摘要 食管癌屬于上消化道惡性腫瘤,發(fā)病率高,預(yù)后差。根治性手術(shù)是其主要治療手段之一,兩切口食管癌胸內(nèi)吻合術(shù)(Ivor Lewis術(shù))是常用術(shù)式。腔鏡輔助微創(chuàng)食管切除術(shù)(VAMIE)已得到較為廣泛的應(yīng)用,但其存在二維視野、長直剛性器械以及主刀需要依賴助手控制鏡頭等局限性,不利于Ivor Lewis術(shù)的復(fù)雜操作。達芬奇機器人手術(shù)系統(tǒng)作為新一代的微創(chuàng)手術(shù)系統(tǒng),具有較高的靈活性、精確性及穩(wěn)定性,機器人輔助Ivor Lewis術(shù)(RAILE)克服了VAMIE的局限性,學(xué)習(xí)曲線明顯縮短。本文就RAILE的手術(shù)適應(yīng)證、圍術(shù)期準備、手術(shù)操作步驟及應(yīng)遵守的標準等進行綜述,以供胸外科同道參考。
關(guān)鍵詞 機器人輔助手術(shù);Ivor Lewis食管切除術(shù);食管癌
中圖分類號 R655.4 R735.1 文獻標識碼 A 文章編號 2096-7721(2025)02-0319-13
Clinical application of robot-assisted Ivor Lewis esophagectomy
YAN Yan1, KANG Xiaozheng2, LI Chengqiang1, WANG Yun3, LI Zhigang4, HAN Yongtao5, SHI Liqiang1,
FENG Xijia1, LI Yin2, LI Hecheng1
(1. Department of Thoracic Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
2. Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
3. Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
4. Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
5. Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute/Sichuan Cancer Center/Cancer Hospital
Affiliated to University of Electronic Science and Technology of China, Chengdu 610041, China.)
Abstract Esophageal cancer (EC) is a type of digestive system cancer with high incidence and poor prognosis. Surgical resection is the preferred option for resectable EC, and Ivor Lewis esophagectomy is the procedure commonly used. Video-assisted minimally invasive esophagectomy (VAMIE) has been widely used in recent years, while it has some limitations, such as two-dimensional field of view, long and rigid instruments, and the controlling of laparoscope must be assisted by an assistant. These limitations bring difficulty for Ivor Lewis esophagectomy. The Da Vinci robotic surgical system, characterized as high flexibility, accuracy and stability, overcomes the limitations of VAMIE, and shortens the learning curve. The surgical indications, perioperative preparation, surgical procedures and standards was reviewed in this paper, hoping to provide references for thoracic surgeons.
Key words Robot-assisted Surgery; Ivor Lewis Esophagectomy; Esophageal Cancer
食管癌是一種發(fā)生于上消化道的惡性腫瘤。2020年WTO的數(shù)據(jù)顯示[1],在全球,食管癌占惡性腫瘤發(fā)病率第7位,死亡率第6位。2016年的數(shù)據(jù)顯示[2],中國食管癌占惡性腫瘤發(fā)病率第6位,死亡率第5位。目前,根治性手術(shù)是可切除食管癌的主要治療手段,手術(shù)的目標是完整切除腫瘤并清掃相應(yīng)引流區(qū)域的淋巴結(jié),以實現(xiàn)良好的局部控制,延長患者生存期并提高患者生活質(zhì)量。食管癌根治手術(shù)通常采用經(jīng)胸、腹或附加頸部切口進行開放手術(shù),手術(shù)創(chuàng)傷大,圍手術(shù)期并發(fā)癥發(fā)生率高,術(shù)后恢復(fù)時間長[3]。
隨著腔鏡技術(shù)的不斷進步,微創(chuàng)食管切除術(shù)(Minimally Invasive Esophagectomy,MIE)在食管癌治療中的應(yīng)用越來越廣泛。與開放手術(shù)相比,MIE有降低手術(shù)創(chuàng)傷,減輕術(shù)后疼痛,減少術(shù)后并發(fā)癥和縮短住院時間等優(yōu)勢[4]。兩切口食管癌胸內(nèi)吻合術(shù)(Ivor Lewis術(shù))與三切口食管癌頸部吻合術(shù)(McKeown術(shù))是MIE的兩種常用術(shù)式。研究表明,Ivor Lewis術(shù)短期并發(fā)癥發(fā)生率更低[5],兩種術(shù)式對患者遠期生存的影響無明顯區(qū)別[6]。目前國內(nèi)應(yīng)用較多的食管癌根治手術(shù)方式為Ivor Lewis術(shù),其不僅涉及腫瘤切除,還包括淋巴結(jié)清掃和消化道重建等復(fù)雜手術(shù)操作,而腔鏡輔助微創(chuàng)食管切除術(shù)(Video-assisted Minimally Invasive Esophagectomy,VAMIE)存在二維視野、長直剛性器械以及主刀需要依賴助手控制鏡頭等局限性,這些局限性在腔鏡胸內(nèi)吻合的Ivor Lewis術(shù)中愈加凸顯,給上述復(fù)雜操作帶來困難[7],且其學(xué)習(xí)曲線較長[8-9]。
達芬奇機器人手術(shù)系統(tǒng)作為新一代的微創(chuàng)手術(shù)系統(tǒng),具有較高的靈活性、精確性及穩(wěn)定性,有助于外科醫(yī)生實行復(fù)雜、高難度的手術(shù)操作。2003年,
機器人首次被用于食管癌的手術(shù)治療[10]。近期的研究結(jié)果表明,機器人輔助Ivor Lewis術(shù)(Robot-assisted Ivor Lewis Esophagectomy,RAILE)的學(xué)習(xí)曲線較腔鏡Ivor Lewis術(shù)明顯縮短[11]。瑞金醫(yī)院胸外科自2015年5月開展RAILE[12-14],積累了豐富的臨床經(jīng)驗。本研究主要就RAILE的手術(shù)適應(yīng)證、圍術(shù)期準備、手術(shù)操作步驟及應(yīng)遵守的標準等進行綜述,以供胸外科同道參考。
1 機器人手術(shù)系統(tǒng)的特點及其在食管外科中的應(yīng)用
1.1機器人手術(shù)系統(tǒng)的優(yōu)勢 機器人手術(shù)系統(tǒng)由外科醫(yī)生控制臺、床旁機械臂系統(tǒng)及成像系統(tǒng)三部分組成,其在外科領(lǐng)域的應(yīng)用日趨成熟,現(xiàn)已常規(guī)用于胸外科、泌尿外科、婦科和肝膽胰外科等[15-16]。機器人手術(shù)系統(tǒng)可充分滿足精確手術(shù)操作和遠程呈現(xiàn)的需要[17],在以下幾個方面具有明顯優(yōu)勢。
1.1.1識別定位 機器人手術(shù)系統(tǒng)可提供高度放大且清晰的三維視野,外科醫(yī)生可使用吲哚菁通過Firefly?熒光成像實時觀察血管附近的熒光信號,識別隱藏的血管,評估器官的血液供應(yīng),在RAILE中可用于評估胃及食管血供活性[18]。該技術(shù)也可以用于準確定位淋巴結(jié)[19]。
1.1.2操作精準靈活 在傳統(tǒng)腔鏡手術(shù)中,由于樞軸點,手術(shù)器械的端點與外科醫(yī)生的手向相反方向移動的現(xiàn)象被稱為支點效應(yīng)。機器人手術(shù)系統(tǒng)的機械臂系統(tǒng)具有7個自由度,消除了支點效應(yīng)和生理性震顫,且能夠按比例運動,具有高度的精確性和靈活性,有利于外科醫(yī)生進行精準解剖與縫合。同時,機器人眼-手-儀的自然對齊功能,以及符合人體工程學(xué)的設(shè)計,提高了穩(wěn)定性。相比之下,傳統(tǒng)腹腔鏡手術(shù)的靈活性較差,運動程度有限,存在支點效應(yīng)[20],且會放大生理性震顫[21]。
1.1.3視野穩(wěn)定 機器人手術(shù)系統(tǒng)具有穩(wěn)定的攝像系統(tǒng),直接受外科醫(yī)生控制,醫(yī)生可以通過立體顯示屏觀察到更加清晰的手術(shù)場景,確保手術(shù)區(qū)域的穩(wěn)定可視化[16]。
1.1.4遠程操作 隨著5G技術(shù)和網(wǎng)絡(luò)通信的高速發(fā)展,機器人輔助下的遠程手術(shù)已經(jīng)實現(xiàn),如遠程腹腔鏡膽囊切除術(shù)、遠程經(jīng)皮冠狀動脈介入治療、遠程脊柱手術(shù)等,且未增加手術(shù)相關(guān)并發(fā)癥的發(fā)生率[22]。
遠程操作有助于實現(xiàn)醫(yī)療資源下沉,改善偏遠地區(qū)醫(yī)療條件;但因不同地區(qū)醫(yī)學(xué)和網(wǎng)絡(luò)通信發(fā)展有異,機器人輔助下的遠程手術(shù)尚不能廣泛推廣。
1.2機器人手術(shù)系統(tǒng)的局限性 機器人手術(shù)系統(tǒng)與傳統(tǒng)開放手術(shù)和腔鏡手術(shù)相比,擁有諸多優(yōu)勢,其在外科領(lǐng)域的應(yīng)用范圍正在不斷拓寬。盡管如此,機器人手術(shù)系統(tǒng)仍存在一定的局限性。
1.2.1術(shù)者生理不適 與傳統(tǒng)腔鏡手術(shù)相比,機器人輔助手術(shù)中需要外科醫(yī)生更多地調(diào)用頸部和肩部肌肉群,造成相關(guān)肌肉群的不適[23]。因此,機器人手術(shù)系統(tǒng)需要更好的人體工程學(xué)實踐,以盡量減少對術(shù)者身體造成相關(guān)傷害[24]。
此外,雖然立體視覺是機器人手術(shù)系統(tǒng)的優(yōu)勢之一,但術(shù)者會因長時間通過雙筒望遠鏡觀看手術(shù)畫面而產(chǎn)生視覺疲勞,面臨計算機視覺綜合征的風(fēng)險,可能會出現(xiàn)視力模糊、眼睛干澀、眼疲勞和頭痛等癥狀[25]。此類視覺不適可通過使用潤滑眼藥水、眨眼效率培訓(xùn)和定期屏幕休息來緩解。
1.2.2手術(shù)空間負擔(dān)大 機器人手術(shù)系統(tǒng)所需空間較大,這為當(dāng)下已十分擁擠的外科手術(shù)室進一步增加了空間負擔(dān)。另外,機器人手術(shù)系統(tǒng)的機械臂較為笨重,進入外科手術(shù)室也較為困難。但無論是通過技術(shù)革新縮小機器人手術(shù)系統(tǒng)的體積,或是建造機器人手術(shù)系統(tǒng)專用手術(shù)室,都會導(dǎo)致其成本過高[21]。
1.2.3價格昂貴 機器人手術(shù)系統(tǒng)所需零部件眾多,且涉及學(xué)科范圍廣,制造門檻非常高,使其市場價格及維護費用十分昂貴,限制了推廣應(yīng)用[21]。但可以相信,隨著技術(shù)的進步和經(jīng)驗積累,其價格將會有所下降。
綜上,機器人手術(shù)系統(tǒng)較高的靈活性、精確性及穩(wěn)定性等諸多優(yōu)勢,有助于外科醫(yī)生實行復(fù)雜、高難度的手術(shù)操作。此外,機器人手術(shù)系統(tǒng)符合人體工程學(xué)的設(shè)計,有利于術(shù)者進行長時間的操作[26],適合完成RAILE的腔鏡下吻合及徹底二野淋巴結(jié)清掃。但機器人手術(shù)系統(tǒng)仍存在造成術(shù)者頸肩眼疲勞、手術(shù)空間負擔(dān)大和價格昂貴等局限性,亟待改善。
1.3機器人手術(shù)在食管外科中的應(yīng)用
1.3.1機器人手術(shù)在食管癌手術(shù)中的應(yīng)用 2003年,Horgan等人首先報道機器人輔助經(jīng)食管裂孔食管切除術(shù)(Robot-assisted Transhiatal Esophagectomy,RATHE)[18],從此拉開了機器人輔助食管切除術(shù)(Robot-assisted Minimally Invasive Esophagectomy,RAMIE)的序幕。近年來,隨著臨床醫(yī)療技術(shù)的不斷發(fā)展和進步,機器人手術(shù)系統(tǒng)應(yīng)用于食管癌根治手術(shù)的臨床研究及相關(guān)報道越來越多,RAMIE已取得了較好的臨床效果[27-28]。常見的RAMIE手術(shù)方式主要包括經(jīng)右胸-上腹-左頸入路的機器人輔助McKeown術(shù)(Robot-assisted McKeown Esophagectomy,RAMKE)和經(jīng)上腹-右胸入路的RAILE。對于中上胸段食管癌,McKeown術(shù)易于進行消化道重建,且具有淋巴結(jié)清掃廣泛和徹底的優(yōu)勢[29]。Kernstine K H等人[30]在2004年首次報道了RAMKE,隨后與RAMKE相關(guān)的研究逐漸增多。2019年,Utrecht等人在國際上首次發(fā)表了RAMKE和經(jīng)胸開放式食管切除術(shù)(Open Esophagectomy,OE)(ROBOT試驗)的臨床隨機對照研究,這項研究有54例接受RAMIE的患者和55例接受經(jīng)胸OE的患者入組,發(fā)現(xiàn)接受RAMKE的患者在術(shù)后并發(fā)癥發(fā)生率(59% Vs 80%,P=0.02)和術(shù)后第14 d的功能恢復(fù)方面均優(yōu)于經(jīng)胸OE的患者,且術(shù)后疼痛評分較低,短期生活質(zhì)量較好,為RAMKE能夠改善術(shù)后短期預(yù)后提供了強有力的證據(jù)[31]。
RAILE在治療食管中下段食管癌方面具有一定的優(yōu)勢。2002年,Melvin W S等人[32]首次報道了RAILE,Ivor Lewis術(shù)需要進行胸內(nèi)吻合,胸腔鏡下手工縫合或機械吻合都比較困難,與傳統(tǒng)的胸腔鏡手術(shù)相比,機器人手術(shù)可以幫助外科醫(yī)生更熟練地進行胸內(nèi)手工縫合或器械吻合。2013年,Sebastian G等人通過分析50例接受RAILE患者的圍術(shù)期各項指標,證實了RAILE是安全可行的[33]。2018年,筆者回顧性研究了61例接受RAILE患者的臨床資料,其中35例應(yīng)用管狀吻合器吻合,26例應(yīng)用手工胸內(nèi)吻合,平均手術(shù)時間和平均失血量分別為(315.6±59.4)min和(189.3±95.8)mL,術(shù)后并發(fā)癥發(fā)生率為 36.1%,平均每例淋巴結(jié)清掃數(shù)目(19.3±9.2)枚,所有病例均實現(xiàn)了R0切除,圍術(shù)期無死亡病例,證明RAILE聯(lián)合吻合器和手工縫合胸腔內(nèi)吻合術(shù)治療中下段胸段食管癌是安全可行的[13]。2022年,一項關(guān)于RAMIE的多中心研究共納入 856例食管癌患者,分別接受完全RAILE、雜交RAILE、完全RAMKE和雜交RAMKE,四組患者均能夠達到令人滿意的淋巴結(jié)清掃數(shù)目及較低的術(shù)后并發(fā)癥發(fā)生率,證明該術(shù)式安全有效[34]。
RAMIE可提高食管癌患者術(shù)后的生活質(zhì)量,且與改善患者生存相關(guān)。健康相關(guān)生活質(zhì)量(Health-related Quality of Life,HRQoL)是一項評估患者生活質(zhì)量的常用指標。研究表明,接受RAMIE的患者圍術(shù)期和術(shù)后長期的情緒評分及社會功能評分均優(yōu)于接受OE的患者,且在減輕患者疼痛和功能障礙方面存在明顯優(yōu)勢[31,35]。骨骼肌減少癥是導(dǎo)致接受食管癌根治手術(shù)患者預(yù)后不良的重要影響因素,2023年
發(fā)表的研究結(jié)果表明,接受RAMIE的患者骨骼肌指數(shù)優(yōu)于接受OE的患者[36]。術(shù)后生存方面,筆者對接受RAMIE及VAMIE 患者的術(shù)后并發(fā)癥和生存進行了Meta分析,結(jié)果表明接受RAMIE的患者三年無病生存率高于接受VAMIE 的患者[37]。另有研究表明,接受RAMIE的患者的五年無病生存率及總生存率均高于接受OE的患者[38]。但RAMIE是否能夠真正改善生存,仍需通過多中心的隨機對照試驗來證實。
綜上,外科醫(yī)生一旦突破機器人輔助手術(shù)學(xué)習(xí)曲線,將取得比OE或VAMIE更好的手術(shù)效果,包括更少的術(shù)中出血及更徹底的淋巴結(jié)清掃程度。因此,運用機器人手術(shù)系統(tǒng)進行食管癌根治術(shù)具有一定的優(yōu)勢并可取得較為滿意的臨床療效。
1.3.2機器人手術(shù)在食管良性疾病中的應(yīng)用 賁門失弛緩癥:賁門失弛緩癥是一種相對罕見的食管平滑肌疾病,具體發(fā)病機制尚不明確,其特征是下段食管括約肌松弛受損以及食管收縮缺失或痙攣,目前治療以緩解功能性梗阻為主要目的[39-40]。Shimi S
等人[41]于1991年報道了首例腹腔鏡Heller肌切開術(shù),并逐漸成為治療賁門失弛緩的標準術(shù)式。隨著機器人手術(shù)系統(tǒng)的問世,Melvin W S等人[42]于2001年首次用機器人進行了Heller肌切開術(shù),取得了較好的效果。Meta分析顯示腹腔鏡和機器人Heller肌切開術(shù)在手術(shù)時間、出血量、住院時間和癥狀緩解等方面無顯著差異,機器人手術(shù)入路與術(shù)中食管穿孔發(fā)生率顯著降低有關(guān)[43]。腹腔鏡下切開食管黏膜損傷的發(fā)生率為5%~15%,但多項研究表明,機器人手術(shù)入路食管穿孔的發(fā)生率幾乎為零,可能是由于機器人手術(shù)系統(tǒng)具有高分辨率3D視覺、生理震顫自動過濾和操作精細靈活等優(yōu)勢,不會對組織產(chǎn)生任何過度的牽引力。已有研究證實,機器人Heller肌切開術(shù)治療賁門失弛緩癥是安全有效的[44]。部分肌層切開失敗且合并巨食管的患者可接受RAILE。
胃食管反流?。何甘彻芊戳鞑。℅astroesop-hageal Reflux Disease,GERD)是多種因素引發(fā)的上消化道動力障礙疾病,這些因素包括一過性食管下括約肌障礙和食管體部運動功能障礙等[45]。胃底折疊術(shù),尤其是 Nissen 胃底折疊術(shù),因其在改善GERD生理參數(shù)(如食管下括約肌壓力和食管酸暴露時間)方面的功效而被廣泛認為是抗反流手術(shù)中的“金標準”[45]。研究表明,機器人輔助胃底折疊術(shù)和腹腔鏡胃底折疊術(shù)在術(shù)后結(jié)局、并發(fā)癥發(fā)生率、住院時間、轉(zhuǎn)換率或再手術(shù)率方面沒有顯著差異[44]。Frazzoni M等人[46]對88例GERD患者分組進行了腹腔鏡和機器人手術(shù),與腹腔鏡手術(shù)組相比,機器人輔助手術(shù)組在中位術(shù)后食管酸暴露方面有適度的改善,顯著改善了術(shù)后酸反流參數(shù),提示在機器人輔助胃底折疊術(shù)在治療GERD中的臨床效果優(yōu)于傳統(tǒng)腹腔鏡手術(shù)。
食管平滑肌瘤:平滑肌瘤是食管最常見的良性腫瘤,約占食管良性腫瘤的70%,這些腫瘤由平滑肌細胞過度增殖引起,主要見于食管的中下段[47]。多項研究表明,機器人輔助食管平滑肌瘤切除術(shù)能夠較好地保護食管黏膜層的完整性,可加快患者的術(shù)后恢復(fù)。Asaf B B等人[48]對12例患者行平滑肌瘤切除術(shù),平均手術(shù)時間為110 min,平均失血量為26 mL,中位隨訪時間44個月,所有患者均無癥狀,無復(fù)發(fā)或憩室,表明機器人行平滑肌瘤切除術(shù)是安全有效的,具有良好的臨床預(yù)后。Inderhees S等人[49]則對胸腔鏡和機器人食管平滑肌瘤手術(shù)的臨床療效進行了對比分析,結(jié)果表明機器人手術(shù)有助于減輕食管黏膜損傷、降低并發(fā)癥發(fā)生率、縮短住院時間。部分剝離失敗或合并肉瘤等惡性病變患者,可挽救性行RAILE。
隨著機器人手術(shù)系統(tǒng)的不斷發(fā)展,其在食管外科領(lǐng)域的應(yīng)用越來越廣。相對于傳統(tǒng)手術(shù),機器人輔助手術(shù)可進行精準操作,減少創(chuàng)傷,給食管疾病患者帶來了創(chuàng)傷小、術(shù)后恢復(fù)快及良好的手術(shù)預(yù)后等益處。
2 機器人輔助Ivor Lewis手術(shù)適應(yīng)證與禁忌證
2.1適應(yīng)證 參照NCCN指南及CSCO指南[50-51],胸段食管癌及食管胃交界癌侵犯黏膜下層(T1b) 或更深時,通常選擇直接手術(shù)治療;局部晚期可切除食管癌,經(jīng)新輔助治療后可接受手術(shù)治療。最常見的RAILE適應(yīng)證為中下胸段食管惡性腫瘤、食管胃結(jié)合部食管惡性腫瘤累及近端35 cm以上和需切除食管的食管功能性疾病等[52]。在保證切緣陰性或3~5 cm安全切緣的前提下,部分較低位置的上胸段食管癌也有可能通過機器人手術(shù)來完成。研究表明,在保證切緣陰性的前提下,Ivor Lewis術(shù)的長期生存率不亞于McKeown術(shù)[6];而Ivor Lewis術(shù)在術(shù)后短期并發(fā)癥和生活質(zhì)量等方面有明顯優(yōu)勢[53-55]。
2.2禁忌證 不能滿足腫瘤切緣為RAILE的相對禁忌證;此外,胸腔或腹腔嚴重粘連患者(如既往胸腹腔手術(shù)史)施行微創(chuàng)手術(shù)較為困難,因此RAILE可能不適合用于此類患者,這主要取決于術(shù)者喜好、患者選擇以及是否合并其他合并癥等。此外,從腫瘤學(xué)角度來看,T4b腫瘤累及心臟、大血管、氣管、椎體或鄰近腹腔器官(包括肝臟、胰腺、脾臟)被認為不可切除;腫瘤位于胃食管交界伴鎖骨上淋巴結(jié)轉(zhuǎn)移應(yīng)考慮為不可切除;腫瘤伴有遠處轉(zhuǎn)移(包括非區(qū)域淋巴結(jié)及IV期)為不可切除;頸段或胸段食管癌距環(huán)咽肌lt;5 cm首選根治性同步放化療,放療后可考慮鞏固化療;嚴重心肺功能不全而無法耐受手術(shù)或無手術(shù)意愿均為手術(shù)禁忌證[51,56]。這些也是RAILE的禁忌證。
3 圍術(shù)期準備
3.1病理診斷及臨床分期診斷 RAILE在食管癌手術(shù)治療中已被廣泛應(yīng)用和認可。無論選擇何種術(shù)式,在接受食管癌手術(shù)前均應(yīng)完成病理診斷及臨床分期診斷[50-51]。病理診斷方式首選內(nèi)鏡下活檢,如果患者不具備條件或拒絕檢查,食管氣鋇雙重對比造影及胸部增強CT檢查可作為篩選和診斷方法[51]。臨床分期診斷則可采用(頸部)胸部/腹部增強CT、全身FDG-PET/CT及超聲內(nèi)鏡(EUS)[50]。
3.2患者生理狀態(tài) 根治性手術(shù)是可切除食管癌患者的主要治療方式,可提高長期生存率,但仍有部分患者的預(yù)后不佳,手術(shù)相關(guān)并發(fā)癥是導(dǎo)致這一結(jié)果的重要原因之一[57],所以術(shù)前對食管癌患者進行充分的生理狀態(tài)評估和準備尤為重要。
首先應(yīng)對患者一般情況以及是否耐受手術(shù)進行評估,要求患者一般情況良好,無嚴重合并疾患,心肺功能可以耐受單肺通氣和RAILE手術(shù)。部分不能耐受單肺通氣的患者,可采用單腔插管雙肺通氣,吻合方式采用手工吻合或Overlap吻合。目前,高齡已不再是食管癌手術(shù)的絕對禁忌證,應(yīng)結(jié)合患者的疾病狀況(心血管、呼吸系統(tǒng)、腎臟、肝臟及糖尿病等)進行綜合評估[57-58]。
其次,應(yīng)對手術(shù)患者進行圍術(shù)期營養(yǎng)狀況評估,必要時予以治療。中國抗癌協(xié)會腫瘤營養(yǎng)專業(yè)委員會發(fā)起的INSCOC研究顯示,食管癌是營養(yǎng)不良發(fā)病率第1位的腫瘤[59]。ESPEN指南及中國抗癌協(xié)會指南均推薦對所有確診患者采用NRS 2002量表進行營養(yǎng)風(fēng)險篩查,對于營養(yǎng)篩查有風(fēng)險的患者,推薦進一步采用PG-SGA量表進行營養(yǎng)評估[60-61]。如果患者至少存在以下一項情況(6個月內(nèi)體重減輕≥10%,BMIlt;18.5 kg/m2、SGA評分C級或無肝腎功能障礙情況下血清白蛋白含量低于30 g/L),手術(shù)前應(yīng)進行7~14 d的營養(yǎng)治療。對于所有受益于術(shù)前營養(yǎng)治療的患者、營養(yǎng)不良的患者、術(shù)后無法經(jīng)口攝食或術(shù)后1周經(jīng)口攝食lt;60%能量需求的患者,推薦行術(shù)后營養(yǎng)治療[61]。營養(yǎng)治療推薦免疫營養(yǎng)治療[62]。
3.3消化道準備 食管癌術(shù)前消化道準備包括口腔準備、食管準備和腸道準備。研究表明,食管癌患者口腔及食管內(nèi)的菌群改變與術(shù)后肺炎及吻合口瘺的發(fā)生相關(guān)[63-64]。良好的食管手術(shù)前消化道準備可以減少術(shù)中醫(yī)源性感染的風(fēng)險,為吻合口的愈合創(chuàng)造良好條件;同時也可促進術(shù)后腸蠕動的恢復(fù),為術(shù)后早期腸內(nèi)營養(yǎng)做準備。術(shù)前應(yīng)協(xié)助患者做好口腔清潔、進行食管沖洗及消化道手術(shù)前常規(guī)腸道準備。
3.4新輔助治療 新輔助治療是目前局部晚期可切除食管癌的首選治療方案,其中食管鱗癌推薦新輔助同步放化療(Neoadjuvant Chemoradiotherapy,NCRT),食管腺癌推薦NCRT或圍術(shù)期化療(Perioperative Chemotherapy,PCT)[50-51]。新輔助治療后,在患者身體條件允許情況下,建議的手術(shù)時機放化療結(jié)束后4~8周,化療結(jié)束后3~6周[51]。
免疫治療是當(dāng)前的研究熱點,CheckMate-577研究證實了可切除食管癌術(shù)后輔助免疫治療的重要作用[65],使其進入NCCN指南[50]。可切除食管癌新輔助免疫治療的安全性和有效性也已在臨床研究中得到初步證實[66-70]。CSCO食管癌診療指南2023版鼓勵患者參與新輔助免疫治療的臨床研究[51]。新輔助同步放化療/化療聯(lián)合免疫治療后手術(shù)時機的選擇目前無指南推薦,臨床研究中與新輔助同步放化療/化療相同。
4 機器人食管Ivor Lewis手術(shù)步驟
4.1體位擺放 RAILE選擇右胸和腹部兩切口作食管切除,手術(shù)即相應(yīng)分為腹部操作和胸部操作(如圖1)?;颊呓o予靜脈吸入復(fù)合全身麻醉,雙腔氣管插管單肺通氣或單腔插管雙肺通氣,取決于術(shù)者吻合方式的選擇。
腹部操作時,患者取仰臥15°~25°頭高足低位(反屈氏位),平臥或右傾15°。腹部切口采用5孔法:觀察孔置于臍下(12 mm Trocar),1號機械臂操作孔置于左鎖骨中線臍上1 cm 水平(8 mm Trocar),2號機械臂操作孔置于右腋前線肋弓下2 cm(8 mm Trocar),3號機械臂操作孔置于左腋前線肋弓下2 cm(8 mm Trocar),輔助操作孔置于右鎖骨中線臍上1 cm 水平(12 mmTrocar)。特殊情況下應(yīng)置入腔鏡肝臟拉鉤(Nathanson Liver Retractor)[71-72]。機器人機械臂自頭側(cè)進入,助手站在患者右側(cè)輔助手術(shù)。
胸部操作時,患者取90°左側(cè)臥位,前傾45°,左側(cè)單肺或雙肺通氣。胸部切口采用5孔法:觀察孔置于第8肋間右腋中線(12 mm Trocar),1號機械臂操作孔置于第4肋間右腋前線(8 mm Trocar),2號機械臂操作孔置于第8肋間右腋后線(8 mm Trocar),3號機械臂操作孔置于第8肋間肩胛線(8 mm Trocar),輔助操作孔置于第7肋間右腋前線(12 mm Trocar)。機器人機械臂自頭側(cè)進入,助手站在患者腹側(cè)輔助手術(shù)。此外,目前也有使患者取45°俯臥位,機器人從背側(cè)進入的胸部操作方式。
4.2腹部操作 腹部操作首先為使用荷包線和Hem-o-lock以“V型”懸吊肝臟,接著打開小網(wǎng)膜,沿肝胃韌帶側(cè)切除小網(wǎng)膜直至賁門,沿腹腔干三個分支(胃左動脈、脾動脈、肝總動脈)完整清掃淋巴結(jié),使用達芬奇雙極血管閉合器械或超聲刀處理胃左靜脈,使用Hem-o-lock雙重夾閉后離段胃左動脈(如圖2),并繼續(xù)游離胃小彎至賁門右側(cè)。游離膈肌食管裂孔,游離食管下段,與右側(cè)胸腔相通。沿距胃網(wǎng)膜血管
2 cm處打開大網(wǎng)膜,將胃向上方提起,游離胃后壁及胃底,離斷胃網(wǎng)膜左血管,顯露脾臟,處理胃短血管,分離至賁門膈角。繼續(xù)游離胃大彎幽門側(cè),保護胃網(wǎng)膜右血管弓,切斷胃結(jié)腸韌帶,充分游離胃幽門側(cè),必要時行Kocher 法利于胃的上提。
完成胃的完全游離后,沿胃小彎側(cè)使用數(shù)枚45 mm及60 mm直線切割閉合器鏡下制作管狀胃,管狀胃寬度4~5 cm,可使用倒刺線行內(nèi)翻縫合漿膜化管狀胃切緣,亦可采用倒刺線全層連續(xù)加固縫合。管狀胃制作結(jié)合術(shù)者喜好,亦可選擇腹部小切口輔助體外完成。
腹部操作的最后一步通常為距屈氏韌帶20~30 cm處做空腸穿刺造瘺,用于術(shù)后腸內(nèi)營養(yǎng)支持,然而其必要性存在爭議[73-77]。
4.3胸部操作 首先應(yīng)沿右側(cè)迷走神經(jīng)打開縱隔胸膜至鎖骨下動脈,暴露右喉返神經(jīng),清掃右喉返神經(jīng)旁淋巴結(jié)及脂肪組織,清掃上緣多以右側(cè)甲狀腺下動脈為界,以保證徹底的二野淋巴結(jié)清掃。使用切割閉合器離斷奇靜脈弓。向下游離食管脊柱側(cè)和心包側(cè),至膈肌食管裂孔與腹部貫通,牽拉紗條懸吊食管,同時清掃膈上、雙側(cè)下肺靜脈旁、主動脈旁、雙側(cè)主支氣管旁和隆突下淋巴結(jié)。胸部操作的難點在于清掃左喉返神經(jīng)旁淋巴結(jié),需要牽拉氣管,分離左側(cè)氣管及食管周圍脂肪結(jié)締組織,充分暴露左喉返神經(jīng),徹底清掃左喉返神經(jīng)旁淋巴結(jié),下至左喉返神經(jīng)起始部,上至左側(cè)甲狀腺下動脈水平。
吻合部位取決于腫瘤位置,吻合方式多由術(shù)者喜好決定??墒褂眠_芬奇機器人剪刀打開局部食管壁,使用釘鉆座夾持鉗置入管狀吻合器抵釘座,機械臂輔助下做雙層荷包縫合固定抵釘座,上提管狀胃至胸腔,荷包縫合管狀胃便于牽引吻合,離斷管狀胃,取出標本,送術(shù)中冰凍病理檢查腫瘤切緣情況。若冰凍病理檢查提示上下切緣均無癌殘留,即行食管-胃胸內(nèi)吻合(如圖3)。助手從輔助孔置入管狀吻合器,從管狀胃前壁置入并經(jīng)后壁引出,在助手及機械臂配合下對合吻合器及抵釘座,行食管近端與胃后壁端側(cè)吻合,直線切割閉合器關(guān)閉管狀胃殘端。常用管狀吻合器尺寸為21 mm或25 mm。
以上所述為器械吻合-圓吻端側(cè)吻合,為RAILE最常用吻合方式,簡便且可靠。RAILE可選用的吻合方式還有:器械吻合-側(cè)側(cè)吻合、器械吻合-三角吻合、手工吻合-端側(cè)吻合、手工吻合-側(cè)側(cè)吻合和手工吻合-端端分層吻合等。以上吻合方式在RAILE中均可行,且安全有效,術(shù)后吻合口瘺或狹窄發(fā)生率相當(dāng),外科醫(yī)生可根據(jù)自己的技術(shù)專長選用[78-82]。
4.4食管切除范圍 RAILE應(yīng)達到與開放手術(shù)相同的切除范圍,故上下切緣應(yīng)至少距腫瘤上下緣3~5 cm[83]。
目前RAILE主要用于治療相對早期的食管癌患者,鑒于早期腫瘤在腔鏡下判斷病灶的確切位置有一定困難,故在RAILE中不應(yīng)拘泥于3~5 cm的切緣,必要時行術(shù)中胃鏡輔助定位,以確保手術(shù)的根治性。
4.5淋巴結(jié)清掃范圍 淋巴結(jié)清掃的目的在于準確分期和徹底切除,RAILE的淋巴結(jié)清掃范圍與開放手術(shù)一致。2017年國際抗癌聯(lián)盟(Union for International Cancer Control,UICC)第八版和2017年日本食道學(xué)會(Japan Esophageal Society,JES)第十一版食管癌分期中,均對淋巴結(jié)進行了分組和分群[84-85](如圖4~5),主要區(qū)別在于UICC認為鎖骨上淋巴結(jié)屬于M1,腹腔干淋巴結(jié)屬于區(qū)域淋巴結(jié);而JES認為鎖骨上淋巴結(jié)仍為胸段食管癌的區(qū)域淋巴結(jié),腹腔干淋巴結(jié)不是胸上食管癌的區(qū)域淋巴結(jié)。
RAILE應(yīng)完成胸腹完全二野淋巴結(jié)清掃,術(shù)前未接受過新輔助治療的患者行手術(shù)治療時,應(yīng)清掃至少15個淋巴結(jié)以得到充分的淋巴結(jié)分期[50-51]。接受新輔助治療后的患者行手術(shù)治療時,最佳淋巴結(jié)清掃數(shù)目暫無定論,但推薦進行與未接受過新輔助治療患者相同范圍的淋巴結(jié)清掃。
5 術(shù)后并發(fā)癥與防治
RAILE術(shù)后常見的并發(fā)癥包括吻合口瘺、吻合口狹窄、肺部并發(fā)癥、乳糜胸和喉返神經(jīng)損傷等,與食道并發(fā)癥共識小組(Esophageal Complications Consensus Group,ECCG)現(xiàn)代全球食管切除術(shù)后結(jié)局的基準數(shù)據(jù)庫相比較,RAILE的圍術(shù)期結(jié)局相對令人滿意[86]。
5.1吻合口瘺 吻合口瘺是RAILE術(shù)后最嚴重也是常見的并發(fā)癥之一,是患者圍術(shù)期死亡的重要原因。吻合口瘺系吻合口處組織連續(xù)性缺損,導(dǎo)致重建后消化道的內(nèi)容物由管腔內(nèi)向腔外溢出,這會增加患者死亡風(fēng)險、延長住院時間,可能延誤術(shù)后治療而導(dǎo)致腫瘤復(fù)發(fā)。目前文獻報道的RAILE術(shù)后吻合口瘺發(fā)生率為1.9%~19.6%[82,87-93],RAILE研究中不同的吻合方式、吻合器使用以及新輔助治療等因素均有可能影響吻合口瘺的發(fā)生率。Egberts J H等人[89]回顧了75例RAILE術(shù)的吻合方式,發(fā)現(xiàn)5例接受側(cè)側(cè)直線吻合的患者中有4例發(fā)生了吻合口瘺,采用環(huán)形端端吻合的患者有16.7%發(fā)生了吻合口瘺,而手工吻合患者的吻合口瘺發(fā)生率僅為9.6%。傳統(tǒng)的胸腔鏡下手工吻合需要高超的腔鏡縫合技術(shù),限制了其應(yīng)用。但RAILE可以充分利用4個方向高自由度的機械臂、出色的可視化系統(tǒng)和人體工學(xué)設(shè)計,在進行深部狹小區(qū)域縫合、打結(jié)等精細操作中具有明顯優(yōu)勢,使得微創(chuàng)手工吻合變得相對易行[13]。目前RAILE術(shù)中最佳的吻合方式仍存在爭議,一些既往的Meta分析[94-95]比較了不同吻合器吻合和手工吻合的吻合口瘺發(fā)生率,發(fā)現(xiàn)吻合器吻合在吻合口瘺方面優(yōu)于手工吻合,但其是否適用于RAILE尚不確定,仍需要大樣本高質(zhì)量的臨床研究來探索RAILE的最佳吻合方式。
5.2吻合口狹窄 吻合口狹窄是RAILE術(shù)后另一種常見的吻合口并發(fā)癥,惡性狹窄由吻合口腫瘤復(fù)發(fā)引起,而良性狹窄主要由吻合口周圍瘢痕或者肉芽組織增生導(dǎo)致,與吻合口瘺、血流供應(yīng)不足和吻合方式等關(guān)系密切,常會引起患者不同程度的吞咽梗阻癥狀甚至無法進食,長期影響患者生活[96-97]。目前,僅有少量的研究報道了RAILE術(shù)的吻合口狹窄情況,Meredith K等人[93]回顧了302例接受微創(chuàng)手術(shù)的食管癌患者,發(fā)現(xiàn)有7.6%的RAILE患者發(fā)生了吻合口狹窄,而腔鏡組為3.2%。吻合口狹窄的發(fā)生與吻合方式關(guān)系密切,Egberts J H等人[91]建議吻合器直徑應(yīng)根據(jù)患者個體的解剖情況選擇,應(yīng)優(yōu)先選擇較大直徑,但在25 mm和28 mm吻合器之間并不存在吻合口瘺和吻合口狹窄發(fā)生率的顯著差
異[98]。XU Z J等人[99]的一項回顧性研究表明,可通過手工分層吻合來減少RAILE術(shù)吻合口狹窄的發(fā)生。WANG W P等人[100]報道提示,與手工吻合和環(huán)形吻合器吻合相比,半機械吻合方式可以有效降低吻合口狹窄的發(fā)生率,同時不增加胃食管反流發(fā)生的風(fēng)險。吻合口擴張術(shù)是良性吻合口狹窄的主要治療方法,可以采用內(nèi)鏡下探條擴張、內(nèi)鏡或DSA下球囊擴張[101],但擴張治療后部分患者的狹窄段可能出現(xiàn)瘢痕纖維增生、肥厚,以致再次發(fā)生狹窄。對于擴張無效的難治性吻合口狹窄,可以采用食管支架置入術(shù),以緩解吞咽困難[102]。
5.3乳糜胸 胸導(dǎo)管參與了除右半胸腔、右上肢及右側(cè)頭頸部之外全身的淋巴回流,其走行較長,與食管解剖關(guān)系密切,且常發(fā)生變異。術(shù)中剝離食管的操作易損傷胸導(dǎo)管及其分支,引起乳糜液外漏,大量淡黃色乳糜液積聚于胸膜腔引起乳糜胸,可造成嚴重的電解質(zhì)代謝紊亂[103-104]。Ekeke C N等人[105]的研究表明,其中心RAILE患者術(shù)后乳糜胸的發(fā)生率為8.3%。Egberts J H等人回顧了220例RAILE,發(fā)現(xiàn)有3例患者發(fā)生了乳糜胸且需要二次手術(shù)[91]。術(shù)前口服橄欖油可減少食管癌術(shù)后乳糜胸發(fā)生[106]。一些研究發(fā)現(xiàn),手術(shù)中預(yù)防性結(jié)扎胸導(dǎo)管可以降低術(shù)后乳糜胸的發(fā)生風(fēng)險[107]。Crucitti P等
人[108]進行的Meta分析發(fā)現(xiàn),與未作處理相比,術(shù)中預(yù)防性結(jié)扎胸導(dǎo)管可以顯著降低乳糜胸的發(fā)生風(fēng)險,然而另一篇2018年發(fā)表的Meta分析卻得出了相反的結(jié)論[109]。目前關(guān)于預(yù)防性結(jié)扎胸導(dǎo)管能否降低乳糜胸發(fā)生率仍未達成共識,但對于有高危因素如低BMI、胸導(dǎo)管剝離困難和新輔助同步放化療后的患者,預(yù)防性結(jié)扎胸導(dǎo)管的選擇仍需慎重[110]。
5.4肺部并發(fā)癥 肺炎和其他肺部并發(fā)癥也會影響食管癌術(shù)后患者的生存,有研究發(fā)現(xiàn)術(shù)后肺炎使圍術(shù)期死亡率增加了近10%,5年總生存率降低了12%[111]。既往研究顯示RAILE術(shù)后肺部并發(fā)癥的發(fā)生率為8.6%~34%[82,88-89,92-93]。近期一項傾向得分匹配研究和一項Meta分析均發(fā)現(xiàn)RAMIE術(shù)后的肺炎和肺部并發(fā)癥發(fā)生率顯著低于VAMIE,提示機器人手術(shù)可以有效降低術(shù)后肺部并發(fā)癥[112-113]。術(shù)前肺功能檢測可以預(yù)測肺部并發(fā)癥的發(fā)生,第1秒用力呼氣量低于正常值60%的患者,術(shù)后出現(xiàn)肺部并發(fā)癥的可能性會增加3倍[114]。有研究發(fā)現(xiàn)術(shù)前患者身體機能會影響并發(fā)癥的發(fā)生,許多食管癌患者因長期吸煙導(dǎo)致肺儲備減少,因此日常的戒煙教育有可能改善這部分患者的預(yù)后[115-116]。
6 隨訪
參考現(xiàn)有指南以及專家共識,建議RAILE術(shù)后的隨訪復(fù)查項目包括癥狀體征、全身營養(yǎng)狀況、腫瘤標志物監(jiān)測以及影像學(xué)檢查[50,117-118]。RAILE吻合口位于胸部,既往CROSS研究和NEOCRTEC5010研究等均提示術(shù)后吻合口及縱隔淋巴結(jié)的復(fù)發(fā)概率較高,而鎖骨上淋巴結(jié)、腹部淋巴結(jié)、肺、骨和腦則是轉(zhuǎn)移的重災(zāi)區(qū)[119-120],因此影像學(xué)檢查應(yīng)以頸部胸部上腹部增強CT為主,必要時輔以顱腦MRI、骨掃描或全身PET-CT等無創(chuàng)檢查,監(jiān)測腫瘤的復(fù)發(fā)轉(zhuǎn)移。如果上述無創(chuàng)檢查發(fā)現(xiàn)腫瘤存在復(fù)發(fā)可能,則可以根據(jù)位置選擇有創(chuàng)檢查手段,如超聲內(nèi)鏡活檢、淺表腫物活檢、縱隔鏡活檢等手段獲取病理,明確診斷以指導(dǎo)治療。關(guān)于隨訪間隔,由于大部分食管癌復(fù)發(fā)出現(xiàn)在術(shù)后2年內(nèi),根據(jù)指南建議RAILE術(shù)后的前2年內(nèi)每3個月隨訪1次,第3年起隨訪間隔延長至半年,第5年起每年隨
訪1次[121-122]。
綜上所述,RAILE結(jié)合了RAMIE的優(yōu)點以及Ivor Lewis術(shù)相較于Mckeown術(shù)在術(shù)后并發(fā)癥和患者生活質(zhì)量方面的優(yōu)勢,手術(shù)醫(yī)生和患者均可從中獲益。對于手術(shù)醫(yī)生,RAILE的靈活性、精確性及穩(wěn)定性高,有助于實施高難度、復(fù)雜的手術(shù)操作,也可縮短VAMIE的學(xué)習(xí)曲線。對于特定的需接受食管切除術(shù)的患者,RAILE既能保證較好的治療效果,也可提高生活質(zhì)量。但RAILE是否真正優(yōu)于VAMIE或OE,仍需要前瞻性隨機對照臨床試驗來進一步證實,但可能存在入組困難等障礙。不可否認的是,RAILE是當(dāng)前食管外科醫(yī)生應(yīng)該掌握的重要術(shù)式。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:嚴妍負責(zé)設(shè)計論文框架,文獻查閱,論文撰寫和修改;康曉征、李成強負責(zé)設(shè)計論文框架,論文修改;王允、李志剛、韓泳濤負責(zé)論文審閱及定稿;石立強、馮希佳負責(zé)文獻查閱,論文撰寫;李鶴成、李印負責(zé)指導(dǎo)選題,論文審閱及定稿。
參考文獻
[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-9.
[3] Hsu P K, Huang C S, Wu Y C, et al. Open versus thoracoscopic esophagectomy in patients with esophageal squamous cell carcinoma[J].
World J Surg, 2014, 38(2): 402-409.
[4] Biere S S, van Berge Henegouwen M I, Maas K W, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial[J]. Lancet, 2012, 379(9829): 1887-1892.
[5] van Workum F, Slaman A E, van Berge Henegouwen M I, et al. Propensity score-matched analysis comparing minimally invasive ivor lewis versus minimally invasive Mckeown esophagectomy[J]. Ann Surg, 2020, 271(1): 128-133.
[6] Junttila A, Helminen O, Helmio M, et al. Five-year survival after McKeown compared to Ivor-Lewis esophagectomy for esophageal cancer: a population-based nationwide study in Finland[J]. Ann Surg, 2023, (6): 964-970.
[7] Bizekis C, Kent M S, Luketich J D, et al. Initial experience with minimally invasive Ivor Lewis esophagectomy[J]. Ann Thorac Surg, 2006, 82(2): 402-6; discussion 6-7.
[8] van Workum F, Stenstra M, Berkelmans G H K, et al. Learning curve and associated morbidity of minimally invasive esophagectomy: a retrospective multicenter study[J]. Ann Surg, 2019, 269(1): 88-94.
[9] Claassen L, Hannink G, Luyer M D P, et al. Learning curves of Ivor Lewis totally minimally invasive esophagectomy by hospital and surgeon characteristics: a retrospective multinational cohort study[J]. Ann Surg, 2022, 275(5): 911-918.
[10] Giulianotti P C, Coratti A, Angelini M, et al. Robotics in general surgery: personal experience in a large community hospital[J]. Arch Surg, 2003, 138(7): 777-784.
[11] HAN Y, ZHANG Y J, ZHANG W T, et al. Learning curve for robot-assisted Ivor Lewis esophagectomy[J]. Dis Esophagus, 2022, 35(2): doab026.
[12] JIN R S, XIANG J, HAN D P, et al. Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis[J]. Journal of thoracic disease, 2017, 9(11): E990-E993.
[13] ZHANG Y J, XIANG J, HAN Y, et al. Initial experience of robot-assisted Ivor-Lewis esophagectomy: 61 consecutive cases from a single Chinese institution[J]. Dis Esophagus, 2018. DOI: 10.1093/dote/doy048.
[14] ZHANG Y J, HAN Y, GAN Q Y, et al. Early outcomes of robot-assisted versus thoracoscopic-assisted Ivor Lewis esophagectomy for esophageal cancer: a propensity score-matched study[J]. Annals of Surgical Oncology, 2019, 26(5): 1284-1291.
[15] de’Angelis N, Khan J, Marchegiani F, et al. Robotic surgery in emergency setting: 2021 WSES position paper[J]. World J Emerg Surg, 2022, 17(1): 4.
[16] Potscher A, Bittermann C, Langle F. Robot-assisted esophageal surgery using the da Vinci((R)) Xi system: operative technique and initial experiences[J]. J Robot Surg, 2019, 13(3): 469-474.
[17] Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery[J]. World J Surg, 2016, 40(10): 2550-2557.
[18] Horgan S, Berger R A, Elli E F, et al. Robotic-assisted minimally invasive transhiatal esophagectomy[J]. Am Surg, 2003, 69(7): 624-626.
[19] Bae S U, Baek S J, Hur H, et al. Intraoperative near infrared fluorescence imaging in robotic low anterior resection: three case reports[J]. Yonsei Med J,
2013, 54(4): 1066-1069.
[20] Gallagher A G, McClure N, McGuigan J, et al. An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills[J]. Endoscopy, 1998, 30(7): 617-620.
[21] Lanfranco A R, Castellanos A E, Desai J P, et al. Robotic surgery: a current perspective[J]. Ann Surg, 2004, 239(1): 14-21.
[22] Barba P, Stramiello J, Funk E K, et al. Remote telesurgery in humans: a systematic review[J]. Surg Endosc, 2022, 36(5): 2771-2777.
[23] Armijo P R, Huang C K, High R, et al. Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery[J]. Surg Endosc, 2019, 33(7): 2323-2331.
[24] Patel E, Saikali S, Mascarenhas A, et al. Muscle fatigue and physical discomfort reported by surgeons performing robotic-assisted surgery: a multinational survey[J]. J Robot Surg, 2023, 17(5): 2009-2018.
[25] Wong S W, Crowe P. Visualisation ergonomics and robotic surgery[J]. J Robot Surg, 2023, 17(5): 1873-1878.
[26] Peters B S, Armijo P R, Krause C, et al. Review of emerging surgical robotic technology[J]. Surg Endosc, 2018, 32(4): 1636-1655.
[27] Grimminger P P, van der Horst S, Ruurda J P, et al. Surgical robotics for esophageal cancer[J]. Ann N Y Acad Sci, 2018, 1434(1): 21-26.
[28] Kanamori J, Watanabe M, Maruyama S, et al. Current status of robot-assisted minimally invasive esophagectomy: what is the real benefit?[J].
Surg Today, 2022, 52(9): 1246-1253.
[29] Hosoda K, Niihara M, Harada H, et al. Robot-assisted minimally invasive esophagectomy for esophageal cancer: meticulous surgery minimizing postoperative complications[J]. Ann Gastroenterol Surg, 2020, 4(6):
608-617.
[30] Kernstine K H, DeArmond D T, Karimi M, et al. The robotic, 2-stage, 3-field esophagolymphadenectomy[J]. J Thorac Cardiovasc Surg, 2004, 127(6): 1847-1849.
[31] van der Sluis P C, van der Horst S, May A M, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial[J]. Ann Surg, 2019, 269(4): 621-630.
[32] Melvin W S, Needleman B J, Krause K R, et al. Computer-enhanced robotic telesurgery. Initial experience in foregut surgery[J]. Surg Endosc, 2002, 16(12): 1790-1792.
[33] de la Fuente S G, Weber J, Hoffe S E, et al. Initial experience from a large referral center with robotic-assisted Ivor Lewis esophagogastrectomy for oncologic purposes[J]. Surg Endosc, 2013, 27(9): 3339-3347.
[34] Kingma B F, Grimminger P P, van der Sluis P C, et al. Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry[J]. Ann Surg, 2022, 276(5): e386-e392.
[35] Mehdorn A S, Moller T, Franke F, et al. Long-term, health-related quality of life after open and robot-assisted Ivor-Lewis procedures-a propensity score-matched study[J]. J Clin Med, 2020, 9(11): 3513.
[36] Merboth F, Nebelung H, Wotschel N, et al. Robotic esophagectomy compared with open esophagectomy reduces sarcopenia within the first postoperative year: a propensity score-matched analysis[J]. J Thorac Oncol, 2023, 18(2): 232-244.
[37] ZHANG Y J, DONG D, CAO Y Q, et al. Robotic versus conventional minimally invasive esophagectomy for esophageal cancer: a meta-analysis[J]. Ann Surg, 2023, 278(1): 39-50.
[38] de Groot E M, van der Horst S, Kingma B F, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open esophagectomy: long-term follow-up of a randomized clinical trial[J]. Dis Esophagus, 2020, 33(Supplement_2): doaa079.
[39] Savarino E, Bhatia S, Roman S, et al. Achalasia[J]. Nat Rev Dis Primers, 2022, 8(1): 28.
[40] 徐楊, 申翼. 達芬奇機器人在食管外科中的應(yīng)用[J]. 醫(yī)學(xué)研究生學(xué)報, 2021, 34(1): 1-7.
[41] Shimi S, Nathanson L K, Cuschieri A. Laparoscopic cardiomyotomy for achalasia[J]. J R Coll Surg Edinb, 1991, 36(3): 152-154.
[42] Melvin W S, Needleman B J, Krause K R, et al. Computer-assisted robotic heller myotomy: initial case report[J]. J Laparoendosc Adv Surg Tech A, 2001, 11(4): 251-253.
[43] Milone M, Manigrasso M, Vertaldi S, et al. Robotic versus laparoscopic approach to treat symptomatic achalasia: systematic review with meta-analysis[J]. Dis Esophagus, 2019, 32(10): 1-8.
[44] Damani T, Ballantyne G. Robotic foregut surgery[J]. Surg Clin North Am, 2020, 100(2): 249-264.
[45] Katz P O, Dunbar K B, Schnoll-Sussman F H, et al. ACG Clinical guideline for the diagnosis and management of gastroesophageal reflux disease[J]. Am J Gastroenterol, 2022, 117(1): 27-56.
[46] Frazzoni M, Conigliaro R, Colli G, et al. Conventional versus robot-assisted laparoscopic Nissen fundoplication: a comparison of postoperative acid reflux parameters[J]. Surg Endosc, 2012, 26(6): 1675-1681.
[47] GH A L, Hu J R, Yao P, et al. Surgical Treatment for esophageal leiomyoma: 13 years of experience in a high-volume tertiary hospital[J]. Front Oncol, 2022. DOI: 10.3389/fonc.2022.876277.
[48] Asaf B B, Bishnoi S, Puri H V, et al. Robotic enucleation of oesophageal leiomyoma technique and surgical outcomes[J]. J Minim Access Surg, 2022, 18(1): 84-89.
[49] Inderhees S, Tank J, Stein H J, et al. Leiomyoma of the esophagus : A further indication for robotic surgery?[J]. Chirurg, 2019, 90(2): 125-130.
[50] Ajani J A, D’Amico T A, Bentrem D J, et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2023 21(4): 393-422.
[51] 中國臨床腫瘤學(xué)會指南工作委員會. 中國臨床腫瘤學(xué)會(CSCO)食管癌診療指南2023[M]. 北京: 人民衛(wèi)生出版社, 2023.
[52] Esophageal Surgery[M]. Wolters Kluwer, 2023.
[53] Brown A M, Pucci M J, Berger A C, et al. A standardized comparison of peri-operative complications after minimally invasive esophagectomy: Ivor Lewis versus McKeown[J]. Surg Endosc, 2018, 32(1): 204-211.
[54] Jezerskyte E, Saadeh L M, Hagens E R C, et al. Long-term health-related quality of life after McKeown and Ivor Lewis esophagectomy for esophageal carcinoma[J]. Dis Esophagus, 2020. DOI: 10.1093/dote/doaa022.
[55] YANG Y S, SHANG Q X, YUAN Y, et al. Comparison of long-term quality of life in patients with esophageal cancer after Ivor-Lewis, Mckeown, or Sweet esophagectomy[J]. J Gastrointest Surg, 2019, 23(2): 225-231.
[56] Rice D C. Robot-assisted Ivor Lewis Esophagectomy[M]. Springer International Publishing, 2021: 19-42.
[57] Steyerberg E W, Neville B A, Koppert L B, et al. Surgical mortality in patients with esophageal cancer: development and validation of a simple risk score[J]. J Clin Oncol, 2006, 24(26): 4277-4284.
[58] Hashimi S, Smith M. Medical evaluation of patients preparing for an esophagectomy[J]. Surg Clin North Am, 2012, 92(5): 1127-1133.
[59] SONG C H, CAO J J, ZHANG F, et al. Nutritional risk assessment by scored patient-generated subjective global assessment associated with demographic characteristics in 23, 904 common malignant tumors patients[J]. Nutr Cancer, 2019, 71(1): 50-60.
[60] 中國抗癌協(xié)會腫瘤營養(yǎng)專業(yè)委員會, 中華醫(yī)學(xué)會腸外腸內(nèi)營養(yǎng)學(xué)分會, 中國醫(yī)師協(xié)會放射腫瘤治療醫(yī)師分會營養(yǎng)與支持治療學(xué)組. 食管癌患者營養(yǎng)治療指南[J]. 中國腫瘤臨床, 2020, 47(1): 1-10.
[61] Weimann A, Braga M, Carli F, et al. ESPEN practical guideline: Clinical nutrition in surgery[J]. Clin Nutr, 2021, 40(7): 4745-4761.
[62] Muscaritoli M, Arends J, Bachmann P, et al. ESPEN practical guideline: Clinical Nutrition in cancer[J]. Clin Nutr, 2021, 40(5): 2898-2913.
[63] Reddy R M, Weir W B, Barnett S, et al. Increased variance in oral and gastric microbiome correlates with esophagectomy anastomotic leak[J]. Ann Thorac Surg, 2018, 105(3): 865-870.
[64] Yuda M, Yamashita K, Okamura A, et al. Influence of preoperative oropharyngeal microflora on the occurrence of postoperative pneumonia and survival in patients undergoing esophagectomy for esophageal cancer[J]. Ann Surg, 2020, 272(6): 1035-1043.
[65] Kelly R J, Ajani J A, Kuzdzal J, et al. Adjuvant Nivolumab in resected esophageal or gastroesophageal junction cancer[J]. N Engl J Med, 2021, 384(13): 1191-1203.
[66] GU Y, CHEN X, WANG D, et al. A study of neoadjuvant sintilimab combined with triplet chemotherapy of lipo-paclitaxel, cisplatin, and S-1 for resectable esophageal squamous cell carcinoma (ESCC)[J]. Annals of Oncology, 2020, 31(suppl_6): S1287-S1318.
[67] LI C Q, ZHAO S G, ZHENG Y Y, et al. Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1)[J]. Eur J Cancer, 2021, 144(2021): 232-241.
[68] LI Z, LIU J, ZHANG M, et al. A phase II study of neoadjuvant immunotherapy combined with chemotherapy (camrelizumab plus albumin paclitaxel and carboplatin) in resectable thoracic esophageal squamous cell cancer (NICE study): interim results[J]. Journal of Clinical Oncology, 2021, 39(15_suppl): 4060.
[69] van den Ende T, de Clercq N C, van Berge Henegouwen M I, et al. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: a single-arm phase II Feasibility trial (PERFECT)[J]. Clin Cancer Res, 2021, 27(12): 3351-3359.
[70] YAN X L, DUAN H T, NI Y F, et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: aprospective, single-arm, phase II study (TD-NICE)[J]. Int J Surg, 2022. DOI: 10.1016/j.ijsu.2022.106680.
[71] Chouliaras K, Hochwald S, Kukar M. Robotic-assisted Ivor Lewis esophagectomy, a review of the technique[J]. Updates Surg, 2021, 73(3): 831-838.
[72] Egberts J H, Biebl M, Perez D R, et al. Robot-assisted oesophagectomy: recommendations towards a standardised Ivor Lewis procedure[J]. J Gastrointest Surg, 2019, 23(7): 1485-1492.
[73] Berkelmans G H K, Fransen L F C, Dolmans-Zwartjes A C P, et al. Direct oral feeding following minimally invasive esophagectomy (NUTRIENT II trial): an international, multicenter, open-label randomized controlled trial[J]. Ann Surg, 2020, 271(1): 41-47.
[74] Han-Geurts I J, Hop W C, Verhoef C, et al. Randomized clinical trial comparing feeding jejunostomy with nasoduodenal tube placement in patients undergoing oesophagectomy[J]. Br J Surg, 2007, 94(1): 31-35.
[75] LIAO M F, XIA Z H, HUANG P L, et al. Early enteral feeding on esophageal cancer patients after esophageal resection and reconstruction[J]. Ann Palliat Med, 2020, 9(3): 816-823.
[76] SUN H B, LI Y, LIU X B, et al. Early oral feeding following McKeown minimally invasive esophagectomy: an open-label, randomized, controlled, noninferiority trial[J]. Ann Surg, 2018, 267(3): 435-442.
[77] TAO Z, ZHANG Y, ZHU S J, et al. A prospective randomized trial comparing jejunostomy and nasogastric feeding in minimally invasive McKeown esophagectomy[J]. J Gastrointest Surg, 2020, 24(10): 2187-2196.
[78] Fabbi M, van Berge Henegouwen M I, Fumagalli Romario U, et al. End-to-side circular stapled versus side-to-side linear stapled intrathoracic esophagogastric anastomosis following minimally invasive Ivor-Lewis esophagectomy: comparison of short-term outcomes[J]. Langenbecks Arch Surg, 2022, 407(7): 2681-2692.
[79] Guerra F, Tribuzi A, Giuliani G, et al. Fully robotic side-to-side linear-stapled anastomosis during robotic Ivor Lewis esophagectomy[J]. World J Surg, 2023, 47(9): 2207-2212.
[80] Maas K W, Biere S S, Scheepers J J, et al. Minimally invasive intrathoracic anastomosis after Ivor Lewis esophagectomy for cancer: a review of transoral or transthoracic use of staplers[J]. Surg Endosc, 2012, 26(7): 1795-1802.
[81] Plat V D, Stam W T, Schoonmade L J, et al. Implementation of robot-assisted Ivor Lewis procedure: Robotic hand-sewn, linear or circular technique?[J]. Am J Surg, 2020, 220(1): 62-68.
[82] ZHANG H L, WANG Z H, ZHENG Y, et al. Robotic side-to-side and end-to-side stapled esophagogastric anastomosis of Ivor Lewis esophagectomy for cancer[J]. World J Surg, 2019, 43(12): 3074-3082.
[83] 中國醫(yī)師協(xié)會食管外科專家委員會. 微創(chuàng)食管癌切除術(shù) (minimally invasive esophagectomy, MIE)專家共識[J]. 中華胸心血管外科雜志, 2013, 29(7): 385-387.
[84] Japan Esophageal Sociaty. Japanese Classification of Esophageal Cancer, 11th Edition: part I[J]. Esophagus, 2017, 14(1): 1-36.
[85] Rice T W, Ishwaran H, Ferguson M K, et al. Cancer of the esophagus and esophagogastric junction: an eighth edition staging primer[J]. J Thorac Oncol, 2017, 12(1): 36-42.
[86] Low D E, Kuppusamy M K, Alderson D, et al. Benchmarking complications associated with esophagectomy[J]. Ann Surg, 2019, 269(2): 291-298.
[87] Grimminger P P, Staubitz J I, Perez D, et al. Multicenter experience in robot-assisted minimally invasive esophagectomy-a comparison of hybrid and totally robot-assisted techniques[J]. J Gastrointest Surg, 2021, 25(10): 2463-2469.
[88] Berlth F, Mann C, Uzun E, et al. Technical details of the abdominal part during full robotic-assisted minimally invasive esophagectomy[J]. Dis Esophagus, 2020, 33(Supplement_2): doaa084.
[89] Egberts J H, Stein H, Aselmann H, et al. Fully robotic da Vinci Ivor-Lewis esophagectomy in four-arm technique-problems and solutions[J]. Dis Esophagus, 2017, 30(12): 1-9.
[90] Cerfolio R J, Wei B, Hawn M T, et al. Robotic Esophagectomy for cancer: early results and lessons learned[J]. Semin Thorac Cardiovasc Surg, 2016, 28(1): 160-169.
[91] Egberts J H, Welsch T, Merboth F, et al. Robotic-assisted minimally invasive Ivor Lewis esophagectomy within the prospective multicenter German da Vinci Xi registry trial[J]. Langenbecks Arch Surg, 2022, 407(4): 1-11.
[92] Kingma B F, Grimminger P P, van der Sluis P C, et al. Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry[J]. Ann Surg, 2022, 276(5): e386-e392.
[93] Meredith K, Blinn P, Maramara T, et al. Comparative outcomes of minimally invasive and robotic-assisted esophagectomy[J]. Surg Endosc, 2020, 34(2): 814-820.
[94] LIU Q X, MIN J X, DENG X F, et al. Is hand sewing comparable with stapling for anastomotic leakage after esophagectomy? A meta-analysis[J]. World J Gastroenterol, 2014, 20(45): 17218-17226.
[95] Kamarajah S K, Bundred J R, Singh P, et al. Anastomotic techniques for oesophagectomy for malignancy: systematic review and network meta-analysis[J]. BJS Open, 2020, 4(4): 563-576.
[96] HUANG Q Y, ZHONG J D, YANG T Z, et al. Impacts of anastomotic complications on the health-related quality of life after esophagectomy[J]. J Surg Oncol, 2015, 111(4): 365-370.
[97] Scarpa M, Valente S, Alfieri R, et al. Systematic review of health-related quality of life after esophagectomy for esophageal cancer[J]. World J Gastroenterol, 2011, 17(42): 4660-4674.
[98] Tagkalos E, van der Sluis P C, Uzun E, et al. The circular stapled esophagogastric anastomosis in esophagectomy: no differences in anastomotic insufficiency and stricture rates between the 25 mm and 28 mm circular stapler[J]. J Gastrointest Surg, 2021, 25(9): 2242-2249.
[99] XU Z J, ZHUO Z G, SONG T N, et al. Pretreatment-assisted robot intrathoracic layered anastomosis: our exploration in Ivor-Lewis esophagectomy[J]. Journal of thoracic disease, 2021, 13(7): 4349-4359.
[100] WANG W P, GAO Q, WANG K N, et al. A prospective randomized controlled trial of semi-mechanical versus hand-sewn or circular stapled esophagogastrostomy for prevention of anastomotic stricture[J]. World J Surg, 2013, 37(5): 1043-1050.
[101] Sami S S, Haboubi H N, Ang Y, et al. UK guidelines on oesophageal dilatation in clinical practice[J]. Gut, 2018, 67(6): 1000-1023.
[102] LU Q, YAN H L, WANG Y L, et al. The role of endoscopic dilation and stents in refractory benign esophageal strictures: a retrospective analysis[J]. BMC Gastroenterol, 2019, 19(1): 95.
[103] Agrawal A, Chaddha U, Kaul V, et al. Multidisciplinary management of chylothorax[J]. Chest, 2022, 162(6): 1402-1412.
[104] Mboumi I W, Reddy S, Lidor A O. Complications after esophagectomy[J]. Surg Clin North Am, 2019, 99(3): 501-510.
[105] Ekeke C N, Kuiper G M, Luketich J D, et al. Comparison of robotic-assisted minimally invasive esophagectomy versus minimally invasive esophagectomy: A propensity-matched study from a single high-volume institution[J]. J Thorac Cardiovasc Surg, 2023, 166(2): 374-382.
[106] DU Z S, LI X Y, LUO H S, et al. Preoperative Administration of Olive Oil Reduces Chylothorax After Minimally Invasive Esophagectomy[J]. Ann Thorac Surg, 2019, 107(5): 1540-1543.
[107] GUO W, ZHAO Y P, JIANG Y G, et al. Prevention of postoperative chylothorax with thoracic duct ligation during video-assisted thoracoscopic esophagectomy for cancer[J]. Surg Endosc, 2012, 26(5): 1332-1336.
[108] Crucitti P, Mangiameli G, Petitti T, et al. Does prophylactic ligation of the thoracic duct reduce chylothorax rates in patients undergoing oesophagectomy? A systematic review and meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 50(6): 1019-1024.
[109] LEI Y Y, FENG Y F, ZENG B, et al. Effect of prophylactic thoracic duct ligation in reducing the incidence of postoperative chylothorax during esophagectomy: a systematic review and meta-analysis[J]. Thorac Cardiovasc Surg, 2018, 66(5): 370-375.
[110] Varshney V K, Suman S, Garg P K, et al. Management options for post-esophagectomy chylothorax[J]. Surg Today, 2021, 51(5): 678-685.
[111] Booka E, Takeuchi H, Nishi T, et al. The impact of postoperative complications on survivals after esophagectomy for esophageal cancer[J]. Medicine (Baltimore), 2015, 94(33): e1369.
[112] Tsunoda S, Obama K, Hisamori S, et al. Lower incidence of postoperative pulmonary complications following robot-assisted minimally invasive esophagectomy for esophageal cancer: propensity score-matched comparison to conventional minimally invasive esophagectomy[J]. Ann Surg Oncol, 2021, 28(2): 639-647.
[113] ZHENG C, LI X K, ZHANG C, et al. Comparison of short-term clinical outcomes between robot-assisted minimally invasive esophagectomy and video-assisted minimally invasive esophagectomy: a systematic review and meta-analysis[J]. J Thorac Dis, 2021, 13(2): 708-719.
[114] Shiozaki A, Fujiwara H, Okamura H, et al. Risk factors for postoperative respiratory complications following esophageal cancer resection[J]. Oncol Lett, 2012, 3(4): 907-912.
[115] Baker S, Waldrop M G, Swords J, et al. Timed stair-climbing as a surrogate marker for sarcopenia measurements in predicting surgical outcomes[J]. J Gastrointest Surg, 2019, 23(12): 2459-2465.
[116] Reddy S, Contreras C M, Singletary B, et al. Timed stair climbing is the single strongest predictor of perioperative complications in patients undergoing abdominal surgery[J]. J Am Coll Surg, 2016, 222(4): 559-566.
[117] 陳龍奇, 李小飛, 傅劍華. 食管鱗癌術(shù)后隨訪中國胸外科專家共識[J]. 中國胸心血管外科臨床雜志, 2022, 29(02): 141-149.
[118] Obermannová R, Alsina M, Cervantes A, et al. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 2022, 33(10): 992-1004.
[119] Shapiro J, van Lanschot J J B, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial[J]. The Lancet Oncology, 2015, 16(9): 1090-1098.
[120] YANG H, LIU H, CHEN Y P, et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): a phase III multicenter, randomized, open-label clinical Trial[J]. J Clin Oncol, 2018, 36(27): 2796-2803.
[121] NI W J, YANG J S, DENG W, et al. Patterns of recurrence after surgery and efficacy of salvage therapy after recurrence in patients with thoracic esophageal squamous cell carcinoma[J]. BMC cancer, 2020, 20(1): 144.
[122] Rodríguez-Camacho E, Pita-Fernández S, Pértega-Díaz S, et al. Characteristics and pattern of recurrence after curative surgery in oesophageal cancer[J]. Revista espanola de enfermedades digestivas, 2015, 107(9): 539-546.
收稿日期:2024-04-02
編輯:劉靜凱
基金項目:國家自然科學(xué)基金(82372855,82072557);上海市衛(wèi)生健康委員會新興交叉領(lǐng)域研究專項(2022JC023)
Foundation Item: National Natural Science Foundation of China(82372855, 82072557); Novel Interdisciplinary Research Project of Shanghai Municipal Health Commission (2022JC023)
引用格式:嚴妍,康曉征,李成強,等. 機器人食管Ivor Lewis手術(shù)的臨床應(yīng)用[J].機器人外科學(xué)雜志(中英文),2025,6(2):319-331.
Citation: YAN Y, KANG X Z, LI C Q, et al. Clinical application of robot-assisted Ivor Lewis esophagectomy[J]. Chinese Journal of Robotic Surgery, 2025, 6(2): 319-331.
通訊作者(Corresponding Author):李鶴成(LI Hecheng),Email:lihecheng2000@hotmail.com;李?。↙I Yin),Email:liyin_thorax@ 163.com