摘要 目的:比較術(shù)中行X線配準(zhǔn)和CT配準(zhǔn)兩種模式的骨科手術(shù)機(jī)器人輔助微創(chuàng)經(jīng)椎間孔入路腰椎椎間融合術(shù)(TLIF)的置釘準(zhǔn)確性與手術(shù)效率。方法:選取2021年6月—2023年6月于山東大學(xué)齊魯醫(yī)院接受機(jī)器人輔助TLIF的57例患者,其中19例采用匹配術(shù)前CT的術(shù)中X線配準(zhǔn)機(jī)器人輔助置入椎弓根螺釘(X線配準(zhǔn)組),19例采用術(shù)中CT配準(zhǔn)機(jī)器人輔助置入椎弓根螺釘(CT配準(zhǔn)組),19例采用徒手置入椎弓根螺釘(徒手組)。比較三組螺釘?shù)闹萌霚?zhǔn)確性、固定上位節(jié)段關(guān)節(jié)突關(guān)節(jié)侵?jǐn)_率、術(shù)中透視次數(shù)、出血量、輻射暴露水平、術(shù)后住院時(shí)間和臨床效果,以及X線配準(zhǔn)組和CT配準(zhǔn)組的手術(shù)時(shí)間。結(jié)果:三組患者的出血量、術(shù)后住院時(shí)間和腰椎滑脫節(jié)段比較,差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),三組患者術(shù)后VAS評(píng)分和ODI評(píng)分均較術(shù)前明顯好轉(zhuǎn)(Plt;0.05)。X線配準(zhǔn)組較CT配準(zhǔn)組患者的術(shù)中輻射暴露少,且均低于徒手組(Plt;0.05)。X線配準(zhǔn)組和CT配準(zhǔn)組的臨床可接受螺釘數(shù)量大于徒手組,固定上位節(jié)段關(guān)節(jié)突關(guān)節(jié)侵?jǐn)_率小于徒手組,但差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05)。X線配準(zhǔn)組配準(zhǔn)及規(guī)劃時(shí)間低于CT配準(zhǔn)組,機(jī)器人裝備時(shí)間及置釘時(shí)間高于CT配準(zhǔn)組(Plt;0.05),兩組患者總手術(shù)時(shí)間差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),但均高于徒手組(Plt;0.05)。結(jié)論:術(shù)中行X線配準(zhǔn)和CT配準(zhǔn)兩種模式的機(jī)器人輔助TLIF具有較高的置釘準(zhǔn)確性和安全性,輻射量低,可作為TLIF的有效輔助方式。
關(guān)鍵詞 骨科手術(shù)機(jī)器人;微創(chuàng)經(jīng)椎間孔入路腰椎椎間融合術(shù);X線配準(zhǔn);CT配準(zhǔn);置釘準(zhǔn)確性;手術(shù)效率
中圖分類號(hào) R681.5 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 2096-7721(2025)02-0210-07
Comparison of nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion under different modes
WANG Hui1, SUN Xiaogang2, TIAN Yonghao1, YUAN Suomao1, WANG Lianlei1, LIU Xinyu1
(1.Department of Spinal Surgery, Qilu Hospital of Shandong University, Jinan 250012, China; 2. Department of Spinal Surgery, Tengzhou Central People’s Hospital, Tengzhou 277599, China)
Abstract Objective: To compare the nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) with intraoperative X-ray and CT alignment. Methods: 57 patients who underwent robotic-assisted MIS-TLIF from June 2020 to June 2023 in Qilu Hospital of Shandong University were selected. They were divided into the X-ray alignment group (n=19), the CT alignment group (n=19) and the freehand group (n=19). Patients in the above three groups underwent intraoperative X-ray alignment-assisted pedicle screw placement, intraoperative CT alignment-assisted pedicle screw placement and freehand pedicle screw placement, respectively. Screw placement accuracy, rate of superior level facet joint violations, number of intraoperative fluoroscopies, bleeding, radiation exposure level, postoperative length of hospital stay, and clinical outcomes among the three groups were compared. Meanwhile, operative time were compared between the X-ray-aligned group and CT-aligned group.
Results: There was no statistically significant difference in bleeding, postoperative length of hospital stay, and lumbar spondylolisthesis segments among the three groups (Pgt;0.05). Postoperative VAS and ODI scores of the three groups were significantly improved compared with those before surgery (Plt;0.05). Intraoperative radiation exposure in the X-ray alignment group was lower than that in the CT alignment group, and they were both lower than that in the freehand group (Plt;0.05). There was no statistically significant difference in the clinically acceptable screw placement and rate of superior level facet joint violations among the three groups of patients (Pgt;0.05). The X-ray alignment group has lower alignment and planning time (Plt;0.05), and higher robot equipping and nail placement time than the CT alignment group (Plt;0.05), but the difference in the total operative time between the two groups was not statistically significant (Pgt;0.05). The total operative times of the X-ray-aligned group and CT-aligned group were higher than that of the freehand group (Plt;0.05). Conclusion: Robot-assisted MIS-TLIF with X-ray and CT alignment intraoperatively has high nail placement accuracy and safety, low radiation exposure, which can be used as an effective adjunct to MIS-TLIF.
Key words Orthopaedic Surgical Robot; Minimally Invasive Transforaminal Lumbar Interbody Fusion; X-ray Alignment; CT Alignment; Nail Placement Accuracy; Surgical Efficiency
自21世紀(jì)初以來,脊柱外科的成像技術(shù)、導(dǎo)航系統(tǒng)和機(jī)器人輔助技術(shù)飛速發(fā)展[1-2],尤其是機(jī)器人輔助置入椎弓根螺釘技術(shù)已較為成熟。目前已有多款骨科手術(shù)機(jī)器人應(yīng)用于脊柱手術(shù),包括
“天璣?”“SpineAssist?”“Renaissance?”“Mazor?”
和“鑫君特?”等[3],這些手術(shù)機(jī)器人旨在提高椎弓根螺釘?shù)闹萌刖龋瑴p少徒手置釘引起的人為誤差。近年來,微創(chuàng)經(jīng)椎間孔入路腰椎椎間融合術(shù)(Minimally Invasive Transforaminal Lumbar Interbody
Fusion,MIS-TLIF)得到廣泛應(yīng)用,其具有對(duì)軟組織損傷小、出血量少、并發(fā)癥發(fā)生率低、恢復(fù)速度快、住院時(shí)間短等優(yōu)勢(shì)。然而經(jīng)皮椎弓根螺釘置入術(shù)較開放手術(shù)困難,其誤置可能導(dǎo)致神經(jīng)、血管及內(nèi)部臟器損傷,置釘偏內(nèi)側(cè)影響關(guān)節(jié)突關(guān)節(jié)時(shí)可導(dǎo)致相鄰節(jié)段退變等[4-5]。既往文獻(xiàn)報(bào)道,機(jī)器人輔助椎弓根螺釘置入術(shù)具有更高的置入精準(zhǔn)度、更低的關(guān)節(jié)突關(guān)節(jié)侵?jǐn)_率、更少的輻射以及更短的住院時(shí)間等優(yōu)點(diǎn)[6],在一項(xiàng)對(duì)105例患者行機(jī)器人輔助MIS-TLIF的回顧性研究中,其并發(fā)癥發(fā)生率為6.5%,螺釘置入準(zhǔn)確率為91.2%,因此采用機(jī)器人輔助置釘可有效提高M(jìn)IS-TLIF的臨床效果[7-8]。
相關(guān)文獻(xiàn)表明不同的骨科手術(shù)機(jī)器人其結(jié)構(gòu)組成和安裝步驟不盡相同,不同手術(shù)機(jī)器人置釘時(shí)間及手術(shù)效率也有較大差別,如“天璣?”、“Mazor?”等采用術(shù)中CT數(shù)據(jù)配準(zhǔn),而“鑫君特?”等采用術(shù)中X線結(jié)合術(shù)前CT數(shù)據(jù)配準(zhǔn)[9-11]。目前,脊柱手術(shù)機(jī)器人工作配準(zhǔn)方式大致分為兩種模式:一種是手術(shù)機(jī)器人直接根據(jù)術(shù)中O臂或3D-CT掃描數(shù)據(jù)進(jìn)行配準(zhǔn);另一種是術(shù)中C臂所攝X線片與術(shù)前CT掃描數(shù)據(jù)匹配后,手術(shù)機(jī)器人根據(jù)術(shù)中X線配準(zhǔn)。兩種不同配準(zhǔn)方式可能造成手術(shù)機(jī)器人在手術(shù)時(shí)間、手術(shù)效率的差別[12],目前不同配準(zhǔn)方式手術(shù)機(jī)器人的學(xué)習(xí)曲線、手術(shù)效率、并發(fā)癥發(fā)生率及輻射量等在MIS-TLIF中的對(duì)比尚缺乏相關(guān)研究。本研究比較了術(shù)中行X線配準(zhǔn)和CT配準(zhǔn)兩種不同模式的骨科手術(shù)機(jī)器人輔助MIS-TLIF的置釘準(zhǔn)確性與手術(shù)效率,以期為相關(guān)研究提供一定的參考依據(jù)。
1 資料與方法
1.1納入和排除標(biāo)準(zhǔn) 本研究經(jīng)山東大學(xué)齊魯醫(yī)院倫理委員會(huì)批準(zhǔn)(批準(zhǔn)文號(hào):KYLL055)。納入標(biāo)準(zhǔn):①腰椎退行性疾病患者;②腰椎滑脫癥患者;
③累及節(jié)段為L3~S1;④術(shù)前存在腰痛、下肢疼痛、麻木、無力及間歇性跛行等癥狀,嚴(yán)重影響工作生活,經(jīng)保守治療gt;3個(gè)月且無效者;⑤患者在入組前均簽署知情同意書。排除標(biāo)準(zhǔn):①術(shù)前影像學(xué)資料不全者;②術(shù)中關(guān)鍵步驟透視資料缺失者;③隨訪資料缺失者;④手術(shù)節(jié)段曾接受內(nèi)固定手術(shù)者。將患者隨機(jī)分為X線配準(zhǔn)組(n=19,采用匹配術(shù)前CT的術(shù)中X線配準(zhǔn)機(jī)器人輔助置入椎弓根螺釘)、CT配準(zhǔn)組(n=19,采用術(shù)中CT配準(zhǔn)機(jī)器人輔助置入椎弓根螺釘)和徒手組(n=19,徒手置入椎弓根螺釘),兩組患者一般資料(性別、年齡、BMI)相比,差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),見表1。
1.2手術(shù)方法(以L4/5為例)
1.2.1 X線配準(zhǔn)組 安裝定位板,C臂獲取患者術(shù)中正側(cè)位X線圖像,并通過與術(shù)前CT圖像自動(dòng)識(shí)別進(jìn)行配準(zhǔn)。術(shù)前規(guī)劃螺釘軌跡,包括螺釘軸向、冠狀位和矢狀位最佳位置和尺寸,機(jī)械臂沿預(yù)定軌跡方向移動(dòng)完成后,醫(yī)生監(jiān)控機(jī)械臂按照規(guī)劃方向自動(dòng)置入經(jīng)皮螺釘導(dǎo)針(如圖1)。置入導(dǎo)針后,逐級(jí)擴(kuò)張分離椎旁肌肉,安裝微創(chuàng)通道并顯露L4/5關(guān)節(jié)突關(guān)節(jié)。切除L4/5關(guān)節(jié)突關(guān)節(jié),用椎間絞刀、刮匙逐步切除椎間盤組織及上下椎體軟骨板,椎間隙內(nèi)植入自體、異體骨粒及椎間融合器。切除增生肥厚的黃韌帶行骨性椎管減壓,最后經(jīng)導(dǎo)針置入經(jīng)皮椎弓根螺釘并鎖緊系統(tǒng)。
1.2.2 CT配準(zhǔn)組 術(shù)中由O臂或者3D-C臂掃描獲取CT圖像,根據(jù)術(shù)中CT圖像規(guī)劃螺釘位置,包括螺釘軸向、冠狀位和矢狀位最佳位置和尺寸,在機(jī)械臂引導(dǎo)下置入擴(kuò)張管,電鉆置入經(jīng)皮螺釘導(dǎo)針(如圖2)。其余步驟同X線配準(zhǔn)組。
1.2.3徒手組 根據(jù)C形臂X線機(jī)行正側(cè)透視,定位L4椎弓根外,置入穿刺針頭,透視證實(shí)穿刺針頭已經(jīng)安全穿過椎弓根到達(dá)椎體后緣,取下針芯,置入導(dǎo)針。同法置入雙側(cè)L5椎弓根導(dǎo)針[13]。其余步驟同X線配準(zhǔn)組。
1.3觀察指標(biāo) 比較三組患者術(shù)中透視次數(shù)、出血量、術(shù)后住院時(shí)間、手術(shù)并發(fā)癥;采用視覺模擬評(píng)分法(Visual Analogue Scale,VAS)[14]評(píng)估患者術(shù)后腰背及下肢疼痛情況;采用Oswestry功能障礙指數(shù)(Oswestry Disability Index,ODI)[15]評(píng)估患者腰椎功能;同時(shí),比較X線配準(zhǔn)組和CT配準(zhǔn)組的手術(shù)時(shí)間,包括置釘時(shí)間、配準(zhǔn)及規(guī)劃時(shí)間、機(jī)器人裝備時(shí)間及總手術(shù)時(shí)間。
1.4影像學(xué)檢查 根據(jù)術(shù)后CT結(jié)果,采用Gertzbein和Robbins標(biāo)準(zhǔn)評(píng)估椎弓根螺釘位置[15-16],共分為5級(jí),
A級(jí)表示椎弓根內(nèi)、外側(cè)骨皮質(zhì)完整;B~E級(jí)表示螺釘穿透椎弓根內(nèi)側(cè)或外側(cè)骨皮質(zhì),穿透厚度分別lt;2 mm、2~4 mm、4~6 mm、≥6 mm;其中A級(jí)視為置釘準(zhǔn)確,A級(jí)和B級(jí)螺釘視為臨床可接受螺釘。根據(jù)術(shù)后CT評(píng)估椎弓根螺釘對(duì)上位關(guān)節(jié)突關(guān)節(jié)的侵?jǐn)_,評(píng)估結(jié)果分為4級(jí),A級(jí)表示螺釘不在關(guān)節(jié)突關(guān)節(jié)上,且未進(jìn)入關(guān)節(jié)突關(guān)節(jié);B級(jí)表示螺釘位于上關(guān)節(jié)突關(guān)節(jié)上,但未進(jìn)入關(guān)節(jié)突關(guān)節(jié)面;C級(jí)表示螺釘經(jīng)過關(guān)節(jié)突關(guān)節(jié)面≤1 mm;D級(jí)表示螺釘進(jìn)入關(guān)節(jié)突關(guān)節(jié)腔內(nèi),進(jìn)入距離gt;1 mm[16]。
1.5統(tǒng)計(jì)學(xué)方法 所有數(shù)據(jù)均采用SPSS 26.0軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用獨(dú)立樣本t檢驗(yàn),三組間比較采用單因素ANOVA分析,采用 χ2檢驗(yàn)對(duì)分類變量進(jìn)行分析。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1一般資料 三組患者腰椎滑脫節(jié)段、術(shù)后出血量及住院時(shí)間比較,差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05)。X線配準(zhǔn)組患者輻射量較CT配準(zhǔn)組少,且均少于徒手組(Plt;0.05)。與術(shù)前相比,術(shù)后即刻三組患者VAS評(píng)分和ODI評(píng)分均明顯好轉(zhuǎn),差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),但三組間VAS和ODI評(píng)分差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),見表1。
2.2置釘準(zhǔn)確率及手術(shù)時(shí)間 X線配準(zhǔn)組和CT配準(zhǔn)組的總手術(shù)時(shí)間相比,差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),但均長于徒手組(Plt;0.05)。X線配準(zhǔn)組配準(zhǔn)及規(guī)劃時(shí)間較CT配準(zhǔn)組短,而裝備時(shí)間及置釘時(shí)間較CT配準(zhǔn)組長(Plt;0.05)。X線配準(zhǔn)組和CT配準(zhǔn)組的臨床可接受螺釘數(shù)量大于徒手組,關(guān)節(jié)突關(guān)節(jié)侵?jǐn)_率小于徒手組,但差異無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),見表2。
2.3術(shù)后并發(fā)癥 X線配準(zhǔn)組中1例患者的椎弓根螺釘侵犯椎體內(nèi)側(cè)壁,術(shù)中行相應(yīng)調(diào)整。CT配準(zhǔn)組中1枚椎弓根螺釘刺穿椎體前壁,術(shù)中調(diào)整后術(shù)后出現(xiàn)腹痛,3 d后消失;徒手組中2例患者的椎弓根螺釘侵犯?jìng)?cè)壁(內(nèi)側(cè)壁及外側(cè)壁各1例),但術(shù)后未出現(xiàn)相關(guān)并發(fā)癥。
3 討論
手術(shù)機(jī)器人具有置釘準(zhǔn)確性高和并發(fā)癥發(fā)生率低等優(yōu)勢(shì)[14]。椎弓根螺釘固定的成功與否主要取決于螺釘放置的準(zhǔn)確性,高精度的螺釘置入有利于保持脊柱的穩(wěn)定性[17-18]。一項(xiàng)比較機(jī)器人輔助和徒手置入椎弓根螺釘準(zhǔn)確性的Meta分析顯示機(jī)器人輔助螺釘置入比徒手置入更準(zhǔn)確[19]。最近的研究[20-21]同樣表明,使用手術(shù)機(jī)器人可顯著提高置釘精度。HAN X G和LI C等人[22-23]也證明了機(jī)器人輔助經(jīng)皮椎弓根螺釘置入突破皮質(zhì)風(fēng)險(xiǎn)更小,可大大降低患者由于椎弓根螺釘誤置所造成的血管神經(jīng)損傷。Alluri R K和Akazawa T等人[3,24]對(duì)手術(shù)機(jī)器人置釘準(zhǔn)確性的研究表明不同手術(shù)機(jī)器人的置釘準(zhǔn)確性有所不同,但準(zhǔn)確率均gt;90%。目前對(duì)不同工作模式的骨科手術(shù)機(jī)器人在手術(shù)時(shí)間和置釘準(zhǔn)確性方面的研究較少。本研究結(jié)果顯示,CT配準(zhǔn)組和X線配準(zhǔn)組螺釘置入的準(zhǔn)確率gt;95%。手術(shù)機(jī)器人導(dǎo)航并不意味著100%的準(zhǔn)確性,在本研究中,X線配準(zhǔn)組術(shù)中出現(xiàn)1枚椎弓根螺釘侵犯椎體內(nèi)側(cè)壁;CT配準(zhǔn)組有1枚椎弓根螺釘侵犯椎體前壁,
術(shù)后引起患者腹痛。同時(shí)由于微創(chuàng)手術(shù)空間相對(duì)狹窄,術(shù)中神經(jīng)暴露不足,經(jīng)驗(yàn)不足的外科醫(yī)生更容易引起患者神經(jīng)刺激癥狀[25]。機(jī)器人輔助MIS-TLIF雖然有較高的置釘準(zhǔn)確性,但一些因素也可能導(dǎo)致其準(zhǔn)確性降低,比如機(jī)械臂承受反作用力的能力降低導(dǎo)致機(jī)械臂相對(duì)于患者運(yùn)動(dòng),出現(xiàn)螺釘置入位置偏離術(shù)前規(guī)劃路徑的情況[26];其次,當(dāng)關(guān)節(jié)突關(guān)節(jié)表面不夠光滑以及規(guī)劃軌跡與椎體之間的角度不夠時(shí),可能會(huì)出現(xiàn)偏離計(jì)劃軌跡的情況[27];第三,手術(shù)機(jī)器人系統(tǒng)安裝不夠穩(wěn)定導(dǎo)致螺釘偏離規(guī)劃軌跡[28];第四,配準(zhǔn)不準(zhǔn)確導(dǎo)致經(jīng)椎弓根螺釘放置不準(zhǔn)確[29];最后,軟組織壓力過大、骨表面摩擦和鉆孔壓力失衡也會(huì)影響螺釘置入的準(zhǔn)確性[21]。
一些研究表明,通過皮膚置入導(dǎo)絲可能出現(xiàn)“漂移”現(xiàn)象,從而導(dǎo)致螺釘誤置[30]。在規(guī)劃手術(shù)路徑時(shí)應(yīng)選擇椎弓根較平緩處作為進(jìn)釘點(diǎn),以降低在螺釘置入過程中的“漂移”現(xiàn)象。另外在機(jī)器人工作過程中,通過控制潮汐量和減少術(shù)中腰椎和背部運(yùn)動(dòng)對(duì)提高椎弓根螺釘放置的準(zhǔn)確性也是至關(guān)重要的。
機(jī)器人輔助MIS-TLIF雖然手術(shù)時(shí)間稍長,但該技術(shù)具備機(jī)器人系統(tǒng)的精確定位和較小的組織損傷優(yōu)勢(shì),可以實(shí)現(xiàn)更小的疼痛和更少的鄰近節(jié)段退變以減少出血,提高置釘準(zhǔn)確性,減少棘旁肌損傷,術(shù)后恢復(fù)更快,手術(shù)瘢痕更小,臨床滿意度更高[31]。
機(jī)器人輔助MIS-TLIF的手術(shù)時(shí)間主要取決于機(jī)器人的配準(zhǔn)時(shí)間、置釘時(shí)間以及術(shù)者的學(xué)習(xí)曲線[32]。相關(guān)研究結(jié)果表明,在使用機(jī)器人系統(tǒng)連續(xù)進(jìn)行10次手術(shù)后,手術(shù)團(tuán)隊(duì)表現(xiàn)出更好的協(xié)調(diào)性[30],隨著手術(shù)病例數(shù)量的增加,創(chuàng)造手術(shù)空間和使用機(jī)械臂建立通道所需的時(shí)間更短。本團(tuán)隊(duì)經(jīng)驗(yàn)表明,使用機(jī)器人輔助MIS-TLIF治療腰椎滑脫,10例手術(shù)足以完成學(xué)習(xí)曲線,此后,機(jī)器人輔助螺釘置入和減壓所需的時(shí)間大大減少,而配準(zhǔn)時(shí)間及置釘時(shí)間則無法縮短。本研究中X線配準(zhǔn)組配準(zhǔn)及規(guī)劃時(shí)間短于CT配準(zhǔn)組,但兩組手術(shù)總時(shí)間相近,則是由于置釘時(shí)間不同,X線配準(zhǔn)組為機(jī)器人自動(dòng)置釘,配準(zhǔn)完成后需規(guī)劃好機(jī)械臂路線,機(jī)械臂自動(dòng)打入螺釘,這一過程所需時(shí)間較長,而CT配準(zhǔn)組則是機(jī)器人輔助手動(dòng)置釘,機(jī)器人行進(jìn)到指定路線后術(shù)者置入導(dǎo)針,再根據(jù)導(dǎo)針軌跡打入螺釘,所需時(shí)間較短。
手術(shù)機(jī)器人在完成配準(zhǔn)后,直接按照術(shù)前規(guī)劃的運(yùn)動(dòng)軌跡移動(dòng),術(shù)中不需要多次輻射暴露,可有效減少醫(yī)生和患者的輻射暴露水平[19],機(jī)器人輔助MIS-TLIF不需要暴露解剖標(biāo)記物,因此學(xué)習(xí)曲線比一般的微創(chuàng)手術(shù)要短得多[10]。脊柱手術(shù)的放射性是非脊柱手術(shù)的10~12倍[33],Riis J等人[34]認(rèn)為多次透視及脊柱部位接受較高的輻射增加了脊柱外科醫(yī)生穿透性輻射的風(fēng)險(xiǎn);同時(shí)Mulconrey D S等人[35]認(rèn)為徒手置釘過程中需要多次透視,無法減輕對(duì)術(shù)者和患者的輻射暴露。因此,減少患者和外科醫(yī)生的輻射暴露是手術(shù)機(jī)器人應(yīng)用過程中亟需解決的問題。
最近的研究表明,在微創(chuàng)手術(shù)中使用手術(shù)機(jī)器人導(dǎo)航可以顯著減少輻射暴露[15],而對(duì)于不同工作模式的骨科手術(shù)機(jī)器人術(shù)中輻射暴露尚無文獻(xiàn)報(bào)道。本研究中,術(shù)中進(jìn)行X線配準(zhǔn)和CT配準(zhǔn)使得在機(jī)器人輔助手術(shù)中患者和醫(yī)生受到的輻射有所差別,X線配準(zhǔn)組患者術(shù)中輻射暴露較CT配準(zhǔn)組少,這是由于X線配準(zhǔn)組術(shù)中僅需一次輻射便可完成配準(zhǔn),此后無需行影像學(xué)檢查,而CT配準(zhǔn)組則需要術(shù)中行CT掃描,患者所受輻射較多。
人工智能在脊柱外科領(lǐng)域應(yīng)用十分廣泛,從脊柱成像到退行性疾病、脊髓損傷、脊柱腫瘤和脊柱側(cè)凸的輔助治療,為醫(yī)生的臨床實(shí)踐提供信息和技術(shù)支持,同時(shí)手術(shù)機(jī)器人在進(jìn)行術(shù)前或術(shù)中規(guī)劃中應(yīng)用人工智能輔助越來越多,減少醫(yī)生規(guī)劃時(shí)間,手術(shù)效率提升,有效提高手術(shù)的安全性[36]。目前,一部分手術(shù)機(jī)器人已經(jīng)實(shí)現(xiàn)螺釘?shù)淖詣?dòng)置入,這減輕了醫(yī)生的工作,提升了手術(shù)效率,降低了術(shù)者的學(xué)習(xí)曲線,但隨之而來的是自動(dòng)置釘?shù)膫惱韱栴}。一項(xiàng)對(duì)手術(shù)機(jī)器人人工智能倫理問題的研究顯示,骨科手術(shù)機(jī)器人應(yīng)用自動(dòng)置釘過程中產(chǎn)生了許多倫理挑戰(zhàn),這些倫理問題是在骨科手術(shù)機(jī)器人發(fā)展中所面臨的一大難題[37]。此外,本研究存在一定的局限性:①本研究為回顧性研究,在病例選擇上可能存在偏倚;②樣本量較少,現(xiàn)有的臨床結(jié)論還需要大樣本、前瞻性的研究來證實(shí)。
綜上所述,術(shù)中X線配準(zhǔn)與術(shù)中CT配準(zhǔn)兩種不同模式的骨科手術(shù)機(jī)器人在輔助MIS-TLIF中具有較高的置釘準(zhǔn)確性和安全性,且二者輻射較低,可作為MIS-TLIF的有效輔助方式。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:王輝負(fù)責(zé)課題框架設(shè)計(jì),撰寫文章;孫小剛、田永昊、原所茂、王連雷負(fù)責(zé)數(shù)據(jù)收集與分析,繪制圖表;劉新宇負(fù)責(zé)課題設(shè)計(jì),文章修改。
參考文獻(xiàn)
[1] D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019, 7(6): 9-23.
[2] Mualem W, Onyedimma C, Ghaith A K, et al. R2 advances in robotic-assisted spine surgery: comparative analysis of options, future directions, and bibliometric analysis of the literature[J]. Neurosurg Rev, 2022, 46(1): 18.
[3] Alluri R K, Avrumova F, Sivaganesan A, et al. Overview of robotic technology in spine surgery[J]. Hss j, 2021, 17(3): 308-316.
[4] Kapoen C, Liu Y, Bloemers F W, et al. Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with intermediate screws at the fracture level-a systematic review and meta-analysis[J]. Eur Spine J, 2020, 29(10): 2491-2504.
[5] FAN Y, DU J P, ZHANG J N, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery[J]. Med Sci Monit, 2017.DOI: 10.12659/msm.905713.
[6] De Biase G, Gassie K, Garcia D, et al. Perioperative comparison of robotic-assisted versus fluoroscopically guided minimally invasive transforaminal lumbar interbody fusion[J]. World Neurosurg, 2021.DOI: 10.1016/j.wneu.2021.01.133.
[7] Jutte P C, Castelein R M. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. Eur Spine J, 2002, 11(6): 594-598.
[8] Lau D, Terman S W, Patel R, et al. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis[J]. J Neurosurg Spine, 2013, 18(4): 356-361.
[9] Perfetti D C, Kisinde S, Rogers-LaVanne M P, et al. Robotic spine surgery: past, present, and future[J]. Spine (Phila Pa 1976), 2022, 47(13): 909-921.
[10] Wang T Y, Mehta V A, Sankey E W, et al. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF)[J]. Clin Neurol Neurosurg, 2021.DOI: 10.1016/j.clineuro.2021.106698.
[11] SU X J, LV Z D, CHEN Z, et al. Comparison of accuracy and clinical outcomes of robot-assisted versus fluoroscopy-guided pedicle screw placement in posterior cervical surgery[J]. Global Spine J, 2022, 12(4): 620-626.
[12] Akazawa T, Torii Y, Ueno J, et al. Safety of robotic-assisted screw placement for spine surgery: experience from the initial 125 cases[J]. J Orthop Sci, 2023.DOI: 10.1016/j.jos.2023.06.003.
[13] 劉新宇, 原所茂, 田永昊, 等. 微創(chuàng)經(jīng)椎間孔腰椎椎體間融合術(shù)內(nèi)固定相關(guān)并發(fā)癥及對(duì)策[J]. 中華骨科雜志, 2016, 36(22): 1426-1434.
[14] ZHANG Y, PENG Q, SUN C H, et al. Robot versus fluoroscopy-assisted vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis[J]. World Neurosurg, 2022.DOI: 10.1016/j.wneu.2022.07.083.
[15] CUI G Y, HAN X G, WEI Y, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis[J]. Orthop Surg, 2021, 13(7): 1960-1968.
[16] ZHANG R J, ZHOU L P, ZHANG L, et al. Safety and risk factors of TINAVI robot-assisted percutaneous pedicle screw placement in spinal surgery[J]. J Orthop Surg Res, 2022, 17(1): 379.
[17] Joshi R S, Lau D, Ames C P. Artificial intelligence and the future of spine surgery[J]. Neurospine, 2019, 16 (4) : 637-639.
[18] Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine (Phila Pa 1976), 1990, 15(1): 11-14.
[19] FAN Y, DU J P, LIU J J, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: An updated meta-analysis[J]. Medicine (Baltimore), 2018, 97(22): e10970.
[20] YAN K, ZHANG Q, TIAN W. Comparison of accuracy and safety between second-generation TiRobot-assisted and free-hand thoracolumbar pedicle screw placement[J]. BMC Surg, 2022, 22(1): 275.
[21] LI W S, LI G Y, CHEN W T, et al. The safety and accuracy of robot-assisted pedicle screw internal fixation for spine disease: a meta-analysis[J]. Bone Joint Res, 2020, 9(10): 653-666.
[22] HAN X G, TIAN W, LIU Y J, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019, 30(5): 615-622.
[23] LI C, WANG Z, LI D L, et al. Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: a comparison of robotic-navigation, O-arm-based navigation, and freehand techniques[J]. Eur Spine J, 2023, 32(9): 3094-3104.
[24] Akazawa T, Torii Y, Ueno J, et al. Learning curves for robotic-assisted spine surgery: an analysis of the time taken for screw insertion, robot setting, registration, and fluoroscopy[J]. Eur J Orthop Surg Traumatol, 2024, 34(1): 127-134..
[25] WANG L L, LI C, WANG Z, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up[J]. J Robot Surg, 2023, 17(2): 473-485.
[26] ZHANG Q, HAN X G, XU Y F, et al. Robotic navigation during spine surgery[J]. Expert Rev Med Devices, 2020, 17(1): 27-32.
[27] Kantelhardt S R, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20(6): 860-868.
[28] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. Eur Spine J, 2016, 25(3): 947-955.
[29] Keric N, Eum D J, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis[J]. J Robot Surg, 2017, 11(1): 17-25.
[30] Kim M C, Chung H T, Cho J L, et al. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion[J]. J Spinal Disord Tech, 2013, 26(2): 87-92.
[31] Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis[J]. Spine J, 2021, 21(2): 181-192.
[32] Park J H, Lee J, Hakim N A, et al. Robotic thyroidectomy learning curve for beginning surgeons with little or no experience of endoscopic surgery[J]. Head Neck, 2015, 37(12): 1705-1711.
[33] Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy[J]. Spine (Phila Pa 1976), 2012, 37(14): 1240-1244.
[34] Riis J, Lehman R R, Perera R A, et al. A retrospective comparison of intraoperative CT and fluoroscopy evaluating radiation exposure in posterior spinal fusions for scoliosis[J]. Patient Saf Surg, 2017.DOI: 10.1186/s13037-017-0142-0. eCollection 2017.
[35] Mulconrey D S. Fluoroscopic radiation exposure in spinal surgery: in vivo evaluation for operating room personnel[J]. Clin Spine Surg, 2016, 29(7): E331-E335.
[36] Babu R, Park J G, Mehta A I, et al. Comparison of superior-levelfacet joint violations during open and percutaneous pedicle screw placement[J]. Neurosurgery, 2012, 71(5): 962-970.
[37] Geiger J D, Hirschl R B. Innovation in surgical technology and techniques: Challenges and ethical issues[J].Semin Pediatr Surg, 2015, 24 (3): 115-121.
收稿日期:2024-01-02
編輯:崔明璠
基金項(xiàng)目:國家自然科學(xué)基金(81874022,82172483,82102522);山東省重點(diǎn)研發(fā)計(jì)劃(2022CXGC01050);山東省自然科學(xué)基金(ZR202102210113);山東省泰山學(xué)者項(xiàng)目(tsqn202211317);中央高水平醫(yī)院臨床研究基金(2022-PUMCH-D-004)
Foundation Item: National Natural Science Foundation of China (81874022, 82172483, 82102522); Key Ramp;D Plan Project of Shandong Province (2022CXGC01050); Natural Science Foundation of Shandong Province (ZR202102210113); Shandong Taishan Scholars Project (tsqn202211317); Clinical Research Fund of the Central High-level Hospital (2022-PUMCH-D-004)
引用格式:王輝,孫小剛,田永昊,等. 不同模式下骨科手術(shù)機(jī)器人微創(chuàng)經(jīng)椎間孔入路腰椎椎間融合術(shù)的置釘準(zhǔn)確性與手術(shù)效率比較[J]. 機(jī)器人外科學(xué)雜志(中英文),2025,6(2):210-216.
Citation: WANG H, SUN X G, TIAN Y H, et al. Comparison of nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion under different modes[J]. Chinese Journal of Robotic Surgery, 2025, 6(2):"210-216.
通訊作者(Corresponding Author):劉新宇(LIU Xinyu),Email:newyuliu@163.com