摘 要:杜洛埃藻屬(Drouetiella Mai, Johansen amp; Pietrasiak)中的物種具有形態(tài)可塑性,容易與細(xì)點(diǎn)絲藻科(Oculatellaceae)的其他物種混淆,該屬中的藻株從陸地生物群落中分離,采用包括分子手段、形態(tài)特征和生態(tài)信息相結(jié)合的多相方法進(jìn)行表征.從中國(guó)西藏自治區(qū)拉薩市的潮濕土壤分離出一株絲狀藍(lán)藻,編號(hào)為SXACC0052,形態(tài)上與淡綠杜洛埃藻(Drouetiella lurida(Gomont) Mai, Johansen amp; Pietrasiak)相似,藻絲都呈現(xiàn)橄欖綠色,有無(wú)色且堅(jiān)固的鞘,橫壁不收縮或稍微收縮,沒(méi)有觀察到假分枝.16S rRNA基因與16S-23S rRNA ITS序列顯示出這株藍(lán)藻與淡綠杜洛埃藻有較高的相似度,并且在系統(tǒng)發(fā)育樹中聚為一支,步展值分別為98/78/1和85/99/0.89.此外,這株絲狀藍(lán)藻的ITS二級(jí)結(jié)構(gòu)與淡綠杜洛埃藻的結(jié)構(gòu)相似度較高,進(jìn)一步表明這株絲狀藍(lán)藻屬于淡綠杜洛埃藻.杜洛埃藻屬是我國(guó)首次報(bào)道的新記錄屬,淡綠杜洛埃藻是我國(guó)首次報(bào)道的新記錄種.該種的發(fā)現(xiàn)豐富了我國(guó)藍(lán)藻物種多樣性,為保護(hù)和持續(xù)了解藻種資源提供理論依據(jù).
關(guān)鍵詞:淡綠杜洛埃藻;西藏;藍(lán)藻;新記錄;系統(tǒng)發(fā)育
中圖分類號(hào):Q949.22""""" 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2025)02-0063-10
藍(lán)藻也稱為藍(lán)細(xì)菌,是一種光合自養(yǎng)生物,通常被認(rèn)為是最重要的初級(jí)生產(chǎn)者[1].藍(lán)藻分布廣泛,由于能分化出特殊的細(xì)胞(如異形胞和厚壁孢子),可以在極端環(huán)境中生存[2].歐洲和亞洲對(duì)藍(lán)藻的研究有著悠久的歷史[3],但某些地區(qū)藍(lán)藻的多樣性仍然被低估.我國(guó)對(duì)藍(lán)藻的研究主要集中在水華藍(lán)藻的治理[4]、藍(lán)藻多糖提取[5]、藍(lán)藻食品[6]以及藍(lán)藻分類鑒定[7]等方面.在江西、云南、山西、重慶、四川等地區(qū)對(duì)藍(lán)藻的幾項(xiàng)研究表明[8-10],我國(guó)的藍(lán)藻類群還有許多未發(fā)現(xiàn)的物種,進(jìn)一步探索我國(guó)藍(lán)藻的物種多樣性是十分必要的.
在現(xiàn)代藍(lán)藻分類學(xué)中,單系屬是利用基因、形態(tài)和生態(tài)學(xué)數(shù)據(jù)建立的[11].基于這種多相分類方法,STRUNECKY′等[12]在2023年已經(jīng)建立了一個(gè)新的藍(lán)藻分類系統(tǒng),目前包括20個(gè)目,800多個(gè)屬和5 000個(gè)分類單元.近年來(lái),絲狀藍(lán)藻經(jīng)歷廣泛的分類學(xué)修訂,特別是有爭(zhēng)議的細(xì)鞘絲藻科(Leptolyngbyaceae),很多藍(lán)藻在早期被劃分到該科中[13-14],直到MAI等[15]在2018年將細(xì)鞘絲藻科又進(jìn)一步劃分為Oculatellaceae和Trichocoleaceae,同時(shí)描述了6個(gè)新屬,分別是Cartusia、Drouetiella、Kaiparowitsia、Komarkovaea、Pegethrix和Tildeniella,細(xì)鞘絲藻科的分類修訂為實(shí)現(xiàn)藍(lán)藻的單系屬奠定基礎(chǔ).隨后的分類學(xué)研究將Oculatellaceae科
收稿日期:2024-03-20;修回日期:2024-04-15.
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31970217;32000166);山西省應(yīng)用基礎(chǔ)研究計(jì)劃(面上項(xiàng)目)(20210302124302);中央水生態(tài)環(huán)境保護(hù)專項(xiàng)項(xiàng)目(拉薩河流域水生態(tài)調(diào)查評(píng)估).
作者簡(jiǎn)介:王捷(1984-),男,山西河曲人,太原師范學(xué)院副教授,博士,研究方向?yàn)樵孱惙诸惣跋到y(tǒng)演化,E-mail:nostoc@126.com.
通信作者:劉琪,山西大學(xué)教授,博士,博士生導(dǎo)師,E-mail:liuqi@sxu.edu.cn.
引用本文:王捷,張婷,蔡芳芳,等.淡綠杜洛埃藻(Drouetiella lurida)——分離自中國(guó)西藏的藍(lán)藻新記錄種[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2025,53(2):63-72.(Wang Jie,Zhang Ting,Cai Fangfang,et al.Drouetiella lurida:a new record species of cyanobacteria isolated from Xizang,China[J].Journal of Henan Normal University(Natural Science Edition),2025,53(2):63-72.DOI:10.16366/j.cnki.1000-2367.2024.03.20.0003.)
中的已知屬增加到了21個(gè)[12],但是由于缺乏清晰的形態(tài)學(xué)特征,這些新種和新屬很難通過(guò)光學(xué)顯微鏡進(jìn)行準(zhǔn)確鑒定.
杜洛埃藻屬是由MAI等[15]在2018年建立的新屬,屬于細(xì)點(diǎn)絲藻目(Oculatellales)細(xì)點(diǎn)絲藻科(Oculatelaceae),目前有5個(gè)種被有效描述,模式種是淡綠杜洛埃藻.該屬具有單個(gè)假分枝,具有無(wú)色堅(jiān)固的鞘,在橫壁處稍微收縮,末端細(xì)胞圓柱形.在區(qū)分新屬杜洛埃藻屬的過(guò)程中,MAI等[15]描述了2個(gè)新種Drouetiella fasciculata和Drouetiella hepatica,作者還將Phormidium lurandum分到杜洛埃藻屬中,之后KIM等[16]從韓國(guó)大邱廣域市的石碑上分離出了Drouetiella epilithica,DAVYDOV等[17]也從俄羅斯科米共和國(guó)的烏拉爾山分離并描述了一個(gè)新種Drouetiella ramosa.在系統(tǒng)發(fā)育分析中杜洛埃藻屬具有單獨(dú)的進(jìn)化枝,具有與其他物種不同的二級(jí)結(jié)構(gòu),還有許多未定種的序列如Drouetiella sp.V16等需要重新修訂[18].
杜洛埃藻屬物種最早從美國(guó)的土壤中分離得到[15],最近在韓國(guó)[16]和俄羅斯[17]發(fā)現(xiàn)該屬的其他新種,但目前該屬物種在我國(guó)還未見報(bào)道和描述.本文首次報(bào)道了采自我國(guó)西藏自治區(qū)的淡綠杜洛埃藻,通過(guò)形態(tài)特征、生態(tài)學(xué)和系統(tǒng)發(fā)育學(xué)結(jié)合的多相方法對(duì)其進(jìn)行分類鑒定.新記錄種的報(bào)道增加了中國(guó)藍(lán)藻物種多樣性,為保護(hù)和研究藻種種質(zhì)資源提供基礎(chǔ).
1 材料與方法
1.1 樣品采集
2023年7月,在中國(guó)西藏自治區(qū)拉薩市柳東大橋旁(29°35′57″N,91°20′54″E)使用小刀和鑷子采集藻種,將采集到的樣品裝入收集瓶中,一份用福爾馬林固定保存,一份用于藻株分離純化與培養(yǎng),采集地環(huán)境因子如下:海拔為3 620 m,溫度為16.2 ℃,pH值為8.41.
1.2 藻株分離純化與培養(yǎng)
將采集的樣品進(jìn)行富集培養(yǎng),在顯微鏡下采用經(jīng)典的毛細(xì)管分離法[19]分離純化藻株,首先在倒置顯微鏡下挑取單根藻絲體,ddH2O清洗多次,最后放入含有2 mL BG11培養(yǎng)基的24孔細(xì)胞培養(yǎng)板中培養(yǎng),4~5周便可得到單克隆藻種.鏡檢若為純培養(yǎng)藻種,可轉(zhuǎn)入250 mL三角瓶中擴(kuò)大培養(yǎng),放置在恒溫光照培養(yǎng)箱中,保持光照強(qiáng)度2 000 lx,溫度(25±1) ℃,光周期12 h∶12 h[20],純化后的藻種保藏于太原師范學(xué)院淡水藻種庫(kù)中,藻株編號(hào)為SXACC0052.
1.3 形態(tài)特征
野外采集到的樣品及實(shí)驗(yàn)室純化后的藻株使用Nikon Eclipse NI型光學(xué)顯微鏡[21]觀察其形態(tài)特征,藻種的顯微圖片使用外接電腦的NIS-Elements D 5.20軟件進(jìn)行拍攝,同時(shí)測(cè)量藻絲及頂端細(xì)胞的尺寸,尺寸由“min-average-max”表示,每個(gè)樣本至少包含35個(gè)藻絲體.拍攝的照片使用軟件Adobe Illustrator CS5和Adobe Photoshop CC 2019 SP 20.0.0進(jìn)行處理.
1.4 分子生物學(xué)分析
1.4.1 DNA提取、PCR擴(kuò)增及序列測(cè)定
使用CTAB法[22]提取藻株的DNA,將提取到的DNA放入-20 ℃的冰箱中保存?zhèn)溆?選取16S rRNA基因和16S-23S rRNA ITS序列進(jìn)行系統(tǒng)發(fā)育分析,用于擴(kuò)增16S rRNA基因序列的引物為F1[23](5′-TTGATCCTGGCTCAGGATGA-3′)和1 492[24](5′-GGTTACCTTGTTACGACTT-3′),用于擴(kuò)增16S-23S ITS 區(qū)域的引物為322(5′-CTCTGTGTGCCTAGGTATCC-3′)和340[25](5′-GGGGAATTTTCCGCAATGGG-3′).
PCR反應(yīng)體系:2 μL 基因組 DNA、正反引物各3 μL(10 μmol/L),0.5 μL Taq DNA聚合酶(83.35 nkat/μL)、4 μL dNTP混合液(2.5 mmol/L)、5 μL 10 ×Easy Taq Buffer和32.5 μL ddH2O.PCR擴(kuò)增程序?yàn)椋?5 ℃下預(yù)變性3 min,95 ℃變性30 s,55 ℃退火30 s,72 ℃延伸50 s,這個(gè)階段進(jìn)行35次循環(huán)[7],最后,在72 ℃下延伸5 min.用質(zhì)量分?jǐn)?shù)1%瓊脂糖凝膠電泳法檢驗(yàn)PCR產(chǎn)物,以確保獲得預(yù)期擴(kuò)增的序列.將純化的PCR產(chǎn)物進(jìn)行雙向測(cè)序,測(cè)序由北京華大基因公司完成.測(cè)序后的序列提交到 NCBI(https://www.ncbi.nlm.nih.gov/)GenBank數(shù)據(jù)庫(kù)中,登錄號(hào)為PP413587和PP413588.
1.4.2 構(gòu)建系統(tǒng)發(fā)育樹
將測(cè)序獲得的序列與NCBI數(shù)據(jù)庫(kù)中的序列進(jìn)行比對(duì),選取并下載相似度較高和有代表性的序列進(jìn)行系統(tǒng)發(fā)育樹的構(gòu)建.為了確定分離的藻株的歸屬和系統(tǒng)發(fā)育位置,使用軟件Bio Edit 7.0中的Clustal W對(duì)序列進(jìn)行多重比對(duì)分析[26-27],然后編輯序列,切除未對(duì)齊的兩端序列并用目視檢查,將對(duì)齊的序列利用軟件MEGA 11[28]采用鄰接法(NJ)和最大簡(jiǎn)約法(MP)構(gòu)建系統(tǒng)發(fā)育樹,使用軟件RAxML Version 8[29]構(gòu)建最大似然(ML)系統(tǒng)發(fā)育樹,最適模型是由MEGA 11中Find Best DNA/Protein Models程序?qū)ο嚓P(guān)序列進(jìn)行測(cè)試,在 Model Finder 的 Akaike 信息準(zhǔn)則(AIC)下[30],最佳擬合模型為 GTR+G,通過(guò)使用 1 000 次重復(fù)的引導(dǎo)分析來(lái)估計(jì)系統(tǒng)發(fā)育樹的穩(wěn)健性[31].利用Mrbayes 3.1.2[32]進(jìn)行貝葉斯分析,運(yùn)行1 000 000代,每100代取樣,去除前25%樣本樹,剩余樣本構(gòu)建系統(tǒng)樹,分枝支持率用貝葉斯后驗(yàn)概率表示,使用軟件Fig Tree version 1.4.2[33]對(duì)貝葉斯樹進(jìn)行編輯處理.以Gloeobacter violaceus PCC7421作為一個(gè)外類群,構(gòu)建的系統(tǒng)發(fā)育樹使用軟件Adobe Illustrator CS5進(jìn)行處理.
1.4.3 ITS二級(jí)結(jié)構(gòu)預(yù)測(cè)
16S-23S rRNA序列比對(duì)后剪切對(duì)齊,使用軟件RNA structure 5.7[34]預(yù)測(cè)藻株的二級(jí)結(jié)構(gòu),分析并對(duì)比藻株的D1-D1′、Box-B以及V3螺旋結(jié)構(gòu),進(jìn)一步對(duì)該藻株進(jìn)行分類鑒定.所有藻株的結(jié)構(gòu)格式都在Adobe Illustrator CS5中進(jìn)行修改.
2 結(jié) 果
2.1 形態(tài)描述
藻株橄欖綠色或藍(lán)綠色,多數(shù)藻絲單生,有時(shí)纏繞在一起(圖1).絲狀體直或稍微彎曲,直徑約為(1.9/2.2/2.5) μm(最小值/均值/最大值).鞘堅(jiān)硬,清晰且薄,偶爾加寬(圖1藍(lán)色箭頭).藻絲由圓柱形的細(xì)胞組成,細(xì)胞大多等徑,在分裂的藻絲中變得長(zhǎng)大于寬,細(xì)胞寬(1.8/2.1/2.4) μm,長(zhǎng)(1.4/2.1/2.8) μm,在橫壁處不收縮或略微收縮.末端細(xì)胞圓形,沒(méi)有觀察到假分支,無(wú)藻殖段,沒(méi)有帽狀體,存在死細(xì)胞(圖1紅色箭頭),通過(guò)藻絲斷裂而繁殖(表1).
參考藻株:Drouetiella lurida SXACC0052.
分布:中國(guó)西藏自治區(qū)拉薩市柳東大橋旁.
生境:潮濕土壤.
2.2 系統(tǒng)發(fā)育分析
測(cè)序得到藻株SXACC0052的16S rRNA 基因序列長(zhǎng)度為1 308 bp,其與杜洛埃藻屬藻株的16S rRNA序列相似度為95.76%~99.25%,與淡綠杜洛埃藻的16S rRNA基因序列相似度>99%(表2).選擇與藻株SXACC0052相似度較高的序列,以Gloeobacter violaceus PCC7421為外類群,采用ML、NJ和BI法構(gòu)建包括56個(gè)藍(lán)藻類群的系統(tǒng)發(fā)育樹,3種方法具有較為一致的分支位點(diǎn)的拓?fù)浣Y(jié)構(gòu),文中展示了采用ML法構(gòu)建的系統(tǒng)發(fā)育樹,在圖中分支節(jié)點(diǎn)處標(biāo)出了ML/NJ/BI的步展支持值和后驗(yàn)概率(圖2).16S rRNA 基因系統(tǒng)發(fā)育樹主要包括10個(gè)屬,培養(yǎng)和測(cè)序的這株絲狀藍(lán)藻SXACC0052分布在杜洛埃藻屬的進(jìn)化枝中(圖2紅色進(jìn)化枝),并且與淡綠杜洛埃藻聚為一支(圖2紅色字體),具有較高的步展支持值和后驗(yàn)概率,為98/78/1,與杜洛埃藻屬中的其他物種分離.
藻株SXACC0052的16S-23S rRNA序列長(zhǎng)度為658 bp,與杜洛埃藻物種的16S-23S rRNA序列相似度較高,其中與Drouetiella lurida Lukesova 1986/6的相似度最高(表3).選擇藻株SXACC0052與杜洛埃藻屬內(nèi)有代表性的序列,以O(shè)culatella castenholzii YNP74-MA2為外類群,采用NJ/ML/MP法基于16S-23S ITS區(qū)間構(gòu)建系統(tǒng)發(fā)育樹,3種方法具有較為一致的分支位點(diǎn)的拓?fù)浣Y(jié)構(gòu),文中展示了采用NJ法構(gòu)建的系統(tǒng)發(fā)育樹,在圖中分支節(jié)點(diǎn)處標(biāo)出了NJ/ML/MP的步展支持值(圖3).系統(tǒng)發(fā)育樹包括15個(gè)藍(lán)藻類群,藻株SXACC0052分布在淡綠杜洛埃藻進(jìn)化枝中,與Drouetiella lurida KPABG 4163和Drouetiella lurida Lukesova 1986/6聚為一支(圖3藍(lán)色字體),NJ/ML/MP的步展支持值為85/99/89,與杜洛埃藻屬中的其他物種分離.
2.3 16S-23S rRNA ITS二級(jí)結(jié)構(gòu)分析
藻株SXACC0052的16S-23S rRNA序列長(zhǎng)度為825 bp,選擇D1-D1′螺旋、Box-B螺旋和V3螺旋這3個(gè)保守區(qū)域進(jìn)行研究.SXACC0052與淡綠杜洛埃藻的D1-D1′螺旋結(jié)構(gòu)大致相同,但有些堿基具有差異(圖4),SXACC0052的D1-D1′螺旋含有64個(gè)核苷酸(圖4(a)),共有5個(gè)莖環(huán)結(jié)構(gòu),基部莖由5個(gè)bp的螺旋構(gòu)成,基部3′側(cè)環(huán)由7個(gè)未配對(duì)的核苷酸組成(5′-CAUCCCA-3′),之后是1個(gè)1∶1的雙側(cè)凸起(U∶U),在位置14-17/41-44和23-24/34-35處具有內(nèi)環(huán),末端環(huán)包含3 bp堿基(5 ′-UAC-3 ′).與Drouetiella lurida Lukesova 1986/6的結(jié)構(gòu)相同,只有第10位和第30位的堿基不同(圖4).杜洛埃藻物種的Box-B結(jié)構(gòu)高度相似(圖5),SXACC0052與淡綠杜洛埃藻的Box-B結(jié)構(gòu)相同(圖5(a)),Box-B螺旋33個(gè)核苷酸長(zhǎng),共有3個(gè)莖環(huán)結(jié)構(gòu),基部莖由4個(gè)bp的螺旋構(gòu)成,與淡綠杜洛埃藻相比,SXACC0052的末端環(huán)堿基不同(圖5),末端環(huán)包含5 bp堿基(5′-GGAAG-3′).SXACC0052的V3螺旋結(jié)構(gòu)包括52個(gè)核苷酸,有3個(gè)莖環(huán)結(jié)構(gòu),基部莖由4個(gè)bp的螺旋構(gòu)成,末端環(huán)包含4 bp堿基(5′-UUAG-3′),與Drouetiella lurida ACKU669的V3螺旋結(jié)構(gòu)相似(圖6(e)),但該藻株堿基發(fā)生變化,第31位變?yōu)槟蜞奏?,末端環(huán)堿基也不同(圖6紅色字體).從圖中可知,藻株SXACC0052屬于淡綠杜洛埃藻(圖4至圖6).
3 討 論
目前,細(xì)點(diǎn)絲藻科包含21屬63種,該科中各屬下物種形態(tài)較為相似,僅依靠形態(tài)鑒定無(wú)法準(zhǔn)確區(qū)分屬以下物種.通過(guò)形態(tài)特征比較,杜洛埃藻屬物種也表現(xiàn)出和其他物種難以區(qū)分的絲狀體形態(tài)[17],以及它們之間的細(xì)胞大小的變異性,因此運(yùn)用形態(tài)學(xué)、生態(tài)學(xué)和分子數(shù)據(jù)等多相分析方法來(lái)進(jìn)行系統(tǒng)發(fā)育分析逐漸成為確定藍(lán)藻正確分類地位的最佳方法.MAI[15]在2018年從細(xì)鞘絲藻科(Leptolyngbyaceae)中劃分出了細(xì)點(diǎn)絲藻科,同時(shí)描述了新屬杜洛埃藻屬和該屬中的3個(gè)新種,分別是Drouetiella lurida、Drouetiella hepatica和Drouetiella fasciculata.在最初的描述中,模式種淡綠杜洛埃藻的特征是紅棕色的藻絲[15].之后,KIM等[16]從韓國(guó)發(fā)現(xiàn)橄欖綠色的淡綠杜洛埃藻,該種的特征是偶爾出現(xiàn)假分枝,橫壁收縮或不收縮,同時(shí)也描述了該屬的新種Drouetiella epilithica,它的藻絲呈現(xiàn)亮藍(lán)綠色,不存在假分枝.DAVYDOV等[17]在俄羅斯也發(fā)現(xiàn)該屬的蹤跡,將其描述為新種Drouetiella ramosa.系統(tǒng)發(fā)育分析表明,杜洛埃藻屬進(jìn)化枝中存在未定種序列Drouetiella sp.,還有存在細(xì)鞘絲藻科(Leptolyngbyaceae)中的某些屬,所以該屬仍需要進(jìn)行系統(tǒng)的修訂[18].根據(jù)藻類數(shù)據(jù)庫(kù)Algaebase統(tǒng)計(jì),目前杜洛埃藻屬有5個(gè)物種被有效描述且接受[35],該屬的大部分物種都為陸生種類,并且該屬還存在一定的形態(tài)可塑性,預(yù)計(jì)這一特殊的絲狀藍(lán)藻類群在未來(lái)得到更多的關(guān)注和報(bào)道.
從我國(guó)西藏分離到的絲狀藍(lán)藻SXACC0052與杜洛埃藻屬種的形態(tài)特征相似,藻絲橄欖綠色,有無(wú)色且堅(jiān)固的鞘,橫壁不收縮或稍微收縮,細(xì)胞大小相似,與MAI[15]描述的模式種淡綠杜洛埃藻的藻絲顏色不同,并且存在死細(xì)胞,這可能是由于不同生境分離的藻株具有微小差異.通過(guò)16S rRNA基因構(gòu)建系統(tǒng)發(fā)育樹,發(fā)現(xiàn)SXACC0052分布在杜洛埃藻屬進(jìn)化枝中,并且與淡綠杜洛埃藻聚為一支,具有較高支持值(圖2紅色進(jìn)化枝).與淡綠杜洛埃藻內(nèi)的幾個(gè)序列的相似度大于99%(表2),高于2014年KIM等[36]建議的區(qū)分2個(gè)物種的閾值.運(yùn)用杜洛埃藻屬物種的ITS序列構(gòu)建系統(tǒng)樹,發(fā)現(xiàn)SXACC0052分布在淡綠杜洛埃藻進(jìn)化枝中,并且與Drouetiella lurida KPABG4163和Drouetiella lurida Lukesova 1986/6聚為一支.同時(shí)預(yù)測(cè)SXACC0052的二級(jí)結(jié)構(gòu),發(fā)現(xiàn)它的D1-D1′螺旋、Box-B螺旋和V3螺旋這3個(gè)保守區(qū)域都與淡綠杜洛埃藻具有較高的相似度,進(jìn)一步證實(shí)了形態(tài)學(xué)和系統(tǒng)發(fā)育分析的鑒定結(jié)果.因此,藻株SXACC0052為中國(guó)的一個(gè)新記錄種淡綠杜洛埃藻.
淡綠杜洛埃藻在我國(guó)屬于首次報(bào)道,增加了我國(guó)藍(lán)藻的物種多樣性.目前,有關(guān)杜洛埃藻屬的研究報(bào)道較少,現(xiàn)主要分布在美國(guó)[15]、韓國(guó)[16]和俄羅斯[17]等國(guó)家.本研究可以更完整地描述杜洛埃藻屬的特征,其生態(tài)學(xué)的研究仍需要更多的藻株來(lái)證實(shí).未來(lái)期待更多的絲狀藍(lán)藻被發(fā)現(xiàn)、分離和鑒定,利用更加先進(jìn)的分子生物學(xué)方法探索我國(guó)藍(lán)藻的多樣性.
參 考 文 獻(xiàn)
[1]" LINDBERG P,KENKEL A,BHLER K.1.Introduction to cyanobacteria[M]//Cyanobacteria in Biotechnology: Applications and Quantitative Perspectives. Cham: Springer International Publishing,2023:1-24.
[2]KOMREK J,JOHANSEN J R.Coccoid cyanobacteria[M]//Freshwater Algae of North America.Amsterdam:Elsevier,2015:75-133.
[3]DAVYDOV D,PATOVA E.The diversity of Cyanoprokaryota from freshwater and terrestrial habitats in the Eurasian Arctic and Hypoarctic[J].Hydrobiologia,2018,811(1):119-137.
[4]史小麗,楊瑾晟,陳開寧,等.湖泊藍(lán)藻水華防控方法綜述[J].湖泊科學(xué),2022,34(2):349-375.
SHI X L,YANG J S,CHEN K N,et al.Review on the control and mitigation strategies of lake cyanobacterial blooms[J].Journal of Lake Sciences,2022,34(2):349-375.
[5]肖湘玥,韓雯睿,于曉涵,等.魚腥藻響應(yīng)溫度脅迫的形態(tài)及生理策略[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(1):135-143.
XIAO X Y,HAN W R,YU X H,et al.Morphological and physiological responses and strategies of Anabaena to temperatures tress[J].Journal of Henan Normal University(Natural Science Edition),2024,52(1):135-143.
[6]王志忠,穆潔,鞏東輝,等.鈍頂螺旋藻與五種常見食物營(yíng)養(yǎng)成分對(duì)比分析[J].食品與發(fā)酵科技,2023,59(4):111-115.
WANG Z Z,MU J,GONG D H,et al.Comparative analysis of nutritional components of Spirulina platensis from Erdos Plateau and five common foods[J].Food and Fermentation Science amp; Technology,2023,59(4):111-115.
[7]肖喆,王捷,石瑛,等.晉陽(yáng)湖絲狀藍(lán)藻的形態(tài)學(xué)分析與分子鑒定[J].西北植物學(xué)報(bào),2022,42(3):427-434.
XIAO Z,WANG J,SHI Y,et al.Morphological analysis and molecular identification of filamentous cyanobacteria from Jinyang Lake[J].Acta Botanica Boreali-Occidentalia Sinica,2022,42(3):427-434.
[8]CAI F F,YU G L,LI R H.Description of two new species of Pseudoaliinostoc(Nostocales,Cyanobacteria) from China based on the polyphasic approach[J].Journal of Oceanology and Limnology,2022,40(3):1233-1244.
[9]肖喆,王捷,石瑛,等.八泉峽一株絲狀藍(lán)藻的形態(tài)與分子生物學(xué)鑒定[J].太原師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2022,21(2):66-69.
XIAO Z,WANG J,SHI Y,et al.Morphological and molecular identification of A filamentous cyanobacteria from baquan gorge,Changzhi[J].Journal of Taiyuan Normal University(Natural Science Edition),2022,21(2):66-69.
[10]SHEN L Q,ZHANG Z C,HUANG L,et al.Chlorophyll f production in two new subaerial cyanobacteria of the family Oculatellaceae[J].Journal of Phycology,2023,59(2):370-382.
[11]KOMREK J.Several problems of the polyphasic approach in the modern cyanobacterial system[J].Hydrobiologia,2018,811(1):7-17.
[12]STRUNECKY′ O,IVANOVA A P,MARE J.An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis[J].Journal of Phycology,2023,59(1):12-51.
[13]ZAMMIT G,BILLI D,ALBERTANO P.The subaerophytic cyanobacterium Oculatella subterranea(Oscillatoriales,Cyanophyceae) gen. et sp. nov.:a cytomorphological and molecular description[J].European Journal of Phycology,2012,47(4):341-354.
[14]SCIUTO K,MOSCHIN E,MORO I.Cryptic cyanobacterial diversity in the giant cave(Trieste,Italy):The New Genus Timaviella(Leptolyngbyaceae)[J].Cryptogamie,Algologie,2017,38(4):285-323.
[15]MAI T.Revision of the Synechococcales(Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new Genera containing 14 species[D].Cleveland:John Carroll University,2018.
[16]KIM D H,LEE N J,WANG H R,et al.Drouetiella epilithica sp. nov. and Drouetiella lurida(Oculatellaceae,Synechococcales) isolated in the Republic of Korea based on the polyphasic approach[J].Phycological Research,2023,71(3):140-153.
[17]DAVYDOV D,VILNET A,NOVAKOVSKAYA I,et al.Terrestrial species of Drouetiella(cyanobacteria,Oculatellaceae) from the Russian Arctic and subarctic regions and description of Drouetiella ramosa sp. nov.[J].Diversity,2023,15(2):132.
[18]STRUNECKY O,RAABOVA L,BERNARDOVA A,et al.Diversity of cyanobacteria at the Alaska north slope with description of two new Genera:gibliniella and shackletoniella[J].FEMS Microbiology Ecology,2020,96(3):fiz189.
[19]RIPPKA R.Recognition and identification of cyanobacteria[J].Methods in Enzymology,1988,167:28-67.
[20]PACHIAPPAN P,PRASATH B B,PERUMAL S,et al.Isolation and Culture of Microalgae[M].New Delhi:Springer,2015.
[21]VAN RANST G,BAERT P,F(xiàn)ERNANDES A C,et al.Technical note:Nikon-TRACKFlow,a new versatile microscope system for fission track analysis[J].Geochronology,2020,2(1):93-99.
[22]FIORE M F,MOON D H,TSAI S M,et al.Miniprep DNA isolation from unicellular and filamentous cyanobacteria[J].Journal of Microbiological Methods,2000,39(2):159-169.
[23]LIN S,WU Z X,YU G L,et al.Genetic diversity and molecular phylogeny of Planktothrix(Oscillatoriales,cyanobacteria) strains from China[J].Harmful Algae,2010,9(1):87-97.
[24]TURNER S,PRYER K M,MIAO V P,et al.Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis[J].The Journal of Eukaryotic Microbiology,1999,46(4):327-338.
[25]ITEMAN I,RIPPKA R,TANDEAU DE MARSAC N,et al.Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria[J].Microbiology,2000,146(Pt 6):1275-1286.
[26]晁愛敏,于海燕,肖鵬,等.杭州湘湖拉氏擬柱孢藻(Cylindrospermopsis raciborskii)藻株的分離及其特征研究[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(4):106-113.
CHAO A M,YU H Y,XIAO P,et al.Isolation and characterization of a Cylindrospermopsis raciborskii strain from Lake Xianghu,Hangzhou[J].Journal of Henan Normal University(Natural Science Edition),2021,49(4):106-113.
[27]彭煥文,王偉.基于分子數(shù)據(jù)的系統(tǒng)發(fā)生樹構(gòu)建[J].植物學(xué)報(bào),2023,58(2):261-273.
PENG H W,WANG W.Phylogenetic tree reconstruction based on molecular data[J].Chinese Bulletin of Botany,2023,58(2):261-273.
[28]TAMURA K,STECHER G,KUMAR S.MEGA11:molecular evolutionary genetics analysis version 11[J].Molecular Biology and Evolution,2021,38(7):3022-3027.
[29]STAMATAKIS A.RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J].Bioinformatics,2014,30(9):1312-1313.
[30]KALYAANAMOORTHY S,MINH B Q,WONG T K F,et al.ModelFinder:fast model selection for accurate phylogenetic estimates[J].Nature Methods,2017,14(6):587-589.
[31]HOANG D T,CHERNOMOR O,VON HAESELER A,et al.UFBoot2:improving the ultrafast bootstrap approximation[J].Molecular Biology and Evolution,2018,35(2):518-522.
[32]RONQUIST F,HUELSENBECK J P.MrBayes 3:Bayesian phylogenetic inference under mixed models[J].Bioinformatics,2003,19(12):1572-1574.
[33]PINTO A R,MACHADO CUNHA I,REBELO GOMES E.Fig tree-induced phytophotodermatitis:a case report on the perils of a hobby[J].Cureus,2023,15(7):e41888.
[34]REUTER J S,MATHEWS D H.RNAstructure:software for RNA secondary structure prediction and analysis[J].Scientific Reports,2010,11:129.
[35]GUIRY M D,GUIRY G M.AlgaeBase.World-wide electronic publication,National University of Ireland,Galway[EB/OL].[2023-10-26].http://www.algaebase.org/.
[36]KIM M,OH H S,PARK S C,et al.Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(Pt 2):346-351.
Drouetiella lurida: a new record species of cyanobacteria isolated from Xizang, China
Wang Jie1a,b, Zhang Ting1a, Cai Fangfang2, Dong Jianxin1a, Li Yanhui1a,b, Liu Qi3
(1. a. College of Biological Science and Technology; b. Shanxi Key Laboratory of Earth Surface Processes and Resource
Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong" 030619, China; 2. School of
Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan" 430023, China;
3. College of Life Science, Shanxi University, Taiyuan" 030006, China)
Abstract: Species in the genus Drouetiella Mai, Johansen amp; Pietrasiak are morphologically plastic, easily confused with other species in the family of Oculatellaceae, in which strains are isolated from terrestrial communities and characterized using a polyphasic approach that includes molecular, morphological and ecological information. A filamentous cyanobacteria was isolated from the moist soil of Lhasa, Xizang Autonomous Region, China, named SXACC0052. The morphology of isolated strain was similar to Drouetiella lurida((Gomont)Mai, Johansen amp; Pietrasiak), the trichomes were olive-green, with colorless and firm sheaths, the cross-walls were not constricted or slightly contracted, no 1-branching was observed. The comparative analysis of 16S rRNA gene and 16S-23S rRNA ITS sequences showed that the strain shared high similarities with Drouetiella lurida and clustered into a single branch in the phylogenetic tree with bootstrap value of 98/78/1 and 85/99/0.89, respectively. In addition, the ITS secondary structure of this filamentous cyanobacteria has a high similarity to that of Drouetiella lurida, which further indicated that this filamentous cyanobacteria belonged to Drouetiella lurida. Drouetiella is a new record genus reported for the first time in China, Drouetiella lurida is a new record species reported for the first time in China. The discovery of this species enriches the species diversity of cyanobacteria in China and provides a theoretical basis for the conservation and continuous understanding of algae resources.
Keywords: Drouetiella lurida; Xizang; cyanobacteria; new record; phylogeny
[責(zé)任編校 劉洋 趙曉華]
河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2025年2期