC患者中具有顯著的抗腫瘤活性,并且該藥物的耐受性良好,93%的不良事件為1級(jí)或2級(jí),且無超過5%的患者出現(xiàn)3級(jí)或4級(jí)的治療相關(guān)不良事件。對(duì)于恩曲替尼,另一項(xiàng)聯(lián)合分析(EudraCT 2012-000148-88、NCT02097810、NCT02568267)對(duì)54例NTRK基因融合陽性實(shí)體瘤患者進(jìn)行了評(píng)估,其中9%的患者為TC患者[14]。結(jié)果顯示,恩曲替尼在總?cè)巳褐械膽?yīng)答率為57.4%,證明了其在NTRK融合陽性實(shí)體瘤中的有效性。瑞普替尼則在一項(xiàng)Ⅰ/Ⅱ期臨床研究中(NCT03093116)被評(píng)估,研究對(duì)象為88例NTRK基因融合陽性晚期實(shí)體瘤患者,其中48例曾接受過TRK抑制劑治療,40例為初治患者[15]。分析結(jié)果表明,瑞普替尼在初治患者中的應(yīng)答率為58%,而在既往接受過TRK抑制劑治療患者中的應(yīng)答率為50%。這一結(jié)果表明,瑞普替尼對(duì)于NTRK融合陽性腫瘤患者,尤其是TRK抑制劑經(jīng)治患者,仍具有顯著的臨床活性。
1.4 選擇性RET抑制劑
RET基因編碼的跨膜受體酪氨酸激酶通過兩種主要機(jī)制導(dǎo)致持續(xù)的異常激活:一是半胱氨酸富集區(qū)或激酶結(jié)構(gòu)域的突變,二是通過基因重排,RET基因與上游合作基因融合。這些改變導(dǎo)致RET激酶的持續(xù)激活,實(shí)現(xiàn)配體非依賴性的信號(hào)傳導(dǎo),進(jìn)而促進(jìn)腫瘤的發(fā)生和進(jìn)展。FDA已批準(zhǔn)選擇性RET抑制劑普拉替尼(pralsetinib)和塞爾帕替尼(selpercatinib)用于治療RET改變的TC患者,見表1。普拉替尼在ARROW研究中(NCT03037385)顯示出顯著療效,尤其是在RET融合陽性TC患者中[16-17]。在該研究的9例TC患者的分析中,普拉替尼的應(yīng)答率達(dá)89%[16]。在最新的分析中,包括22例RET融合陽性TC患者,其應(yīng)答率為90.9%,中位PFS為25.4個(gè)月[17]。另一項(xiàng)LIBRETTO-001 研究(NCT03157128)評(píng)估了塞爾帕替尼在19例先前接受過治療的RET融合陽性TC患者中的療效,結(jié)果顯示應(yīng)答率為79%,12個(gè)月無進(jìn)展生存率的估計(jì)值為64%[18],驗(yàn)證了塞爾帕替尼在此類患者中的療效。
2 靶向藥物耐藥機(jī)制
2.1 生長因子受體以及配體的上調(diào)
多項(xiàng)研究已證實(shí),TC細(xì)胞通過在其表面過度表達(dá)生長因子受體來適應(yīng)激酶抑制劑的治療,進(jìn)而促進(jìn)耐藥性的發(fā)生。Montero-Conde 等[19]證明,BRAF突變的PTC細(xì)胞系通過過度表達(dá)表皮生長因子受體家族(epidermal growth factor receptor family,ERBB)中的成員,重新激活MAPK通路,從而獲得對(duì)維莫非尼(BRAF抑制劑)的耐藥性。這種耐藥機(jī)制并非局限于單一受體,而是多個(gè)受體的協(xié)同作用。例如,使用BRAF抑制劑和MEK抑制劑后,TC細(xì)胞中的人表皮生長因子受體2(human epidermal growth factor receptor 2,HER2)以及HER3表達(dá)上調(diào),且磷酸化水平升高,研究表明,這一變化的機(jī)制與MAPK通路抑制劑增強(qiáng)HER3啟動(dòng)子的活性、減少細(xì)胞轉(zhuǎn)錄抑制因子1(C-terminal binding protein 1,CTBP1)和CTBP2對(duì)HER3啟動(dòng)子的抑制作用密切相關(guān),從而增加HER3的轉(zhuǎn)錄水平。此外,轉(zhuǎn)錄組學(xué)分析進(jìn)一步揭示,表皮生長因子受體(epidermal growth factor receptor,EGFR)、Eph受體B2(Eph receptor B2,EPHB2)和PDGFRβ等受體也有類似的表達(dá)上調(diào)[19],提示這些受體在耐藥機(jī)制中可能發(fā)揮重要作用。除基因表達(dá)調(diào)控外,獲得性染色體多倍體也是導(dǎo)致耐藥性的潛在因素。研究發(fā)現(xiàn),在1例接受達(dá)拉非尼治療的 BRAF 突變的PTC患者的轉(zhuǎn)移性腫瘤中發(fā)現(xiàn)了7號(hào)染色體的三倍體,導(dǎo)致位于該染色體上的EGFR、間質(zhì)表皮轉(zhuǎn)化因子(mesenchymal to epithelial transition factor,MET)基因的拷貝數(shù)擴(kuò)增和過表達(dá),從而引發(fā)了耐藥性[20]。
由膜受體過度表達(dá)引發(fā)的耐藥機(jī)制表明,相應(yīng)的配體必須以足夠的量存在于細(xì)胞微環(huán)境中,才能有效激活這些受體。通過腫瘤細(xì)胞的自分泌、腫瘤基質(zhì)的旁分泌或全身性分泌,RTK配體水平往往會(huì)相應(yīng)增加。研究發(fā)現(xiàn),TC細(xì)胞通過自分泌神經(jīng)調(diào)節(jié)因子1(neuregulin 1,NRG1)導(dǎo)致HER2和HER3的持續(xù)活化,從而促進(jìn)耐藥性的發(fā)展[19]。類似地,在小鼠模型上,MET基因的擴(kuò)增不僅導(dǎo)致了BRAFV600E 突變 ATC的快速復(fù)發(fā),還伴隨著其配體肝細(xì)胞生長因子(hepatocyte growth factor,HGF)的上調(diào),進(jìn)一步促進(jìn)了耐藥性的產(chǎn)生[21]。
這些研究表明,腫瘤細(xì)胞通過調(diào)節(jié)受體及其配體的表達(dá),能夠適應(yīng)藥物壓力并逃避治療,從而推動(dòng)耐藥性的發(fā)生。
2.2 負(fù)反饋受抑及“悖論性激活”
正常的MAPK信號(hào)通路在激活后會(huì)通過多種機(jī)制啟動(dòng)負(fù)反饋,抑制上游激酶的活性。例如,高水平的 ERK的激活可以負(fù)反饋抑制RTK以及RAS等上游信號(hào)的傳導(dǎo)[22]。BRAFV600E蛋白以單體形式發(fā)揮作用,而大多數(shù)非典型BRAF突變蛋白(如BRAFV600K、BRAFL597V)則以二聚體形式發(fā)揮作用。BRAFV600E 突變導(dǎo)致的持續(xù)激活不僅提升了信號(hào)的強(qiáng)度,還可能通過下游效應(yīng)(如增強(qiáng)抑制性蛋白的表達(dá))來改變負(fù)反饋調(diào)控的敏感性,從而使其在不斷激活的情況下仍能逃逸負(fù)反饋調(diào)控。
第一代BRAF抑制劑的作用機(jī)制主要通過抑制BRAF 單體及下游ERK信號(hào)傳導(dǎo)來實(shí)現(xiàn), 但這一抑制作用也會(huì)減少ERK信號(hào)依賴的負(fù)反饋?zhàn)饔茫M(jìn)而使得配體依賴性信號(hào)傳導(dǎo)重新激活,這會(huì)導(dǎo)致RAS進(jìn)一步激活,RAS-GTP水平升高,進(jìn)而推動(dòng)RAF蛋白形成二聚體,并激活下游的MEK/ERK信號(hào)通路,最終促進(jìn)癌細(xì)胞的增殖,從而誘發(fā)耐藥性[23-24]。這一現(xiàn)象表明,BRAF抑制劑雖然有效地抑制了BRAFV600E突變的單體形式,但卻不能有效抑制二聚體形式的RAF蛋白,尤其是在RAS激活的情況下,二聚體的形成仍然可以恢復(fù)ERK信號(hào)的傳導(dǎo)。
此外,許多非典型BRAF突變體、BRAF剪接形式和BRAF融合體也會(huì)以二聚體形式存在,這使得它們對(duì)第一代BRAF抑制劑的耐受性增加,從而導(dǎo)致ERK活性的恢復(fù)[25]。在這種情況下,ERK信號(hào)對(duì)RAF抑制劑耐受,但對(duì)MEK抑制劑仍然敏感,通過聯(lián)合抑制RAF和MEK,可增強(qiáng)對(duì)MAPK通路的抑制作用,從而提高抗腫瘤活性。維莫非尼和達(dá)拉非尼已被證明能誘導(dǎo)RAF蛋白二聚化,并促進(jìn)BRAF野生型細(xì)胞中MAPK通路的悖論性激活[26-28]。綜上所述,第一代BRAF抑制劑的耐藥性主要源于BRAF蛋白的持續(xù)激活和RAF蛋白二聚體的形成。在BRAFV600E突變和其他非典型BRAF突變中,BRAF蛋白的單體與二聚體狀態(tài)之間的轉(zhuǎn)換是關(guān)鍵的耐藥機(jī)制。
2.3 癌基因的二次突變
RAS 和BRAF基因突變一直被認(rèn)為是相互排斥的,包括在TC和黑色素瘤中[29],但其他報(bào)告發(fā)現(xiàn)在極少數(shù)情況下,主要是在疾病晚期,會(huì)同時(shí)出現(xiàn)突變。這些雙重事件被歸因于腫瘤的異質(zhì)性以及藥物治療的選擇性壓力導(dǎo)致特定腫瘤細(xì)胞克隆的出現(xiàn),從而推動(dòng)耐藥性的形成。在TC中,BRAF抑制劑的獲得性耐藥通常歸因于NRAS或KRAS基因的二次突變。
Danysh等[30]通過使TC細(xì)胞長期暴露于維莫非尼,建立耐藥細(xì)胞系,發(fā)現(xiàn)在這些耐藥細(xì)胞中出現(xiàn)了KRASG12D的激活突變。類似地,Owen 等[31]報(bào)道了在一例接受達(dá)拉非尼/曲美替尼聯(lián)合治療的PTC患者病情進(jìn)展時(shí),活組織檢查(活檢)發(fā)現(xiàn)了獲得性KRASG12V突變。Cabanillas 等[32]報(bào)道了4例接受選擇性BRAF抑制劑治療的TC患者在病情進(jìn)展時(shí)出現(xiàn)RAS突變?;颊?和3出現(xiàn)了KRASG12V突變外,還有2例患者分別出現(xiàn)了NRASQ61K突變和NRASG13D突變。
這些RAS突變使得PI3K/AKT、MAPK通路出現(xiàn)繼發(fā)性激活,從而減弱BRAF抑制劑的效果。作為RAF家族的最初成員,CRAF的突變?cè)赥C并不如BRAF那樣常見,但活化的KRAS或KRAS突變會(huì)利用CRAF作為替代下游接收器,維持RAS/MEK/ERK或者PI3K/AKT的信號(hào)傳導(dǎo)[33],并且,腫瘤細(xì)胞中由CRAF激活的MEK對(duì)MEK抑制劑的敏感性低于由BRAF V600E激活的MEK[34]。由于RAS蛋白的結(jié)構(gòu)特性(如表面較少有可以結(jié)合小分子的部位),長期以來難以開發(fā)出有效的小分子抑制劑直接靶向該蛋白。
小型GTP酶RAC1(Ras-related C3 botulinum toxin substrate 1,RAC1)屬于Rho家族的GTP酶。它通過與其典型靶標(biāo)PAK1、PAK2和PAK3(p21-activated kinases,PAK)相互作用,調(diào)控細(xì)胞運(yùn)動(dòng)、細(xì)胞骨架的重組和細(xì)胞增殖。RAC1P29S與 RAC1P34R 突變是原發(fā)性和耐藥性黑色素瘤中已知的驅(qū)動(dòng)突變[35-36]。在1例接受達(dá)拉非尼治療后進(jìn)展的PTC患者中,Rozita等[20]在表現(xiàn)出ATC表型的轉(zhuǎn)移性病變中檢測(cè)到了RAC1P34R突變。進(jìn)一步研究顯示,RAC1基因突變會(huì)導(dǎo)致細(xì)胞形態(tài)的變化、F-actin的重組(主要集中在細(xì)胞皮層)以及細(xì)胞黏附特性的變化。這些變化除了有助于腫瘤細(xì)胞的浸潤和遷移之外,還能驅(qū)動(dòng)細(xì)胞增殖并引發(fā)對(duì)BRAF抑制劑的耐藥性。
除了上述基因突變外,磷酸酯酶與張力蛋白同源物(phosphatase and tensin homolog,PTEN)、神經(jīng)纖維瘤1型(neurofibromin 1,NF1)、神經(jīng)纖維瘤2型(neurofibromin 2,NF2)、腫瘤蛋白53(tumor protein p53,TP53)和細(xì)胞周期依賴性激酶抑制因子2A(cyclin-dependent kinase inhibitor 2A,CDKN2A)等基因也經(jīng)常出現(xiàn)可能賦予耐藥性的二次突變[37]。總之,BRAF抑制劑的耐藥性是一個(gè)多因素共同作用的復(fù)雜過程,涉及RAS家族突變、CRAF替代激活、RAC1突變及多個(gè)抑制因子的失活。理解這些耐藥機(jī)制將為我們提供新的治療策略,尤其是針對(duì)RAS和RAC1等關(guān)鍵分子的小分子抑制劑的開發(fā),聯(lián)合抑制BRAF/MEK通路的策略,以及更精準(zhǔn)的個(gè)性化治療方案。
2.4 其他平行信號(hào)通路的激活
BRAF和MEK抑制劑的一個(gè)明顯缺點(diǎn)是僅阻斷MAPK通路。然而,MAPK通路的抑制往往伴隨其他平行信號(hào)通路的繼發(fā)性激活,這可能是導(dǎo)致耐藥性發(fā)生的關(guān)鍵因素。
例如,當(dāng)TC細(xì)胞發(fā)生KRASG12D激活突變時(shí),可以在這些細(xì)胞中觀察到活化的AKT,這表明PI3K/AKT通路出現(xiàn)了繼發(fā)性激活[30]。PI3K/AKT通路的重新激活可導(dǎo)致血管細(xì)胞黏附分子1(vascular cell adhesion molecule 1,VCAM-1)的上調(diào),從而降低對(duì)維莫非尼的敏感性,此外,VCAM-1還能促進(jìn)TC細(xì)胞在體外的遷移和侵襲[38]。源酪氨酸激酶Src是細(xì)胞內(nèi)的一種非受體酪氨酸激酶,作為TC細(xì)胞系中的PI3K/AKT通路調(diào)節(jié)劑,也可能會(huì)促進(jìn)對(duì) MAPK 靶向藥物的耐藥性。有研究表明,PI3K通路的激活與達(dá)沙替尼(dasatinib)的內(nèi)在耐藥性有關(guān),在MAPK和PI3K通路均受抑制的細(xì)胞系中,聯(lián)合抑制Src和MAPK通路可以克服達(dá)沙替尼的內(nèi)在耐藥性[39]。
此外,“海刺猬”(Sonic hedgehog,Shh)信號(hào)通路在多種癌癥中被發(fā)現(xiàn)異常激活,包括胰腺癌、膠質(zhì)母細(xì)胞瘤和TC等[40]。Shh信號(hào)通路及其下游轉(zhuǎn)錄因子鉻結(jié)合蛋白1(B lymphoma Mo-MLV insertion region 1,BMI1)和干細(xì)胞維持因子2(SRY-related HMG-box gene 2,SOX2)通過上調(diào)干性相關(guān)基因的表達(dá),在腫瘤干細(xì)胞的自我更新中發(fā)揮關(guān)鍵作用,而腫瘤干細(xì)胞在耐藥性中起著重要的推動(dòng)作用[41]。Gli1是該信號(hào)通路的轉(zhuǎn)錄因子,維莫非尼通過上調(diào)HER3的表達(dá),繼發(fā)性激活PI3K和MAPK信號(hào)通路[19],而這2條通路可以通過激活Gli1交叉激活Shh信號(hào)通路 [42]。
除了上述信號(hào)通路外,JAK/STAT信號(hào)通路的激活也會(huì)影響藥物療效并導(dǎo)致耐藥性,因?yàn)樗瑯涌纱龠M(jìn)TC干細(xì)胞的形成[43],幫助腫瘤逃避治療壓力。已有研究表明,BRAF抑制劑和JAK/STAT通路抑制劑聯(lián)合使用可控制BRAF V600E TC細(xì)胞的生長[43]。此外,維莫非尼通過刺激白介素-6(interleukin-6,IL-6)分泌,激活信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)。與維莫非尼單藥相比,STAT3或 IL-6 信號(hào)轉(zhuǎn)導(dǎo)和BRAF的雙重阻斷改善了對(duì)細(xì)胞周期進(jìn)展的抑制效果[44]。
氧化應(yīng)激是TC的一個(gè)危險(xiǎn)因素或病理因素[45]。紅細(xì)胞衍生核因子2樣因子2(nuclear factor erythroid-derived 2-like 2,NFE2L2)又稱Nrf2,是一種轉(zhuǎn)錄因子,參與調(diào)節(jié)多種抗氧化和解毒酶的表達(dá)[46]。Nrf2已被認(rèn)為是TC細(xì)胞對(duì)激酶抑制劑產(chǎn)生抗性的介導(dǎo)因子[47-48]。Keap1/Nrf2 信號(hào)傳導(dǎo)介導(dǎo)一般氧化還原并在惡性腫瘤中發(fā)揮雙重作用,既能防止正常細(xì)胞的細(xì)胞轉(zhuǎn)化,又能促進(jìn)惡性細(xì)胞的侵襲性和耐藥性。研究顯示,下調(diào)Nrf2提高了人甲狀腺癌細(xì)胞對(duì)侖伐替尼的敏感性[49-50]。
綜上所述,BRAF和MEK抑制劑的耐藥性機(jī)制不僅限于MAPK通路的逃逸,還涉及其他平行信號(hào)通路的繼發(fā)性激活。這些通路包括PI3K/AKT、Shh、JAK/STAT及Keap1/Nrf2等,均在腫瘤細(xì)胞的耐藥性中發(fā)揮重要作用。通過理解這些平行信號(hào)通路的作用機(jī)制,未來可能為治療BRAF抑制劑耐藥的TC患者提供新的治療策略,尤其是通過聯(lián)合抑制這些通路,可能有助于克服耐藥性并提高治療效果。
2.5 其他相關(guān)機(jī)制
腫瘤微環(huán)境同樣參與了耐藥的形成。研究發(fā)現(xiàn),晚期 BRAFV600E PTC樣本中的周細(xì)胞(pericyte)可以調(diào)節(jié)血小板反應(yīng)蛋白-1(thrombospondin-1,TSP-1)的水平,而TSP-1在血管生成和腫瘤轉(zhuǎn)移中發(fā)揮作用,在腫瘤微環(huán)境中富集,TSP-1可以導(dǎo)致ERK1/2、AKT和SMAD家族轉(zhuǎn)錄因子3(SMAD family member 3,SMAD3)的磷酸化,顯著激活并增強(qiáng)MAPK和PI3K/AKT通路的信號(hào)傳導(dǎo),促進(jìn)耐藥性發(fā)展[51]。
此外,癌癥相關(guān)成纖維細(xì)胞(cancer-associated fibroblast,CAF)與包括TC在內(nèi)的多種癌癥的腫瘤去分化和侵襲密切相關(guān)[52]。既往研究發(fā)現(xiàn),CAF可以通過上調(diào)賴氨酰氧化酶(lysyl oxidase,LOX)[53]和基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)[54]以及激活YAP通路來增強(qiáng)血管化和細(xì)胞外基質(zhì)降解,從而增加TC細(xì)胞的遷移和侵襲
能力[55]。CAF還可以通過分泌多種信號(hào)分子(如IL-6[56]、TGF-β[57]和HGF[58])促進(jìn)上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),而EMT與腫瘤的侵襲性和耐藥性密切相關(guān)[59]。這是因?yàn)镋MT誘導(dǎo)的細(xì)胞通常具有癌癥干細(xì)胞(cancer stem cell,CSC)特性,能夠自我更新[60]。與PTC相比,ATC中CSC的比例更高,這可能是其對(duì)藥物治療的耐藥原因之一[61]。Khan 等[62]對(duì)暴露于侖伐替尼的ATC進(jìn)行了72 d的長期培養(yǎng),證明了侖伐替尼耐藥細(xì)胞向間充質(zhì)形態(tài)發(fā)生了顯著變化。
ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporter,ABC)是一組蛋白質(zhì),可以通過跨膜轉(zhuǎn)運(yùn)將藥物分子從血漿中泵出,從而使細(xì)胞產(chǎn)生多藥耐藥性(multidrug resistance,MDR)。主要研究的ABC類型包括多藥耐藥蛋白1(MDR1或P-糖蛋白,由ABCB1編碼)、多藥耐藥相關(guān)蛋白1(MRP1,由 ABCC1 編碼)和乳腺癌耐藥蛋白(BCRP,由 ABCG2編碼),在用維莫非尼治療的TC細(xì)胞中,ABCG2水平升高被發(fā)現(xiàn)與耐藥性相關(guān)[38]。
凋亡(apoptosis)是直接殺死癌細(xì)胞的重要機(jī)制,凋亡信號(hào)通路的異常下調(diào)會(huì)降低腫瘤細(xì)胞的自我清除能力,從而增加藥物耐受性[63-65]。BRAF抑制劑通過抑制下游ERK1/2信號(hào)激活類凋亡程序?qū)е录?xì)胞死亡。研究顯示,使用維莫非尼處理BRAF V600E突變的TC細(xì)胞后,盡管ERK1/2的活化水平逐漸降低,但抗凋亡蛋白,如B細(xì)胞淋巴瘤-2(B-cell lymphoma 2,BCL-2)、B細(xì)胞淋巴瘤-XL(B-cell lymphoma extra-large,BCL-XL)的表達(dá)出現(xiàn)了上調(diào)[66]。BCL-2同源3結(jié)構(gòu)域(BCL-2 homology 3 domain,BH3)蛋白BIM可以與促凋亡蛋白 BAX 和 BAK 相互作用,促進(jìn)細(xì)胞凋亡,而升高的 BCL-2會(huì)與BIM相互作用,從而阻止細(xì)胞凋亡。
線粒體外膜通透化(mitochondrial outer membrane permeabilization,MOMP)是細(xì)胞內(nèi)在性凋亡途徑的關(guān)鍵事件,MOMP的發(fā)生會(huì)導(dǎo)致線粒體外膜上形成通道,使得線粒體內(nèi)的促凋亡因子釋放到細(xì)胞質(zhì)中,激活胱天蛋白酶(Caspase),從而引發(fā)細(xì)胞凋亡[67]。最近的研究發(fā)現(xiàn),不完全線粒體外膜通透化(Minority MOMP),即只有一小部分線粒體外膜被破壞,導(dǎo)致亞致死水平的Caspase激活[68]。由于這些細(xì)胞沒有完全進(jìn)入凋亡狀態(tài),最終可能導(dǎo)致癌細(xì)胞逃避死亡并促進(jìn)惡性進(jìn)展或耐藥性。進(jìn)一步的研究揭示,抗凋亡蛋白Mcl-1在維持Minority MOMP的平衡中起到了重要作用。在這些天然耐藥的PTC細(xì)胞中,抑制Mcl-1可以有效地誘導(dǎo)細(xì)胞死亡,從而克服BRAF抑制劑的耐藥性[69]。
自噬(autophagy)是指功能失調(diào)的細(xì)胞成分,如受損的蛋白質(zhì)或老化的細(xì)胞器,通過自噬空泡直接招募至溶酶體進(jìn)行降解,使細(xì)胞穩(wěn)態(tài)在生理狀態(tài)下達(dá)到平衡的過程。 然而,自噬在腫瘤細(xì)胞中的作用比在正常細(xì)胞中更為復(fù)雜,對(duì)TC細(xì)胞具有雙重作用。一方面,自噬可以通過清除損傷細(xì)胞和減少氧化應(yīng)激來抑制腫瘤發(fā)展,促進(jìn)細(xì)胞穩(wěn)態(tài)和存活,但過度自噬可以通過清除靶向治療和電離輻射損傷的大分子或細(xì)胞器來保護(hù)腫瘤細(xì)胞免于凋亡,從而促進(jìn)細(xì)胞存活和增殖[70]。用維莫非尼處理DTC細(xì)胞后,可觀察到高水平的自噬,阻斷它可以極大地緩解耐藥性[71]。與單獨(dú)使用侖伐替尼或自噬抑制劑相比,聯(lián)合用藥可增強(qiáng)來伐替尼的細(xì)胞毒性和抗血管生成能力[72]。
在代謝方面,BRAF V600E突變TC細(xì)胞的線粒體呼吸主要依賴于脂肪酸氧化(fatty acid oxidation,F(xiàn)AO),而脂肪酸在線粒體的可利用性通過自噬進(jìn)行調(diào)節(jié)。當(dāng)自噬或脂肪酸氧化受到抑制后,TC細(xì)胞會(huì)通過增加糖酵解來彌補(bǔ)氧化磷酸化(oxidative phosphorylation,OXPHOS)的不足,這對(duì)于細(xì)胞生存是至關(guān)重要的,維莫非尼已被證明可以在幾種情況下下調(diào)糖酵解[73-74]。因此,F(xiàn)AO的增加與維莫非尼耐藥有關(guān),特別是當(dāng)TC細(xì)胞依賴于脂肪酸氧化時(shí),這些細(xì)胞對(duì)維莫非尼的反應(yīng)較差。通過半乳糖的培養(yǎng)基來強(qiáng)迫TC細(xì)胞增加OXPHOS,顯示OXPHOS的增強(qiáng)使TC細(xì)胞對(duì)BRAFV600E抑制劑更有抗性[75]。
最后,環(huán)境污染物也可能影響靶向治療療效,有研究顯示,十溴二苯醚(BDE209)可以通過激活EGFR通路和加劇MAPK通路活性,減弱了達(dá)拉非尼對(duì)BRAFV600E突變型PTC的治療效果[76]。
甲狀腺癌靶向藥物耐藥相關(guān)機(jī)制見圖1。
3 耐藥性的應(yīng)對(duì)策略
盡管DTC的預(yù)后良好,但大多數(shù)晚期/轉(zhuǎn)移性DTC和ATC患者的治療仍然是一項(xiàng)挑戰(zhàn)。在過去的十年中,隨著對(duì)TC特異性分子驅(qū)動(dòng)因素認(rèn)識(shí)的加深,針對(duì)晚期TC的靶向療法得到了開發(fā)和FDA批準(zhǔn)。雖然這些治療方案取得了可喜的成果,但許多晚期TC患者最終會(huì)因獲得性耐藥性而病情惡化。在BRAF V600突變型ATC的轉(zhuǎn)基因小鼠模型中,與單藥BRAF抑制劑相比,聯(lián)合抑制BRAF和MEK可增強(qiáng)抗腫瘤活性[77],這表明雙重抑制能夠更徹底地阻斷MAPK通路,降低癌細(xì)胞通過RAS或其他上游節(jié)點(diǎn)“逃逸”的概率,改善治療反應(yīng),延緩或防止MAPK通路重新激活。此外,BRAF抑制劑的單藥治療易破壞通路的負(fù)反饋機(jī)制,可能導(dǎo)致RAS激活,從而激活補(bǔ)償性生存信號(hào),而聯(lián)合MEK抑制可以緩解這一負(fù)反饋激活問題,避免旁路激活。同時(shí),雙重抑制降低了單一治療中耐藥突變的發(fā)生概率,減少了替代通路(如PI3K/AKT)的激活。
除了使用MEK抑制劑,針對(duì)上調(diào)的生長因子受體、配體或者突變的基因以及異常激活的其他平行信號(hào)通路進(jìn)行聯(lián)合抑制也是克服耐藥性的一種方法[43-44]。TC細(xì)胞中ERK的反彈性激活伴隨著HER3信號(hào)的上調(diào)。HER激酶抑制劑拉帕替尼能防止MAPK反彈,并使BRAF突變的TC細(xì)胞對(duì)RAF或MEK激酶抑制劑敏感[19, 78]。MET擴(kuò)增是復(fù)發(fā)性ATC中重要的耐藥機(jī)制。通過抑制MET信號(hào)通路,尤其是在MET擴(kuò)增的腫瘤中,可以有效抑制癌細(xì)胞的生長和存活[21]。EGFR和BRAF雙重阻斷可克服BRAF突變TC細(xì)胞對(duì)維莫非尼的耐藥性[79]。
新的泛RAF二聚體抑制劑直接與RAF的二聚體結(jié)構(gòu)域結(jié)合,抑制BRAFV600E突變腫瘤中的RAF二聚體化[80]。這些抑制劑可以同時(shí)靶向活性狀態(tài)下的RAF二聚體和單體,從而有效阻斷癌細(xì)胞中的ERK信號(hào)傳導(dǎo)。盡管泛RAF抑制劑在體外試驗(yàn)中表現(xiàn)良好,但在患者中的應(yīng)用受到了一些限制,主要是因?yàn)樗鼈儗?duì)野生型RAF缺乏選擇性,這可能導(dǎo)致正常細(xì)胞中的RAF信號(hào)的抑制,進(jìn)而引發(fā)毒性反應(yīng)。此外,RAS突變或擴(kuò)增、BRAFV600E擴(kuò)增、BRAF剪接變體或其他結(jié)構(gòu)變化(如基因內(nèi)缺失)會(huì)導(dǎo)致患者對(duì)這些藥物產(chǎn)生耐藥性[81]。因此,盡管泛RAF二聚體抑制劑在體外顯示出良好的效果,但它們?cè)谂R床上的應(yīng)用受限于缺乏對(duì)野生型RAF的選擇性以及耐藥性的產(chǎn)生,特別是由RAS突變或BRAF基因結(jié)構(gòu)變化引起的耐藥。
此外,聯(lián)合使用免疫治療刺激患者的免疫系統(tǒng)來識(shí)別和攻擊癌細(xì)胞,可能克服耐藥性的問題,尤其是在ATC患者中[82]。FDA于2020年基于Ⅱ期KEYNOTE-158試驗(yàn)的結(jié)果[83],批準(zhǔn)將抗程序性死亡受體1(programmed cell death protein 1,PD-1)抗體帕博利珠單抗(pembrolizumab)用于TC的治療,后續(xù)的臨床試驗(yàn)也證實(shí)了其對(duì)局部晚期或轉(zhuǎn)移性ATC的療效[84-85]。除T細(xì)胞外,與甲狀腺腫瘤發(fā)生有關(guān)的多種免疫成分也為TC的治療提供了新的潛在方法,如基于自然殺傷(natural killer,NK)細(xì)胞的免疫療法、樹突狀細(xì)胞(dendritic cell,DC)疫苗和M2型腫瘤相關(guān)巨噬細(xì)胞(M2 tumor-associated macrophage,M2 TAM)阻斷等[86]。結(jié)合免疫檢查點(diǎn)抑制療法或其他基于免疫治療方法的聯(lián)合療法很有前景,但是,為了更好地評(píng)估反應(yīng)率和確定長期療效,有必要進(jìn)行更大規(guī)模的、有組織的臨床試驗(yàn)。
4 結(jié)語與展望
盡管大多數(shù)DTC患者對(duì)手術(shù)和RAI等常規(guī)治療策略反應(yīng)良好,但仍有5%~10%的患者會(huì)出現(xiàn)遠(yuǎn)處轉(zhuǎn)移性疾病,而這類患者通常對(duì)RAI 反應(yīng)不佳[87]。此外,ATC因其生長迅速、轉(zhuǎn)移性強(qiáng)、突變負(fù)荷相對(duì)較高,導(dǎo)致其在診斷和治療中面臨獨(dú)特的挑戰(zhàn)。針對(duì)這些患者,靶向治療起到了至關(guān)重要的作用,盡管靶向藥物能夠顯著改善患者的生存期,但耐藥的出現(xiàn)往往限制了治療效果,成為制約治療成功的一個(gè)關(guān)鍵因素。靶向藥物耐藥性是一個(gè)復(fù)雜的多因素過程,涉及多個(gè)分子機(jī)制,包括生長因子受體及其配體的上調(diào)、負(fù)反饋機(jī)制的逃逸、癌基因的二次突變、平行信號(hào)通路的激活、腫瘤微環(huán)境及代謝的改變等。因此,深入理解這些耐藥機(jī)制至關(guān)重要,這有助于克服現(xiàn)有治療的局限性。并為新型靶向藥物的開發(fā)和臨床應(yīng)用提供理論依據(jù)。
與此同時(shí),免疫檢查點(diǎn)抑制劑(如PD-1/PD-L1抑制劑)的應(yīng)用為TC治療帶來了新的希望,尤其是對(duì)于ATC等難治性腫瘤,免疫治療的潛力得到了初步驗(yàn)證,將免疫治療與靶向治療結(jié)合的策略可能進(jìn)一步提高治療效果。然而,如何優(yōu)化聯(lián)合治療的方案,規(guī)避可能的免疫相關(guān)不良反應(yīng),仍需在臨床實(shí)踐中進(jìn)一步驗(yàn)證。
隨著基因組學(xué)和免疫學(xué)的快速發(fā)展,精準(zhǔn)醫(yī)學(xué)為TC治療提供了新的機(jī)遇,最新的NCCN指南強(qiáng)調(diào),應(yīng)對(duì)晚期DTC或ATC患者進(jìn)行基因組分析,以識(shí)別潛在的靶向治療機(jī)會(huì)和免疫治療的適應(yīng)性。這不僅需要在臨床上廣泛應(yīng)用現(xiàn)有的基因檢測(cè)技術(shù),也需要開發(fā)新的高效、低成本的檢測(cè)手段,以便提高精準(zhǔn)治療的普及率。通過對(duì)患者腫瘤的基因組分析,可以識(shí)別潛在的靶向藥物和免疫治療的敏感性,為個(gè)性化治療提供科學(xué)依據(jù)。精準(zhǔn)醫(yī)學(xué)還能夠幫助根據(jù)具體的基因突變特征定制個(gè)性化治療方案,從而最大限度地提高治療效果。未來的研究應(yīng)繼續(xù)推進(jìn)精準(zhǔn)醫(yī)學(xué)的臨床應(yīng)用,結(jié)合分子分型和腫瘤免疫微環(huán)境的分析,開發(fā)新的預(yù)測(cè)性生物標(biāo)志物,并優(yōu)化治療方案[88]。這將為個(gè)性化的靶向治療策略提供支持,進(jìn)一步提升TC患者的治療效果。
總體而言,靶向治療、免疫治療以及精準(zhǔn)醫(yī)學(xué)正在逐步改變TC的治療格局。隨著臨床指南的不斷更新和新藥的出現(xiàn),患者的生存期得到了顯著延長。然而,靶向治療的耐藥性問題和免疫治療的不良反應(yīng)仍然是亟待解決的難題。未來的研究應(yīng)更加聚焦于揭示靶向治療耐藥機(jī)制,優(yōu)化免疫治療與靶向治療的聯(lián)合策略,并推動(dòng)精準(zhǔn)醫(yī)學(xué)的廣泛應(yīng)用。通過這些努力,未來的TC治療將更加個(gè)性化、精準(zhǔn)化,給患者帶來更大的生存希望。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] COLLABORATORS G 2 R F. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2162-2203. DOI:10.1016/S0140-6736(24)00933-4.
[2] SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. DOI:10.1056/NEJMoa1406470.
[3] BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328. DOI:10.1016/S0140-6736(14)60421-9.
[4] BROSE M S, ROBINSON B, SHERMAN S I, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2021, 22(8): 1126-1138. DOI: 10.1016/S1470-2045(21)00332-6.
[5] BROSE M S, ROBINSON B G, SHERMAN S I, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: updated results from the phase 3 COSMIC-311 trial[J]. Cancer, 2022, 128(24): 4203-4212. DOI: 10.1002/cncr.34493.
[6] WELLS S A Jr, ROBINSON B G, GAGEL R F, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase Ⅲ trial[J]. J Clin Oncol, 2012, 30(2): 134-141. DOI:10.1200/JCO.2011.35.5040.
[7] ELISEI R, SCHLUMBERGER M J, MüLLER S P, et al. Cabozantinib in progressive medullary thyroid cancer[J]. J Clin Oncol, 2013, 31(29): 3639-3646. DOI: 10.1200/JCO.2012.48.4659.
[8] HU J, YUAN I J, MIRSHAHIDI S, et al. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy[J]. Int J Mol Sci, 2021, 22(4): 1950. DOI: 10.3390/ijms22041950.
[9] DAVIES H, BIGNELL G R, COX C, et al. Mutations of the BRAF gene in human cancer[J]. Nature, 2002, 417(6892): 949-954. DOI: 10.1038/nature00766.
[10] SUBBIAH V, KREITMAN R J, WAINBERG Z A, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer[J]. J Clin Oncol, 2018, 36(1): 7-13. DOI: 10.1200/JCO.2017.73.6785.
[11] SUBBIAH V, KREITMAN R J, WAINBERG Z A, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial[J]. Nat Med, 2023, 29(5): 1103-1112. DOI: 10.1038/s41591-023-02321-8.
[12] RUSSELL J P, POWELL D J, CUNNANE M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium[J]. Oncogene, 2000, 19(50): 5729-5735. DOI: 10.1038/sj.onc.1203922.
[13] DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. DOI:10.1056/NEJMoa1714448.
[14] DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. DOI: 10.1016/S1470-2045(19)30691-6.
[15] SOLOMON B J, DRILON A, LIN J J, et al. 1372P Repotrectinib in patients (pts) with NTRK fusion-positive (NTRK+) advanced solid tumors, including NSCLC: Update from the phase I/II TRIDENT-1 trial[J]. Ann Oncol, 2023, 34: S787-S788. DOI:10.1016/j.annonc.2023.09.2405.
[16] SUBBIAH V, HU M I, WIRTH L J, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study[J]. Lancet Diabetes Endocrinol, 2021, 9(8): 491-501. DOI: 10.1016/S2213-8587(21)00120-0.
[17] SUBBIAH V, HU M I, MANSFIELD A S, et al. Pralsetinib in patients with advanced/metastatic rearranged during transfection (RET)-altered thyroid cancer: updated efficacy and safety data from the ARROW study[J]. Thyroid, 2024, 34(1): 26-40. DOI: 10.1089/thy.2023.0363.
[18] WIRTH L J, SHERMAN E, ROBINSON B, et al. Efficacy of selpercatinib in RET-altered thyroid cancers[J]. N Engl J Med, 2020, 383(9): 825-835. DOI:10.1056/NEJMoa2005651.
[19] MONTERO-CONDE C, RUIZ-LLORENTE S, DOMINGUEZ J M, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas[J]. Cancer Discov, 2013,
3(5): 520-533. DOI: 10.1158/2159-8290.CD-12-0531.
[20] BAGHERI-YARMAND R, BUSAIDY N L, MCBEATH E, et al. RAC1 alterations induce acquired dabrafenib resistance in association with anaplastic transformation in a papillary thyroid cancer patient[J]. Cancers, 2021, 13(19): 4950. DOI:10.3390/cancers13194950.
[21] KNAUF J A, LUCKETT K A, CHEN K Y, et al. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers[J]. J Clin Invest, 2018, 128(9): 4086-4097. DOI: 10.1172/JCI120966.
[22] LITO P, PRATILAS C A, JOSEPH E W, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas[J]. Cancer Cell, 2012, 22(5): 668-682. DOI: 10.1016/j.ccr.2012.10.009.
[23] CHEN S H, ZHANG Y, VAN HORN R D, et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120[J]. Cancer Discov, 2016, 6(3): 300-315. DOI: 10.1158/2159-8290.CD-15-0896.
[24] WEI W J, SUN Z K, SHEN C T, et al. Obatoclax and LY3009120 efficiently overcome vemurafenib resistance in differentiated thyroid cancer[J]. Theranostics, 2017, 7(4): 987-1001. DOI: 10.7150/thno.17322.
[25] BONALDI E, GARGIULI C, DE CECCO L, et al. BRAF inhibitors induce feedback activation of RAS pathway in thyroid cancer cells[J]. Int J Mol Sci, 2021, 22(11): 5744. DOI:10.3390/ijms22115744.
[26] HEIDORN S J, MILAGRE C, WHITTAKER S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF[J]. Cell, 2010, 140(2): 209-221. DOI:10.1016/j.cell.2009.12.040.
[27] POULIKAKOS P I, ZHANG C, BOLLAG G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF[J]. Nature, 2010, 464(7287): 427-430. DOI: 10.1038/nature08902.
[28] HATZIVASSILIOU G, SONG K, YEN I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth[J]. Nature, 2010, 464(7287): 431-435. DOI:10.1038/nature08833.
[29] CISOWSKI J, BERGO M O. What makes oncogenes mutually exclusive?[J]. Small GTPases, 2017, 8(3): 187-192. DOI:10.1080/21541248.2016.1212689.
[30] DANYSH B P, RIEGER E Y, SINHA D K, et al. Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model[J]. Oncotarget, 2016, 7(21): 30907-30923. DOI: 10.18632/oncotarget.9023.
[31] OWEN D H, KONDA B, SIPOS J, et al. KRAS G12V mutation in acquired resistance to combined BRAF and MEK inhibition in papillary thyroid cancer[J]. J Natl Compr Canc Netw, 2019,
17(5): 409-413. DOI: 10.6004/jnccn.2019.7292.
[32] CABANILLAS M E, DADU R, IYER P, et al. Acquired secondary RAS mutation in BRAFV600E-mutated thyroid cancer patients treated with BRAF inhibitors[J]. Thyroid, 2020,
30(9): 1288-1296. DOI: 10.1089/thy.2019.0514.
[33] BLASCO R B, FRANCOZ S, SANTAMARíA D, et al. C-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma[J]. Cancer Cell, 2011, 19(5): 652-663. DOI: 10.1016/j.ccr.2011.04.002.
[34] LITO P, SABOROWSKI A, YUE J, et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors[J]. Cancer Cell, 2014, 25(5): 697-710. DOI: 10.1016/j.ccr.2014.03.011.
[35] WATSON I R, LI L, CABECEIRAS P K, et al. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF[J]. Cancer Res, 2014,
74(17): 4845-4852. DOI: 10.1158/0008-5472.CAN-14-1232-T.
[36] CANNON A C, URIBE-ALVAREZ C, CHERNOFF J. RAC1 as a therapeutic target in malignant melanoma[J]. Trends Cancer, 2020, 6(6): 478-488. DOI: 10.1016/j.trecan.2020.02.021.
[37] HOFMANN M C, KUNNIMALAIYAAN M, WANG J R, et al. Molecular mechanisms of resistance to kinase inhibitors and redifferentiation in thyroid cancers[J]. Endocr Relat Cancer, 2022, 29(11): R173-R190. DOI: 10.1530/ERC-22-0129.
[38] CHEN S, SU X, JIANG X, et al. VCAM-1 upregulation contributes to insensitivity of vemurafenib in BRAF-mutant thyroid cancer[J]. Transl Oncol, 2020, 13(2): 441-451. DOI: 10.1016/j.tranon.2019.10.007.
[39] BEADNELL T C, NASSAR K W, ROSE M M, et al. Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer[J]. Oncogenesis, 2018, 7(2): 23. DOI: 10.1038/s41389-017-0015-5.
[40] HEIDEN K B, WILLIAMSON A J, DOSCAS M E, et al. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression[J]. J Clin Endocrinol Metab, 2014, 99(11): E2178-E2187. DOI: 10.1210/jc.2014-1844.
[41] NICULESCU V F. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies[J].
Genes Dis, 2022, 9(5): 1234-1247. DOI: 10.1016/j.gendis.
2022.03.010.
[42] LU Y, ZHAO Y, LIU P, et al. Vemurafenib activates the sonic hedgehog pathway and promotes thyroid cancer stem cell self-renewal[J]. Endocr Relat Cancer, 2023, 30(11): e220392. DOI: 10.1530/ERC-22-0392.
[43] LIMBERG J, EGAN C E, GRAY K D, et al. Activation of the JAK/STAT pathway leads to BRAF inhibitor resistance in BRAFV600E positive thyroid carcinoma[J]. Mol Cancer Res, 2023, 21(5): 397-410. DOI: 10.1158/1541-7786.MCR-21-0832.
[44] NOTARANGELO T, SISINNI L, TRINO S, et al. IL6/STAT3 axis mediates resistance to BRAF inhibitors in thyroid carcinoma cells[J]. Cancer Lett, 2018, 433: 147-155. DOI: 10.1016/j.
canlet.2018.06.038.
[45] WANG D, FENG J F, ZENG P, et al. Total oxidant/antioxidant status in sera of patients with thyroid cancers[J]. Endocr Relat Cancer, 2011, 18(6): 773-782. DOI: 10.1530/ERC-11-0230.
[46] KANG K A, HYUN J W. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance[J]. Toxicol Res, 2017, 33(1): 1-5. DOI: 10.5487/TR.2017.33.1.001.
[47] ZONG Z H, DU Z X, LI N, et al. Implication of Nrf2 and ATF4 in differential induction of CHOP by proteasome inhibition in thyroid cancer cells[J]. Biochim Biophys Acta, 2012, 1823(8): 1395-1404. DOI: 10.1016/j.bbamcr.2012.06.001.
[48] DU Z X, YAN Y, ZHANG H Y, et al. Proteasome inhibition induces a p38 MAPK pathway-dependent antiapoptotic program via Nrf2 in thyroid cancer cells[J]. J Clin Endocrinol Metab, 2011, 96(5): E763-E771. DOI: 10.1210/jc.2010-2642.
[49] GONG Z, XUE L, WEI M, et al. The knockdown of Nrf2 suppressed tumor growth and increased the sensitivity to lenvatinib in anaplastic thyroid cancer[J]. Oxid Med Cell Longev, 2021, 2021: 3900330. DOI: 10.1155/2021/3900330.
[50] RENAUD C O, ZIROS P G, CHARTOUMPEKIS D V, et al. Keap1/Nrf2 signaling: a new player in thyroid pathophysiology and thyroid cancer[J]. Front Endocrinol, 2019, 10: 510. DOI:10.3389/fendo.2019.00510.
[51] PRETE A, LO A S, SADOW P M, et al. Pericytes elicit resistance to vemurafenib and sorafenib therapy in thyroid carcinoma via the TSP-1/TGFβ1 axis[J]. Clin Cancer Res, 2018, 24(23): 6078-6097. DOI: 10.1158/1078-0432.CCR-18-0693.
[52] WEN S, QU N, MA B, et al. Cancer-associated fibroblasts positively correlate with dedifferentiation and aggressiveness of thyroid cancer[J]. Onco Targets Ther, 2021, 14: 1205-1217. DOI: 10.2147/OTT.S294725.
[53] MINNA E, BRICH S, TODOERTI K, et al. Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma[J]. Cancers, 2020, 12(1): 112. DOI:10.3390/cancers12010112.
[54] GUAN H, GUO Y, LIU L, et al. INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression[J]. Cell Biosci, 2018, 8: 26. DOI: 10.1186/s13578-018-0224-4.
[55] TANG J, TIAN Z, LIAO X, et al. SOX13/TRIM11/YAP axis promotes the proliferation, migration and chemoresistance of anaplastic thyroid cancer[J]. Int J Biol Sci, 2021, 17(2): 417-429. DOI: 10.7150/ijbs.54194.
[56] FOZZATTI L, ALAMINO V A, PARK S, et al. Interplay of fibroblasts with anaplastic tumor cells promotes follicular thyroid cancer progression[J]. Sci Rep, 2019, 9(1): 8028. DOI:10.1038/s41598-019-44361-6.
[57] ZOU M, BAITEI E Y, BINESSA H A, et al. Cyp24a1 attenuation limits progression of BrafV600E-induced papillary thyroid cancer cells and sensitizes them to BRAFV600E inhibitor PLX4720[J]. Cancer Res, 2017, 77(8): 2161-2172. DOI:10.1158/0008-5472.CAN-16-2066.
[58] GAO W, HAN J. Overexpression of ING5 inhibits HGF-induced proliferation, invasion and EMT in thyroid cancer cells via regulation of the c-Met/PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2018, 98: 265-270. DOI: 10.1016/j.biopha.2017.12.045.
[59] LEE Y S, KIM S M, KIM B W, et al. Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells[J]. Neoplasia, 2018, 20(2): 197-206. DOI: 10.1016/j.neo.2017.12.003.
[60] LAN L, LUO Y, CUI D, et al. Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells[J]. Int J Oncol, 2013, 43(1): 113-120. DOI:10.3892/ijo.2013.1913.
[61] ZHANG Y, XING Z, LIU T, et al. Targeted therapy and drug resistance in thyroid cancer[J]. Eur J Med Chem, 2022, 238: 114500. DOI: 10.1016/j.ejmech.2022.114500.
[62] KHAN H Y, GE J, NAGASAKA M, et al. Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer cells: putative implications for overcoming lenvatinib therapy resistance[J]. Int J Mol Sci, 2019, 21(1): 237. DOI:10.3390/ijms21010237.
[63] SONG X, SHEN L, TONG J, et al. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer[J]. Theranostics, 2020, 10(18): 8098-8110. DOI:10.7150/thno.45363.
[64] NECHIPORUK T, KURTZ S E, NIKOLOVA O, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov, 2019, 9(7): 910-925. DOI: 10.1158/2159-8290.CD-19-0125.
[65] KURPPA K J, LIU Y, TO C, et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway[J]. Cancer Cell, 2020, 37(1): 104-122.e12. DOI:10.1016/j.ccell.2019.12.006.
[66] JEONG J H, OH J M, JEONG S Y, et al. Combination treatment with the BRAFV600E inhibitor vemurafenib and the BH3 mimetic navitoclax for BRAF-mutant thyroid carcinoma[J]. Thyroid, 2019, 29(4): 540-548. DOI: 10.1089/thy.2018.0511.
[67] KALKAVAN H, GREEN D R. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death Differ, 2018, 25(1): 46-55. DOI: 10.1038/cdd.2017.179.
[68] ICHIM G, LOPEZ J, AHMED S U, et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death[J]. Mol Cell, 2015, 57(5): 860-872. DOI: 10.1016/j.molcel.2015.01.018.
[69] CAVALLO M R, YO J C, GALLANT K C, et al. Mcl-1 mediates intrinsic resistance to RAF inhibitors in mutant BRAF papillary thyroid carcinoma[J]. Cell Death Discov, 2024, 10(1): 175. DOI: 10.1038/s41420-024-01945-0.
[70] WANG W, LIU J, FENG W, et al. Targeting mitochondria with Au–Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy[J]. Biomater Sci, 2019, 7(3): 1052-1063. DOI:10.1039/C8BM01414K.
[71] WANG W, KANG H, ZHAO Y, et al. Targeting autophagy sensitizes BRAF-mutant thyroid cancer to vemurafenib[J]. J Clin Endocrinol Metab, 2017, 102(2): 634-643. DOI:10.1210/jc.2016-1999.
[72] XUE L, GONG Z, VLANTIS A C, et al. Autophagy regulates anti-angiogenic property of lenvatinib in thyroid cancer[J]. Am J Cancer Res, 2023, 13(4): 1457-1470.
[73] DELGADO-GONI T, MINIOTIS M F, WANTUCH S, et al. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF-mutant human melanoma cells[J]. Mol Cancer Ther, 2016,
15(12): 2987-2999. DOI: 10.1158/1535-7163.MCT-16-0068.
[74] PARMENTER T J, KLEINSCHMIDT M, KINROSS K M, et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis[J]. Cancer Discov, 2014, 4(4): 423-433. DOI:10.1158/2159-8290.CD-13-0440.
[75] DíAZ-GAGO S, VICENTE-GUTIéRREZ J, RUIZ-RODRíGUEZ J M, et al. Autophagy sustains mitochondrial respiration and determines resistance to BRAFV600E inhibition in thyroid carcinoma cells[J]. Autophagy, 2024, 20(6): 1383-1397. DOI: 10.1080/15548627.2024.2312790.
[76] WANG X, CUI X, WANG Y, et al. Decabromodiphenyl ether exposure reduces dabrafenib sensitivity of papillary thyroid carcinoma harboring BRAFV600E mutation through the EGFR-CRAF-MAPK pathway: an in vitro study[J]. Toxicology, 2024, 504: 153807. DOI: 10.1016/j.tox.2024.153807.
[77] MCFADDEN D G, VERNON A, SANTIAGO P M, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer[J]. Proc Natl Acad Sci USA, 2014, 111(16): E1600-E1609. DOI:10.1073/pnas.1404357111.
[78] CHENG L, JIN Y, LIU M, et al. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E[J]. Oncotarget, 2017, 8(12): 19843-19854. DOI: 10.18632/oncotarget.15773.
[79] NOTARANGELO T, SISINNI L, CONDELLI V, et al. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells[J]. Cancer Cell Int, 2017, 17: 86. DOI: 10.1186/s12935-017-0457-z.
[80] KOUMAKI K, KONTOGIANNI G, KOSMIDOU V, et al. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4): 166061. DOI:10.1016/j.bbadis.2020.166061.
[81] BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. DOI: 10.1038/s41392-023-01705-z.
[82] IYER P C, DADU R, GULE-MONROE M, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma[J]. J Immunother Cancer, 2018, 6(1): 68. DOI: 10.1186/s40425-018-0378-y.
[83] MARABELLE A, FAKIH M, LOPEZ J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21(10): 1353-1365. DOI: 10.1016/S1470-2045(20)30445-9.
[84] DIERKS C, SEUFERT J, AUMANN K, et al. Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J].
Thyroid, 2021, 31(7): 1076-1085. DOI: 10.1089/thy.
2020.0322.
[85] HAMIDI S, IYER P C, DADU R, et al. Checkpoint inhibition in addition to dabrafenib/trametinib for BRAFV600E-mutated anaplastic thyroid carcinoma[J]. Thyroid, 2024, 34(3): 336-346. DOI: 10.1089/thy.2023.0573.
[86] FRENCH J D. Immunotherapy for advanced thyroid cancers—rationale, current advances and future strategies[J]. Nat Rev Endocrinol, 2020, 16: 629-641. DOI: 10.1038/s41574-020-0398-9.
[87] HAMIDI S, HOFMANN M C, IYER P C, et al. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance[J]. Front Endocrinol, 2023, 14: 1176731. DOI: 10.3389/fendo.2023.1176731.
[88] 劉俊, 葉靜, 王科, 等. 腫瘤相關(guān)因子TSHR與甲狀腺乳頭狀癌的相關(guān)性[J]. 西南醫(yī)科大學(xué)學(xué)報(bào), 2022, 45(5): 416-420. DOI: 10.3969/j.issn.2096-3351.2022.05.010.
LIU J, YE J, WANG K, et al. Correlation between TSHR and papillary thyroid carcinoma[J]. J Southwest Med Univ, 2022, 45(5): 416-420. DOI: 10.3969/j.issn.2096-3351.2022.05.010.
(責(zé)任編輯:林燕薇)