摘 " "要: 【目的】研究陜南漢中獼猴桃果園翻壓綠肥還田腐解特征及養(yǎng)分釋放規(guī)律,以期為陜南獼猴桃果園綠肥種植利用及培肥地力提供理論依據(jù)。【方法】采用田間網(wǎng)袋埋田法研究22 500 kg·hm-2翻壓量下黑麥草、箭舌豌豆、毛苕子和紫云英4種綠肥在獼猴桃行間10 cm土層翻壓后142 d的腐解特征及養(yǎng)分釋放規(guī)律。【結(jié)果】腐解分快速腐解期(0~24 d)、中速腐解期(25~41 d)和緩慢腐解期(42~142 d)3個(gè)階段,腐解142 d后黑麥草、箭舌豌豆、毛苕子、紫云英累積腐解率分別為93.63%、93.37%、91.48%、74.45%;C、N、K2O、P2O5養(yǎng)分累積釋放率平均為88.23%、82.95%、98.58%、77.15%,養(yǎng)分釋放量平均為2 373.58、144.76、156.30、16.10 kg·hm-2。腐解前24 d,C、N、K2O腐解速率波動(dòng)明顯,腐解前41 d,磷腐解速率波動(dòng)明顯;腐解142 d的黑麥草C、N、K2O、P2O5養(yǎng)分釋放量分別為3 015.28、132.38、274.53、23.72 kg·hm-2,毛苕子分別為2 278.46、193.69、109.56、18.46 kg·hm-2,箭舌豌豆分別為2 855.68、173.49、156.61、17.09 kg·hm-2,紫云英分別為1 344.89、78.47、84.50、5.12 kg·hm-2。黑麥草C、K2O、P2O5釋放量最高,毛苕子N釋放量最高,紫云英累積腐解率和養(yǎng)分釋放率均低于其他3個(gè)品種?!窘Y(jié)論】黑麥草鉀磷釋放量最高,毛苕子氮釋放量最高,箭舌豌豆碳釋放量最高。果園種植黑麥草、毛苕子和箭舌豌豆等翻壓還田可以在果樹萌芽展葉期減少化學(xué)氮肥和鉀肥的施用量。
關(guān)鍵詞: 獼猴桃果園;綠肥品種;腐解;養(yǎng)分釋放
中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0112-11
Characteristics of decomposition and nutrient release of green manure returning to kiwifruit orchards in southern Shaanxi province
WANG Lü1, WU Yuhong1*, CHEN Hao1, QIN Yuhang1, HAO Jing2, HAO Xingshun1, LIU Qi3, LI Danni1, ZHANG Chengbing1
(1Hanzhong Agricultural Technology Extension and Training Center, Hanzhong 723000, Shaanxi, China; 2Wuhu Institute of Technology, Wuhu 241003, Anhui, China; 3Chenggu County Agricultural Technology Extension and Training Center, Chenggu 723200, Shaanxi, China)
Abstract: 【Objective】 Green manure is a clean biological organic fertilizer source. Reasonable planting and utilization of green manures between rows in kiwifruit orchards is an important technical measure to solve the problems of shortage of organic fertilizer sources, protect the soil environment, improve soil quality, and promote sustainable agricultural development. The soil fertilization effect of green manure is influenced by the type of green manure, soil habitat, and orchard climate. Therefore, the decomposition characteristics and nutrient release patterns of different varieties of green manures returned to the field in kiwifruit orchards were studied, in order to provide theoretical basis for the planting and utilization of green manure in kiwifruit orchards in southern Shaanxi and the fertilization in the later stage of growth. 【Methods】 The field net bag burial method was used to study the decomposition characteristics and nutrient release patterns of four types of green manure, Lolium perenne L., Vicia sativa L., Vicia villosa Roth., and Astragalus sinicus L., in the 10 cm soil layer between kiwifruit rows after 142 days of compaction. 【Results】 The decomposition was divided into three stages: rapid decomposition period (0-24 days), moderate decomposition period (25-41 days), and slow decomposition period (42-142 days). After 142 days of decomposition, the cumulative decomposition rates of Lolium perenne L., V. sativa L., V. villosa Roth., and Astragalus sinicus L. were 93.63%, 93.37%, 91.48%, and 74.45%, respectively. The average cumulative release rates of C, N, P2O5, and K2O nutrients were 88.23%, 82.95%, 98.58%, and 77.15%, respectively. The average N release amounts were 2 373.58, 144.76, 156.30, and 16.10 kg·hm-2, respectively. The decomposition rates of C, N, and K2O fluctuated significantly 24 days before decomposition, while the decomposition rates of phosphorus fluctuated significantly 41 days before decomposition. After 142 days of decomposition, the C, N, K2O, and P2O5 release rates of Lolium perenne L. were 3 015.28, 132.38, 274.53, and 23.72 kg·hm-2, respectively, with nutrient cumulative release rates of 93.63%, 89.16%, 99.28%, and 92.65%, respectively. The nutrient cumulative release rates of V. sativa L. were 2 278.46, 193.69, 109.56, and 18.46 kg·hm-2, respectively, with nutrient cumulative release rates of 91.48%, 89.85%, 98.53%, and 82.47%, respectively. For V. villosa Roth, they were 2 855.68, 173.49, 156.61, and 17.09 kg·hm-2, respectively. The cumulative nutrient release rates of C, N, K2O, and P2O5 were 93.37%, 83.67%, 98.72%, and 73.88%, respectively. For Astragalus sinicus L. they were 1 344.89, 78.47, 84.50, and 5.12 kg·hm-2, respectively. The cumulative nutrient release rates of C, N, K2O, and P2O5 were 74.45%, 69.11%, 97.81%, and 59.60%, respectively. The nutrient release rates of the four types of green manure were K2O>C>N>P2O5, with the average cumulative release rates of 98.58%, 88.23%, 82.95%, and 77.15%, respectively. The decrease in dry matter mass among green manure varieties was in the order of Lolium perenne L.> V. sativa L.>V. villosa Roth.>Astragalus sinicus L.. The decomposition rate was in the order of Lolium perenne L.>V. villosa Roth.>V. sativa L.>Astragalus sinicus L. The release levels of C and K2O nutrients from various varieties of green manure were Lolium perenne L.> V. sativa L.>V. villosa Roth.>Astragalus sinicus L.. The release levels of N nutrients were in the order of V. villosa Roth.>Lolium perenne L.>V. sativa L.>Astragalus sinicus L.. The release levels of P2O5 nutrients were Lolium perenne L.>V. villosa Roth.>V. sativa L.>Astragalus sinicus L.. The release of C, K2O, and P2O5 from Lolium perenne L. was the highest, while the release of N from V. villosa Roth. was the highest. The cumulative decomposition rate and nutrient release rate of Astragalus sinicus L. were lower than those of the other three varieties. The C/N ratios of the four types of green manure in the order of Astragalus sinicus L.>Lolium perenne L.>V. sativa L.>V. villosa Roth., with ratios of 12.99, 12.74, 11.30, and 9.70, respectively. The C/N ratio of green manure was significantly positively correlated with dry mass, decomposition rate, release rates of C, N, P2O5, and K2O, as well as the accumulation of C, P2O5, and K2O. It was significantly negatively correlated with the accumulation and release rates of C and P2O5. 【Conclusion】 The application of three types of green manure, namely ryegrass, sweet potato, and arrow pea, can provide carbon, nitrogen, potassium, and phosphorus nutrients for kiwifruit orchards at 2 716.47, 166.52, 180.23, and 19.76 kg·hm-2, respectively. The application of green manure is during the periods of bud break, leaf development, flowering, and fruit setting. Adequate nutrient supply during these periods is the key to ensure fruit growth, development, and quality formation. The nutrients provided by the application of green manure play an important role in kiwifruit root growth and nutrient absorption. Returning green manure to the field enhances the effectiveness and persistence of soil nutrients, enabling sustained supply of nutrients for kiwifruit growth in the middle and later stages. Therefore, in kiwifruit orchards in southern Shaanxi, applying L. perenne L., V. villosa Roth., and V. sativa L. as green manure enables sustained release nutrients into the soil, providing necessary nutrients for the growth and development of fruit trees.
Key words: Kiwifruit orchard; Variety of green manure; Decomposition; Nutrient release
陜西漢中所處的秦巴山區(qū)獼猴桃種質(zhì)資源豐富[1],依托自然氣候環(huán)境的獨(dú)特優(yōu)勢,在陜西省“東擴(kuò)南移”戰(zhàn)略實(shí)施的推動(dòng)下,漢中發(fā)展獼猴桃的積極性空前高漲,截至2023年,全市獼猴桃栽培面積0.8萬hm2,但種植區(qū)土壤以黃褐土、水稻土為主,土壤有機(jī)質(zhì)含量低、土壤黏重,土層板結(jié),通透性差,果園生態(tài)環(huán)境脆弱,經(jīng)濟(jì)效益不高等問題普遍存在[2]。大多數(shù)果園目前采用的仍然是清耕模式,還有部分果園處于土壤裸露或雜草叢生等放任管理狀態(tài)[3],這些土壤管理方式不僅造成資源浪費(fèi)和生態(tài)環(huán)境破壞,而且難以提高果品產(chǎn)量和質(zhì)量[4]。為此,漢中果園逐步采用綠肥種植、綠肥還田的管理模式來解決此類問題。
果園種植綠肥是中國重要的土壤管理方式之一[5],綠肥作為清潔有機(jī)肥源,翻壓還田是綠肥利用的重要途徑,通過腐解釋放營養(yǎng)物質(zhì),促進(jìn)作物養(yǎng)分供應(yīng),保障作物穩(wěn)產(chǎn)、高產(chǎn)[6],對改良土壤、平衡農(nóng)田生態(tài)系統(tǒng)及養(yǎng)分循環(huán)具有積極作用[7]。關(guān)于綠肥腐解特征和養(yǎng)分釋放規(guī)律已有大量報(bào)道,董浩等[8]發(fā)現(xiàn)華北地區(qū)果園翻壓二月蘭、黑麥草、毛苕子還田110 d時(shí)累積腐解率為69.1%~76.1%,呈現(xiàn)前期快、后期慢,最后逐漸平穩(wěn)的趨勢。唐紅琴等[9]發(fā)現(xiàn)橘園翻壓拉巴豆、紫云英、光葉苕子、紫花苜蓿和黑麥草5種綠肥還田100 d時(shí)累積腐解率為44.7%~84.3%,養(yǎng)分累積釋放率表現(xiàn)為鉀>氮>碳≈磷。綠肥還田時(shí)投入土壤中物料的C/N是調(diào)控有機(jī)物腐解速率和養(yǎng)分釋放速率的關(guān)鍵因素[10]。綠肥還田為土壤微生物的活動(dòng)提供了碳源、氮源以及能量等必需的養(yǎng)分,可以提高土壤有機(jī)質(zhì)含量和微生物活性、改善土壤結(jié)構(gòu)并促進(jìn)農(nóng)田生態(tài)系統(tǒng)的養(yǎng)分循環(huán)[11-12],但其養(yǎng)分釋放過程也因氣候、品種、地域、還田方式等不同而存在差異。植株養(yǎng)分吸收積累數(shù)量反映了綠肥營養(yǎng)價(jià)值的高低,不同綠肥品種的養(yǎng)分吸收積累存在差異,生物量大、養(yǎng)分含量高、養(yǎng)分積累量大的綠肥翻壓還田后為土壤補(bǔ)充的養(yǎng)分更多,培肥土壤效果更好[13]。因此探究不同品種綠肥腐解過程和養(yǎng)分釋放規(guī)律對充分發(fā)揮綠肥營養(yǎng)價(jià)值及合理高效利用綠肥具有重要意義。目前有關(guān)陜西秦巴山區(qū)獼猴桃園綠肥腐解養(yǎng)分釋放規(guī)律的研究較少。因此,筆者在本研究中通過采用田間原位埋袋法,研究紫云英、毛苕子、箭舌豌豆、黑麥草4種綠肥在陜西漢中獼猴桃果園的腐解過程,分析綠肥腐解干物質(zhì)量及養(yǎng)分釋放規(guī)律,旨在為漢中地區(qū)獼猴桃果園綠肥種植和高效利用提供技術(shù)參考和理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)于2022—2023年在陜果集團(tuán)勉縣分公司獼猴桃示范基地(北緯33?15′29″ N,東經(jīng)106?74′31″ E)進(jìn)行,該地屬亞熱帶濕潤季風(fēng)氣候,海拔2 602.2 m,年平均氣溫14.3 ℃,年降水量843.9 mm,極端最高氣溫37.9 ℃,極端最低氣溫-8.4 ℃,≥10 ℃有效積溫4415 ℃。供試土壤類型為黃褐土,壤質(zhì)黏土,綠肥翻壓前土壤理化性狀為pH 4.58,有機(jī)碳含量(w,后同)5.78 g·kg-1,全氮含量1.23 g·kg-1,全磷含量0.87 g·kg-1,全鉀含量12.35 g·kg-1,速效磷含量24.16 mg·kg-1,速效鉀含量53.92 mg·kg-1。獼猴桃果樹起壟淺栽,株距3 m,行距4 m。
1.2 試驗(yàn)設(shè)計(jì)
供試綠肥品種有:(1)紫云英;(2)毛苕子;(3)黑麥草;(4)箭舌豌豆。于盛花期取綠肥鮮樣剪成3~5 cm小段,按翻壓量22 500 kg·hm-2計(jì)算綠肥用量,即綠肥鮮草180 g·袋-1,裝入尼龍網(wǎng)袋(長40 cm,寬20 cm)進(jìn)行田間原位腐解試驗(yàn)。尼龍網(wǎng)袋埋設(shè)深度為10 cm,埋設(shè)的尼龍網(wǎng)距離獼猴桃樹干50 cm,水平放置且無重疊,埋設(shè)間隔為20 cm,覆土?xí)r盡量不破壞原來的土體結(jié)構(gòu),覆土與地面齊平。在獼猴桃行間埋袋,每個(gè)綠肥品種埋袋24個(gè),每次取3個(gè)重復(fù),田間埋袋示意圖如圖1所示。
1.3 測定項(xiàng)目與方法
2023年4月26日開始埋設(shè),依次在埋設(shè)后5月5日(10 d)、5月12日(17 d)、5月19日(24 d)、6月5日(41 d)、6月26日(62 d)、7月17日(83 d)、8月21日(118 d)、9月14日(142 d)取綠肥樣品,去除樣品表面雜物及浮土,拆開尼龍網(wǎng)袋洗凈樣品,樣品于烘箱65 ℃烘干后測定綠肥樣品干質(zhì)量(g),粉碎后測定N、P2O5、K2O及C含量。植株樣品采用H2SO4-H2O2消煮[14],全氮含量采用連續(xù)流動(dòng)分析儀(AA3)測定,全磷含量采用釩鉬黃比色法測定,全鉀含量采用火焰光度法測定,全碳含量用重鉻酸鉀容量法-外加熱法測定。
1.4 相關(guān)指標(biāo)計(jì)算方法
干物質(zhì)量/(kg·hm-2)=干質(zhì)量/S×10,S為尼龍網(wǎng)袋面積,10為換算系數(shù);
干物質(zhì)腐解量/(kg·hm-2)=初始干物質(zhì)量—i d的干物質(zhì)量,i為腐解天數(shù);
累積腐解率/%=干物質(zhì)腐解量/初始干物質(zhì)量×100;
干物質(zhì)腐解速率/(kg·hm-2·d-1)=單位時(shí)間內(nèi)干物質(zhì)腐解量/單位時(shí)間;
養(yǎng)分腐解量/(kg·hm-2)=初始養(yǎng)分量—i d的養(yǎng)分量,i為腐解天數(shù);
養(yǎng)分累積腐解率/%=養(yǎng)分腐解量/初始養(yǎng)分量×100;
養(yǎng)分腐解速率/(kg·hm-2·d-1)=單位時(shí)間內(nèi)養(yǎng)分腐解量/單位時(shí)間。
1.5 數(shù)據(jù)處理
應(yīng)用Excel 2010進(jìn)行數(shù)據(jù)整理,采用SAS 8.1進(jìn)行單因素方差分析和顯著性檢驗(yàn),采用Origin 2017繪圖。
2 結(jié)果與分析
2.1 不同綠肥干物質(zhì)量及腐解變化特征
獼猴桃園4種綠肥干物質(zhì)量腐解表現(xiàn)為:先快速腐解(4月26日至5月19日),再中速腐解(5月20日至6月5日),最后緩慢腐解(6月6日至9月14日)。0~24 d為快速腐解期,25~41 d為中速腐解期,42~142 d為緩慢腐解期。黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥初始干物質(zhì)量為黑麥草(7 070.00 kg·hm-2)>箭舌豌豆(6 623.33 kg·hm-2)>毛苕子(5 337.22 kg·hm-2)>紫云英(4 298.89 kg·hm-2)(圖2-A),翻壓24 d時(shí)累積干物質(zhì)腐解量分別為4 561.67、4 310.55、3 618.89、2 000.56 kg·hm-2,腐解率分別為64.52%、65.08%、67.80%、46.54%(圖2-A);腐解速率為262.86、194.84、178.73、41.51 kg·hm-2·d-1(圖2-B);翻壓142 d時(shí)累積腐解量分別為6 519.44、5 647.48、4 676.11、3 395.56 kg·hm-2,累積腐解率分別為92.21%、85.27%、87.61%、78.99%。翻壓24 d和142 d黑麥草累積腐解干物質(zhì)量、腐解率均最高,翻壓24 d時(shí)毛苕子腐解率最高。
2.2 不同綠肥碳養(yǎng)分釋放特征
黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥初始碳累積量為箭舌豌豆(3 238.07 kg·hm-2)>黑麥草(3 220.29 kg·hm-2)>毛苕子(2 490.59 kg·hm-2)>紫云英(1 806.33 kg·hm-2)(圖3-A),翻壓24 d時(shí)碳累積量分別為2 123.48、2 397.43、1 641.03、771.37 kg·hm-2,碳累積腐解率分別為65.94%、74.04%、65.89%、42.70%(圖3-A);碳腐解速率為93.72、99.21、145.60、14.63 kg·hm-2·d-1(圖3-B);翻壓142 d時(shí)碳累積腐解率分別為93.63%、93.37%、91.48%、74.45%,累積腐解質(zhì)量分別為3 015.28、2 855.65、2 278.46、1 344.88 kg·hm-2。翻壓24 d箭舌豌豆碳累積量、碳累積腐解率均最高,毛苕子碳腐解速率最大;翻壓142 d時(shí)黑麥草腐解率、碳累積量、碳累積腐解率均最高。
2.3 不同綠肥氮養(yǎng)分釋放特征
黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥初始氮累積量為毛苕子(215.57 kg·hm-2)>黑麥草(207.34 kg·hm-2)>箭舌豌豆(148.47 kg·hm-2)>紫云英(114.99 kg·hm-2)(圖4-A),翻壓24 d時(shí)氮累積量分別為147.45、102.83、172.22、62.56 kg·hm-2,氮素累積腐解率分別為69.26%、71.11%、79.89%、54.40%(圖4-A);氮腐解速率分別為2.30、4.00、3.73、0.93 kg·hm-2·d-1(圖4-B);翻壓142 d時(shí)氮素累積腐解率分別為89.16%、83.67%、89.85%、69.11%,累積氮腐解量分別為132.38、173.49、193.70、79.47 kg·hm-2。翻壓24、41和142 d毛苕子氮累積量、氮素累積腐解率均最高。
2.4 不同綠肥磷養(yǎng)分釋放特征
黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥初始磷累積量為黑麥草(25.61 kg·hm-2)>箭舌豌豆(23.14 kg·hm-2)>毛苕子(22.38 kg·hm-2)>紫云英(8.60 kg·hm-2)(圖5-A),翻壓24 d時(shí)磷累積量分別為10.89、7.19、7.19、1.59 kg·hm-2,磷素累積腐解率分別為42.53%、31.10%、32.13%、18.50%(圖5-A);磷腐解速率分別為0.66、0.78、0.11、0.06 kg·hm-2·d-1(圖5-B);翻壓142 d時(shí)磷素累積腐解率分別為92.65%、73.88%、82.47%、59.60%,累積磷腐解量分別為23.72、17.09、18.46、5.12 kg·hm-2。翻壓24 d和142 d黑麥草磷累積量、磷素累積腐解率均最高。
2.5 不同綠肥鉀養(yǎng)分釋放特征
黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥初始鉀累積量為黑麥草(276.52 kg·hm-2)>箭舌豌豆(158.65 kg·hm-2)>毛苕子(111.19 kg·hm-2)>紫云英(86.40 kg·hm-2)(圖6-A),翻壓24 d時(shí)鉀累積量分別為241.86、145.74、101.40、78.17 kg·hm-2,鉀素累積腐解率分別為87.46%、91.86%、91.19%、90.48%(圖6-A);鉀腐解速率分別為6.67、3.22、1.96、1.58 kg·hm-2·d-1(圖6-B);翻壓142 d時(shí)鉀素累積腐解率分別為99.28%、98.72%、98.53%、97.81%,累積鉀腐解量分別為274.54、156.61、109.56、84.50 kg·hm-2。翻壓24 d黑麥草鉀累積量最高;翻壓24 d箭舌豌豆鉀素累積腐解率最高,且除黑麥草外,其他品種鉀素累積腐解率均在90%以上;翻壓142 d黑麥草鉀累積量、鉀素累積腐解率均最高。
2.6 不同綠肥碳氮比養(yǎng)分釋放特征
黑麥草、箭舌豌豆、毛苕子、紫云英4個(gè)品種綠肥碳氮比呈先快速上升后下降至緩慢平穩(wěn)(圖7),除紫云英外,黑麥草、箭舌豌豆、毛苕子3種綠肥碳氮比均在翻壓17 d達(dá)到峰值,其碳氮比分別為28.40、17.47、26.89,經(jīng)過142 d腐解,4種綠肥碳氮比表現(xiàn)為紫云英>黑麥草>箭舌豌豆>毛苕子,分別為12.99、12.74、11.30、9.70。
2.7 綠肥腐解特征相關(guān)性分析
相關(guān)性分析顯示(圖8),綠肥碳氮比與干物質(zhì)量、腐解速率和碳、氮、磷、鉀釋放速率及碳、磷、鉀累積量均呈顯著正相關(guān)(p<0.05),與碳、磷累積釋放率均呈顯著負(fù)相關(guān)(p<0.05)。
3 討 論
綠肥腐解和養(yǎng)分釋放受綠肥品種、土壤溫濕度及微生物等多種因素的影響[10]。獼猴桃果園綠肥腐解一般分為快速(0~12 d)、中速(12~50 d)、緩慢分解期(50 d后)3個(gè)階段[15]。在本研究中,4種綠肥腐解分為快速腐解期(0~24 d)、中速腐解期(25~41 d)和緩慢腐解期(42~142 d)。綠肥干物質(zhì)量減少量和腐解速率均存在先快后慢的規(guī)律,且翻壓后24 d內(nèi)腐解速率較高,這與洪莉等[16]研究結(jié)果相一致。腐解前24 d,綠肥植株體內(nèi)大量水溶性有機(jī)物隨水分運(yùn)動(dòng)快速流失,干物質(zhì)量快速減少,同時(shí)這些水溶性有機(jī)物為微生物的活動(dòng)提供能源和養(yǎng)分,增加微生物數(shù)量和提高活性,也促進(jìn)了綠肥腐解[17],此時(shí)期4種綠肥干物質(zhì)減少量為2 000.56~4 561.67 kg·hm-2,腐解率為46.54%~67.80%。腐解中期(25~41 d)由于土壤性狀變好,微生物活性提高促進(jìn)綠肥腐解[17],此時(shí)期4種綠肥干物質(zhì)減少量為2 720.00~5 574.44 kg·hm-2,腐解率為46.54%~67.80%。腐解后期(42~142 d)綠肥殘?bào)w中主要成分為難分解組分,腐解速率和養(yǎng)分釋放速率逐漸降低[18],此時(shí)期4種綠肥干物質(zhì)減少量為3 395.56~6 519.44 kg·hm-2,累積腐解率為78.99%~92.21%。因此綠肥腐解呈現(xiàn)前期快、中后期慢的規(guī)律[19]。張義寧等[20]發(fā)現(xiàn)在旱作玉米地,豆科綠肥腐解率高于禾本科綠肥,在本研究中,綠肥品種間干物質(zhì)量減少量表現(xiàn)為黑麥草>箭舌豌豆>毛苕子>紫云英,腐解率表現(xiàn)為黑麥草>毛苕子>箭舌豌豆>紫云英,表現(xiàn)為禾本科綠肥腐解高于豆科綠肥,產(chǎn)生這種差異的原因可能是綠肥腐解受溫度、降雨、碳氮比[21]、綠肥組分和組織結(jié)構(gòu)[22]等多種因素的綜合影響,但不同綠肥間腐解率不同的具體原因還需進(jìn)一步探究。
獼猴桃園翻壓4種綠肥還田養(yǎng)分釋放率表現(xiàn)為鉀>碳>氮>磷,平均累積釋放率分別為98.58%、88.23%、82.95%、77.15%,這與高帆等[23]研究結(jié)果一致。綠肥還田后養(yǎng)分釋放速率受在綠肥體內(nèi)存在形態(tài)和分布位置的影響[24]。何萬榮等[25]發(fā)現(xiàn)棗園翻壓白三葉、油菜和毛苕子3種綠肥,碳、氮養(yǎng)分在前21 d快速釋放,釋放率均在60%以上。氮素大部分以蛋白質(zhì)和氨基酸形式,少量以硝銨態(tài)氮形式存在于植株體內(nèi)。在本研究中,碳、氮養(yǎng)分均在前24 d快速腐解,平均腐解率為62.14%、68.66%。鉀素以離子形態(tài)存在極易被釋放,綠肥腐解前24 d除黑麥草外,其他3種豆科綠肥鉀釋放率均在91%以上。磷素主要以難分解的有機(jī)態(tài)存在,釋放過程較慢,4種綠肥腐解前24 d磷平均釋放率為31.06%。綠肥翻壓腐解前24 d正處于獼猴桃萌芽展葉—開花坐果期,屬獼猴桃迅速生長期,此時(shí)期充足的營養(yǎng)元素供應(yīng)是保證果實(shí)生長發(fā)育和品質(zhì)形成的關(guān)鍵[26]。綠肥腐解前24 d產(chǎn)生的碳、氮、鉀、磷釋放量平均為1 733.33、121.26、141.79、6.71 kg·hm-2。綠肥品種不同,其養(yǎng)分含量也各不相同。各品種綠肥植株養(yǎng)分含量表現(xiàn)為碳>鉀>氮>磷,其中黑麥草碳、鉀、磷釋放量最高,毛苕子氮釋放量最高,紫云英各營養(yǎng)元素均最低。綠肥還田時(shí)投入土壤中物料的C/N是調(diào)控有機(jī)物腐解速率和養(yǎng)分釋放速率的關(guān)鍵因素[10],黑麥草中碳的比例高于豆科綠肥[27],其C/N存在差異,因此其腐解率和碳釋放率的變化趨勢不一致。本研究中綠肥C/N與碳、磷累積釋放率均呈顯著負(fù)相關(guān),碳氮比越小,越有利于綠肥腐解,各品種綠肥碳氮比先升高后降低,這與前人研究結(jié)果相一致[24]。黑麥草翻壓還田后碳氮比最高,腐解142 d毛苕子碳氮比最低。綠肥腐解過程產(chǎn)生大量可溶性有機(jī)物,將自身養(yǎng)分轉(zhuǎn)移到土壤中,對土壤環(huán)境具有很好的改善,利于獼猴桃根系生長和養(yǎng)分吸收[28]。綠肥還田可以提升土壤養(yǎng)分的有效性和持久性,保障了獼猴桃生育中后期養(yǎng)分的持續(xù)供應(yīng)。
陜南漢中地區(qū)獼猴桃果園土壤黏重、通透性差,養(yǎng)分難以釋放,不利于果樹生長發(fā)育[29]。研究發(fā)現(xiàn),果園種植綠肥可以改善土壤理化性質(zhì),減少養(yǎng)分流失,還可以增強(qiáng)樹勢,改善樹體營養(yǎng)狀況,進(jìn)而提高果實(shí)產(chǎn)量和品質(zhì)[30-32]。漢中獼猴桃新梢生長高峰有兩個(gè)時(shí)期,分別為4月中旬至6月上旬和8月,果實(shí)迅速生長期為5月上旬至6月中旬。獼猴桃從早春萌芽到新梢生長需要大量氮肥,為枝、葉、花、果實(shí)充分發(fā)育的物質(zhì)基礎(chǔ);在6月開花后對磷的需求增加,此時(shí)期正處于綠肥快速腐解期和中速腐解期,為果園提供足量的氮素和磷素,8月份獼猴桃在果實(shí)膨大期對鉀素的需求直線上升,果樹生長發(fā)育需要連續(xù)不斷地從外界吸收養(yǎng)分,以滿足生命活動(dòng)的需要,但各生育期需要的營養(yǎng)成分卻有所差異[33]。因此根據(jù)綠肥腐解規(guī)律和養(yǎng)分釋放特征,結(jié)合生育期搭配肥料合理施用可以為果樹生長發(fā)育提供充足的養(yǎng)分來源。獼猴桃果園種植利用綠肥最終要與農(nóng)業(yè)生產(chǎn)實(shí)際相結(jié)合,本試驗(yàn)于4月中下旬統(tǒng)一刈割綠肥鮮草翻壓還田,而實(shí)際生產(chǎn)中綠肥品種不同,其生育期也存在差異,綠肥翻壓還田時(shí)間必然也存在差異,因此有必要針對不同綠肥品種選擇適宜的翻壓還田時(shí)間。筆者在本研究中只有一年的觀測結(jié)果,缺乏不同綠肥翻壓還田對獼猴桃生長發(fā)育等方面影響的研究,因此下一步有必要開展不同年份間綠肥翻壓還田效果及對獼猴桃果樹生長發(fā)育影響方面的研究,對獼猴桃果園多年種植綠肥的研究結(jié)果進(jìn)行綜合評價(jià)。
4 結(jié) 論
獼猴桃園種植綠肥翻壓還田腐解分快速腐解期(0~24 d)、中速腐解期(25~41 d)和緩慢腐解期(42~142 d)3個(gè)階段。腐解前24 d,碳、氮腐解率均在62%以上,鉀腐解率在87%以上,磷腐解率在18%以上。腐解142 d后,黑麥草、箭舌豌豆、毛苕子、紫云英腐解率分別為93.63%、93.37%、91.48%、74.45%。4種綠肥養(yǎng)分釋放率表現(xiàn)為鉀>碳>氮>磷,黑麥草鉀、磷釋放量最高,毛苕子氮釋放量最高,箭舌豌豆碳釋放量最高。綜上,黑麥草、毛苕子和箭舌豌豆均適宜在漢中獼猴桃果園種植。果園種植黑麥草、毛苕子和箭舌豌豆等翻壓還田可以在果樹萌芽展葉期減少化學(xué)氮肥和鉀肥的施用量。
參考文獻(xiàn)References:
[1] 劉艷飛,王中月,謝利華,張阿玲,劉占德. 12個(gè)獼猴桃栽培品種在陜西秦巴山區(qū)的引種表現(xiàn)[J]. 西北農(nóng)業(yè)學(xué)報(bào),2022,31(5):603-611.
LIU Yanfei,WANG Zhongyue,XIE Lihua,ZHANG Aling,LIU Zhande. Introductive performance of twelve kiwifruit cultivars in Qinba mountainous area of Shaanxi province[J]. Acta Agriculturae Boreali-occidentalis Sinica,2022,31(5):603-611.
[2] 王呂,秦宇航,吳玉紅,淡亞彬,郝興順,肖飛,陳浩. 獼猴桃園綠肥品種篩選和生草管理對土壤養(yǎng)分的影響[J]. 果樹學(xué)報(bào),2023,40(9):1885-1893.
WANG Lü,QIN Yuhang,WU Yuhong,DAN Yabin,HAO Xingshun,XIAO Fei,CHEN Hao. Selection of green manure varieties and effects of grass management modes on soil fertility in kiwifruit orchards[J]. Journal of Fruit Science,2023,40(9):1885-1893.
[3] 左玉環(huán),劉高遠(yuǎn),楊莉莉,梁連友,同延安. 陜西渭北柿子園種植白三葉草對土壤養(yǎng)分和生物學(xué)性質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2019,30(2):518-524.
ZUO Yuhuan,LIU Gaoyuan,YANG Lili,LIANG Lianyou,TONG Yan’an. Effect of planting white clover on nutrients and biological properties of soils in persimmon orchard of Weibei,Shaanxi province,China[J]. Chinese Journal of Applied Ecology,2019,30(2):518-524.
[4] 李曉陽,任麗華,計(jì)保全,馬曉彤. 生草覆蓋對山地果園土壤物理性狀的影響[J]. 水土保持應(yīng)用技術(shù),2019(4):7-9.
LI Xiaoyang,REN Lihua,JI Baoquan,MA Xiaotong. Effects of grass mulching on soil physical properties in mountain orchard[J]. Technology of Soil and Water Conservation,2019(4):7-9.
[5] 楊旺,趙勁飛,劉新英,廖結(jié)安,席琳喬,王貞元,冶瑞,陳云生. 果園行間綠肥粉碎旋耕一體機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2023,45(9):46-53.
YANG Wang,ZHAO Jinfei,LIU Xinying,LIAO Jie’an,XI Linqiao,WANG Zhenyuan,YE Rui,CHEN Yunsheng. Design and experiment of an integrated machine for green manure crushing and rotary tillage in orchard row[J]. Journal of Agricultural Mechanization Research,2023,45(9):46-53.
[6] 張璐,黃晶,高菊生,曹衛(wèi)東,高鵬,楊志長. 長期綠肥與氮肥減量配施對水稻產(chǎn)量和土壤養(yǎng)分含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):106-112.
ZHANG Lu,HUANG Jing,GAO Jusheng,CAO Weidong,GAO Peng,YANG Zhichang. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(5):106-112.
[7] 楊龍. 果園生草草種腐解特征及其對土壤養(yǎng)分的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2021.
YANG Long. Characteristics and effects on soil nutrients of grass species decomposition in apple orchard [D]. Yangling:Northwest A amp; F University,2021.
[8] 董浩,于淑慧,史桂芳,朱國梁,牟小翎,曹衛(wèi)東. 春季翻壓3種果園綠肥腐解及養(yǎng)分釋放特征研究[J]. 中國農(nóng)學(xué)通報(bào),2021,37(6):75-81.
DONG Hao,YU Shuhui,SHI Guifang,ZHU Guoliang,MU Xiaoling,CAO Weidong. The decomposition and nutrient release characteristics of three kinds of orchard green manures in spring[J]. Chinese Agricultural Science Bulletin,2021,37(6):75-81.
[9] 唐紅琴,李忠義,韋彩會,董文斌,曾成城,蘇利榮,蒙炎成,何鐵光,莫永誠,黃東. 橘園綠肥覆蓋還田下的腐解及養(yǎng)分釋放動(dòng)態(tài)特征[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(7):221-227.
TANG Hongqin,LI Zhongyi,WEI Caihui,DONG Wenbin,ZENG Chengcheng,SU Lirong,MENG Yancheng,HE Tieguang,MO Yongcheng,HUANG Dong. Dynamic characteristics of decomposition and nutrient release under green manure mulching in citrus orchard[J]. Jiangsu Agricultural Sciences,2022,50(7):221-227.
[10] 李增強(qiáng),王建紅,張賢. 綠肥腐解及養(yǎng)分釋放過程研究進(jìn)展[J]. 中國土壤與肥料,2017(4):8-16.
LI Zengqiang,WANG Jianhong,ZHANG Xian. A review on the research of decomposition and nutrients release of green manure[J]. Soil and Fertilizer Sciences in China,2017(4):8-16.
[11] 崔志強(qiáng),李憲利,崔天舒. 果園綠肥腐解及養(yǎng)分釋放動(dòng)態(tài)研究[J]. 中國農(nóng)學(xué)通報(bào),2014,30(22):121-127.
CUI Zhiqiang,LI Xianli,CUI Tianshu. Study on characteristics of decomposing and nutrients releasing of green manures in orchards[J]. Chinese Agricultural Science Bulletin,2014,30(22):121-127.
[12] 姚高乾,周鋒,呂小蓉,楊友瓊,程易,吳伯志,安曈昕. 深松耕和綠肥還田對云南坡耕地耕層土壤物理性狀的影響[J]. 中國土壤與肥料,2021(1):220-228.
YAO Gaoqian,ZHOU Feng,Lü Xiaorong,YANG Youqiong,CHENG Yi,WU Bozhi,AN Tongxin. Effects of subsoiling tillage and green crop returning to sloping farmland on soil physical properties[J]. Soil and Fertilizer Sciences in China,2021(1):220-228.
[13] 陳曉芬,陳靜蕊,秦文婧,武志峰,李淑惠,劉明,徐昌旭,劉佳. 紅壤荒地上7種豆科綠肥養(yǎng)分富集能力綜合評價(jià)[J]. 中國草地學(xué)報(bào),2020,42(4):153-160.
CHEN Xiaofen,CHEN Jingrui,QIN Wenjing,WU Zhifeng,LI Shuhui,LIU Ming,XU Changxu,LIU Jia. Comprehensive assessment of nutrient enrichment capacity of 7 leguminous green manures on red soil wasteland[J]. Chinese Journal of Grassland,2020,42(4):153-160.
[14] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2000.
LU Rukun. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000.
[15] 梁軍. 不同綠肥還田腐解動(dòng)態(tài)及其對土壤養(yǎng)分的影響[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2018.
LIANG Jun. Disintegration dynamics of different green manures and their effects on soil nutrients[D]. Changsha:Hunan Agricultural University,2018.
[16] 洪莉,陳令會,曹錦萍,董軍,王會福. 南方桃園不同綠肥的腐解及養(yǎng)分釋放規(guī)律研究[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(11):294-297.
HONG Li,CHEN Linghui,CAO Jinping,DONG Jun,WANG Huifu. Study on characteristics of decomposing and nutrients releasing of different green manures in southern orchards[J]. Jiangsu Agricultural Sciences,2019,47(11):294-297.
[17] LUPWAYI N Z,CLAYTON G W,O’DONOVAN J T,HARKER K N,TURKINGTON T K,RICE W A. Decomposition of crop residues under conventional and zero tillage[J]. Canadian Journal of Soil Science,2004,84(4):403-410.
[18] 陳寧,高玲,劉國道,張如蓮,郇恒福. 熱帶豆科綠肥腐解特性探究[J]. 熱帶作物學(xué)報(bào),2016,37(8):1470-1475.
CHEN Ning,GAO Ling,LIU Guodao,ZHANG Rulian,HUAN Hengfu. Decomposing characteristics of green manure of tropical Leguminosae plants[J]. Chinese Journal of Tropical Crops,2016,37(8):1470-1475.
[19] 鄧小華,羅偉,周米良,田峰,張明發(fā),江智敏,鄭宏斌,張仲文. 綠肥在湘西煙田中的腐解和養(yǎng)分釋放動(dòng)態(tài)[J]. 煙草科技,2015,48(6):13-18.
DENG Xiaohua,LUO Wei,ZHOU Miliang,TIAN Feng,ZHANG Mingfa,JIANG Zhimin,ZHENG Hongbin,ZHANG Zhongwen. Dynamics of decomposition and nutrient release of green manures in tobacco fields in Xiangxi[J]. Tobacco Science amp; Technology,2015,48(6):13-18.
[20] 張義寧,王俊. 綠肥腐解過程及其對旱作農(nóng)田土壤碳氮和玉米產(chǎn)量的影響[J]. 生態(tài)學(xué)雜志,2023,42(11):2613-2621.
ZHANG Yining,WANG Jun. Decomposition of green manures and their effects on soil carbon and nitrogen,and crop yield in a dryland spring maize field[J]. Chinese Journal of Ecology,2023,42(11):2613-2621.
[21] áLVARO-FUENTES J,MORELL F J,MADEJóN E,LAMPURLANéS J,ARRúE J L,CANTERO-MARTíNEZ C. Soil biochemical properties in a semiarid Mediterranean agroecosystem as affected by long-term tillage and N fertilization[J]. Soil and Tillage Research,2013,129:69-74.
[22] 代文才,高明,蘭木羚,黃容,王金柱,王子芳,韓曉飛. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(2):188-199.
DAI Wencai,GAO Ming,LAN Muling,HUANG Rong,WANG Jinzhu,WANG Zifang,HAN Xiaofei. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture,2017,25(2):188-199.
[23] 高帆,鞠璽凱,郭琪琳,李清華,劉慶. 豌豆莖稈在土壤中的腐解與養(yǎng)分釋放特征[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,40(3):220-226.
GAO Fan,JU Xikai,GUO Qilin,LI Qinghua,LIU Qing. Decomposition and nutrient release of pea stalks in soil[J]. Journal of Qingdao Agricultural University (Natural Science),2023,40(3):220-226.
[24] 劉佳,張杰,秦文婧,楊成春,謝杰,項(xiàng)興佳,曹衛(wèi)東,徐昌旭. 紅壤旱地毛葉苕子不同翻壓量下腐解及養(yǎng)分釋放特征[J]. 草業(yè)學(xué)報(bào),2016,25(10):66-76.
LIU Jia,ZHANG Jie,QIN Wenjing,YANG Chengchun,XIE Jie,XIANG Xingjia,CAO Weidong,XU Changxu. Decomposition and nutrient release characteristics of different Vicia villosa green manure applications in red soil uplands of South China[J]. Acta Prataculturae Sinica,2016,25(10):66-76.
[25] 何萬榮,韓路,席琳喬,王海珍. 南疆棗園三種不同綠肥腐解及養(yǎng)分釋放規(guī)律研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2021,39(3):129-136.
HE Wanrong,HAN Lu,XI Linqiao,WANG Haizhen. The characteristics of decomposing and nutrients releasing of three green manures in orchard in Southern Xinjiang[J]. Agricultural Research in the Arid Areas,2021,39(3):129-136.
[26] 周紅偉,葉旭,安華明. 貴長獼猴桃果實(shí)生長發(fā)育及礦質(zhì)養(yǎng)分積累規(guī)律[J]. 山地農(nóng)業(yè)生物學(xué)報(bào),2021,40(2):67-70.
ZHOU Hongwei,YE Xu,AN Huaming. Studys on the fruit growth and nutrient elements accumulation in kiwifruit of Actinidia deliciosa cv. Guichang[J]. Journal of Mountain Agriculture and Biology,2021,40(2):67-70.
[27] 楊偉,朱杰,姚淶,趙東竹,聶江文,蔣夢蝶,朱波,易麗霞,劉章勇. 有機(jī)無機(jī)配施對稻田不同綠肥腐解特征和養(yǎng)分釋放速率的影響[J/OL]. 生態(tài)學(xué)雜志,2024:1-10(2024-07-05). https://link.cnki.net/urlid/21.1148.Q.20240704.2000.004
YANG Wei,ZHU Jie,YAO Lai,ZHAO Dongzhu,NIE Jiangwen,JIANG Mengdie,ZHU Bo,YI Lixia,LIU Zhangyong. Effects of combined organic and inorganic application on decomposition characteristics and nutrient release rates of different green manures in rice fields[J/OL]. Chinese Journal of Ecology,2024:1-10 (2024-07-05). https://link.cnki.net/urlid/21.1148.Q.20240704.2000.004
[28] ISLAM M M,URMI T A,RANA M S,ALAM M S,HAQUE M M. Green manuring effects on crop morpho-physiological characters,rice yield and soil properties[J]. Physiology and Molecular Biology of Plants,2019,25(1):303-312.
[29] 馬一寧. 獼猴桃高溫?zé)岷Υ嗳跣跃C合評價(jià)研究:以陜西省為研究區(qū)[D]. 長春:東北師范大學(xué),2022.
MA Yining. Vulnerability assessment of high temperature disaster in kiwifruit-A case study in Shaanxi province,China[D]. Changchun:Northeast Normal University,2022.
[30] 王孝娣,劉鳳之,史祥賓,張克坤,鄭曉翠,王海波. 綠肥對‘春雪’桃葉片質(zhì)量及果實(shí)品質(zhì)的影響[J]. 中國果樹,2016(4):26-29.
WANG Xiaodi,LIU Fengzhi,SHI Xiangbin,ZHANG Kekun,ZHENG Xiaocui,WANG Haibo. Effects of green manure on the quality of ‘Chunxue’ peach leaves and fruit [J]. China Fruits,2016(4):26-29.
[31] 秦景逸,張?jiān)?,王秀梅,朱甜甜,劉? 綠肥間作對果園產(chǎn)量及經(jīng)濟(jì)收益的影響[J]. 廣東農(nóng)業(yè)科學(xué),2017,44(1):43-48.
QIN Jingyi,ZHANG Yun,WANG Xiumei,ZHU Tiantian,LIU Kang. Effects of intercropping green manure on yeild and economic benefits of orchard[J]. Guangdong Agricultural Sciences,2017,44(1):43-48.
[32] 田想,張威,伍玉鵬,胡榮桂,羅越,姜炎彬. 綠肥種植配施減量氮肥對橘園土壤肥力及果實(shí)質(zhì)量的影響[J]. 中國土壤與肥料,2020(6):197-204.
TIAN Xiang,ZHANG Wei,WU Yupeng,HU Ronggui,LUO Yue,JIANG Yanbin. Effects of planting green manure and reduced nitrogen fertilizer application on soil fertility and fruit quality in citrus orchard[J]. Soil and Fertilizer Sciences in China,2020(6):197-204.
[33] 王建. 獼猴桃樹體生長發(fā)育、養(yǎng)分吸收利用與累積規(guī)律[D]. 楊凌:西北農(nóng)林科技大學(xué),2008.
WANG Jian. The growth,nutrients uptake,utilization and accumulation in ‘Qin Mei’ kiwifruit tree[D]. Yangling:Northwest A amp; F University,2008.