摘 " "要:【目的】寧夏賀蘭山東麓金山產(chǎn)區(qū)栽培的釀酒葡萄成熟期花色苷積累過快,降解嚴重,探討不同轉色期遮陽對葡萄果實花色苷組分及合成相關基因表達的影響,為提升葡萄色澤穩(wěn)定性、改善品質(zhì)提供理論依據(jù)?!痉椒ā恳择R瑟蘭釀酒葡萄為試材,在轉色初期-采收期(T1)和完全轉色期-采收期(T2)采用遮陽網(wǎng)對葡萄樹體頂端進行遮陽處理,以正常生長不遮陽的樹體為空白對照。采用HPLC方法分析花色苷組分與含量,利用RNA-seq技術和qRT-PCR技術研究花色苷合成相關基因表達水平?!窘Y果】遮陽可顯著降低馬瑟蘭葡萄果實成熟期可溶性固形物含量,緩解滴定酸含量下降趨勢,各處理檢測到的16種花色苷種類均一致;完全轉色期-采收期遮陽處理下提高了總花色苷含量,明顯提高了Mv類花色苷含量,同時也提高了?;ㄉ盏男揎棻壤皇沟肞AL、CHS3、F3’H、F3’5’H、UFGT、GST4和MYB90等花色苷合成相關基因的表達量上調(diào),CHI基因表達水平與花翠素類(Dp)和花青素類(Cy)含量呈顯著正相關,MYB5b基因表達水平與Dp、Cy、甲基花青素類(Pn)及甲基花翠素類(Pt)含量顯著正相關。qRT-PCR分析發(fā)現(xiàn),篩選的15個基因中CHI、F3H、F3’5’H、F3’H、DFR、LDOX、UFGT和OMT在各處理中的表達水平的變化趨勢和轉錄組測序不一致,其他基因均一致?!窘Y論】完全轉色期-采收期遮陽,促進了花色苷的合成,提高了相關基因的轉錄水平,提升了?;ㄉ毡壤?,增加了花色苷顏色的穩(wěn)定性,進而提升了葡萄及葡萄酒的色澤穩(wěn)定性。
關鍵詞:馬瑟蘭葡萄;遮陽處理;花色苷;基因表達
中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2025)01-0030-18
Effects of sun shading on anthocyanin components and the expression of genes related to anthocyanin synthesis in Marselan grape
FU Dongyan1, 2, WANG Lei1, 2, ZHANG Longsheng3
(1Yinchuan Industrial Technology Research Institute, Yinchuan 750011, Ningxia, China; 2Ningxia Helan Mountain East Wine Industry Technology Innovation Center, Yinchuan 750011, Ningxia, China; 3Mengniu Terensu (Yinchuan) Dairy limited Company, Yinchuan 750021, Ningxia, China)
Abstract: 【Objective】 In order to improve the structural stability of anthocyanins in wine grapes, avoid rapid color fading during berry ripening, and enhance the color stability of grapes and wine, we selected Marselan (Vitis vinifera L.) grape as the experimental material, one of the main wine grape varieties grown in the eastern foothills of the Helan Mountains, and investigated the effects of shading at different veraison stages on anthocyanin components and the expression of synthesis-related genes in wine grape. 【Methods】 Using the wine grape Marselan as the test material, the top of grapevines was shaded from the beginning of veraison to the harvest stage, and this treatment was T1. The top of the grapevines was sun-shaded from the complete veraison stage to the harvest stage, which was referred to as T2 treatment. Vines that grew normally without shading served as the control. The shading net adopted a black single-layer shading net with a shading rate of 50% and a specification of 10 meters wide and 25 meters long. All three treatments were designed as a single plot with three biological replicates. High-performance liquid chromatography (HPLC) was used to qualitatively and quantitatively analyze the contents and components of anthocyanins. RNA transcriptome sequencing technology (RNA-seq) and real-time quantitative fluorescence PCR technology (qRT-PCR) were used to investigate the expression levels of genes related to anthocyanin synthesis. 【Results】 Sunshade can significantly reduce the soluble solids content during the ripening period of grape berry, treatments at different stages can increase the titratable acid content of harvested berries, and shading the vine during the complete veraison stage can promote the accumulation of reducing sugar content and total anthocyanin content in the berries. The 16 types of anthocyanins detected in each treatment were consistent, indicating that shading had no effect on the types of grape anthocyanins. Simultaneously, shading treatment increased the modification ratio of grape acylated anthocyanins, increased the stability of anthocyanin structure, and further improved the color stability of anthocyanins. After shading treatment, the contents of delphinidin (Dp), cyanidin (Cy), petunidin (Pt) and peonidin (Pn) anthocyanins were significantly reduced, while shading treatment during the complete veraison stage significantly increased the content of malvidin (Mv) anthocyanins, indicating that shading had different effects on anthocyanins at different stages. The synthesis of anthocyanins was influenced by both external environmental factors and the expression of key enzymes involved in the internal regulatory synthesis pathway. The study showed that the expression levels of functional genes related to anthocyanin synthesis were different after shading at various stages. During the initial stage of veraison and shading during the harvesting period, the expression levels of CHI, DFR and OMT genes were upregulated compared to other treatments, with DFR and OMT reaching significant levels during the harvesting stage. During the complete veraison stage and shading during the harvesting stage, the expression levels of PAL, CHS3, F3’H, F3’5’H, UFGT, GST4 and MYB90 genes were upregulated compared to other treatments during the harvesting stage. qRT-PCR analysis revealed that among the 15 screened genes, the expression levels of CHI, F3H, F3’5’H, F3’H, DFR, LDOX, UFGT and OMT showed inconsistent trends with transcriptome sequencing in each treatment, while the changes in other genes were consistent with transcriptome sequencing results. 【Conclusion】 There was no significant difference in the effect of shading during the initial veraison stage and the complete veraison stage on berry quality. The complete veraison stage shading increased the transcription level of anthocyanin synthesis related genes, promoted anthocyanin synthesis, increased the total anthocyanin content of grapes, and significantly increased the content of Mv class anthocyanins. At the same time, complete shading during the veraison stage increased the modification ratio of acylated anthocyanins, and enhanced the stability of anthocyanin color, which provided a theoretical basis for effectively alleviating the problem of rapid color fading caused by unstable anthocyanin structure in grapes and wines. F3’H and F3’5’H played a crucial role in the biosynthesis pathway of anthocyanins, and the ratio of Cy class anthocyanins catalyzed by F3’H to Dp class anthocyanins catalyzed by F3’5’H affected the color of berry peels. This study found that during the early veraiosn stage, when shading and harvesting, the expression of F3’H was up-regulated and the expression of F3’5’H was down-regulated. During the complete veraison stage of shading, both F3’H and F3’5’H were up-regulated during harvesting. However, the Cy and Dp anthocyanin contents with the shading treatment during the initial veraison stage were significantly higher than those with the shading treatment during the complete veraison stage. Perhaps due to the significant positive correlation between CHI expression level Cy and Dp content, and the significantly higher CHI expression level with shading treatment during the early veraison stage compared to shading treatment during the complete veraison stage, the Cy and Dp content with shading treatment during the early veraison stage was significantly higher than that with shading treatment during the complete veraison stage. There may be differential expression of other key genes, leading to differences in Cy and Dp contents, which requires further research.
Key words: Marselan grape; Sunshade treatment; Anthocyanins; Gene expression
花色苷是花色素與糖以糖苷鍵結合而成的酚類化合物,主要呈現(xiàn)紅色、紫色或藍色,是葡萄與葡萄酒的重要呈色物質(zhì)?;ㄉ崭鶕?jù)結構可分為基本花色苷和經(jīng)過修飾的衍生物(糖基化花色苷、甲基化花色苷和?;ㄉ眨谄咸押推咸丫浦?,酰基化花色苷因具有較高的穩(wěn)定性而發(fā)揮著關鍵作用[1-2]。歐亞種葡萄中主要含有花青素、花翠素、甲基花青素、甲基花翠素和二甲花翠素五種花色苷[3]。葡萄果實中花色苷的組分及含量不僅受到基因型、激素水平的影響,還受到光照、溫度、栽培條件等環(huán)境因素的影響[4-5]。有研究表明,不同光照條件,影響葡萄果實花色苷的合成,進而影響果實著色[6-7]。目前則通過遮陽網(wǎng)覆蓋、去除葉片以及鋪設反光膜等方法研究果實顏色的變化[8-9]。研究發(fā)現(xiàn),鮮食葡萄栽培中用遮陽網(wǎng)可對葡萄果實大小、糖和酸含量產(chǎn)生影響,進而調(diào)節(jié)葡萄果實的成熟期[10-11]。赤霞珠葡萄經(jīng)遮光處理后,可溶性固形物、總糖和總花色苷含量顯著下降,總酸及酚類物質(zhì)含量則上升,適當?shù)卣诠?,可延遲采收期,有效提升葡萄品質(zhì)[12]。釀酒葡萄通過遮陽處理,可以改善葡萄生長微氣候,顯著減緩葡萄果實中糖分的迅速增加和有機酸的快速分解,增加葡萄和葡萄酒中多酚和單寧的濃度,減少花色苷和類黃酮的濃度;在果實成熟期間,遮光處理會干擾光合作用,從而導致與糖類代謝相關的酶基因表達發(fā)生變化[13]。研究表明,通過不同溫度和光照處理,在較低溫度和充足光照條件下,花色苷的合成得到顯著增強;而在高溫環(huán)境或無光條件下,花色苷合成酶基因的活性受到明顯抑制,環(huán)境條件和遺傳因素共同調(diào)控著花色苷的合成[14]。
寧夏賀蘭山東麓金山產(chǎn)區(qū)晝夜溫差大,光照強、光照時間長,導致葡萄過快成熟、糖分高、酸度低,花色苷快速積累又迅速降解,釀造的葡萄酒酒精度較高,色澤凋零較快等問題日漸突出。因此,為有效降低光照度和光照時間,提升葡萄果實花色苷組分及結構穩(wěn)定性,緩解色澤過快凋零的問題,提升葡萄及葡萄酒品質(zhì),筆者在本研究中選取馬瑟蘭葡萄,在轉色期至成熟期進行遮陽處理,探究不同時期遮陽對花色苷組分積累及合成相關基因表達量的影響,以期為有效提高花色苷結構穩(wěn)定性,改善葡萄及葡萄酒的色澤,提升品質(zhì)提供理論依據(jù)。
1 材料和方法
1.1 材料
供試品種為賀蘭山東麓金山產(chǎn)區(qū)夏木酒莊(38°42′49″ N,106°4′11″ E)葡萄園內(nèi)10年生釀酒葡萄馬瑟蘭(Vitis vinifera ‘Marselan’),樹勢中庸,株行距為0.7 m×3.5 m,南北行向,礫石土壤,透氣性好。遮陽網(wǎng)為兩針普通型,黑色單層,遮光率為50%,規(guī)格為10 m×25 m。設置3個處理,以正常生長不遮陽為空白對照(CK),T1為轉色初期至采收期樹體頂端遮陽(7月25日至9月19日:花后50~106 d),T2為完全轉色期至采收期樹體頂端遮陽(8月8日至9月19日:花后64~106 d),每個處理設置3次重復。
1.2 方法
1.2.1 樣品采集與處理 處理后每隔7 d采集1次樣品,至花后106 d果實采收,T1共取樣8次(花后57~106 d),T2共取樣6次(花后71~106 d)。采樣時兼顧果穗的陰、陽面,果穗的上、中、下部隨機選取果粒飽滿、大小均勻的果實300粒,帶回實驗室用液氮速凍,置于冰箱(-80 ℃)保存?zhèn)溆谩?/p>
1.2.2 理化指標檢測 樣品帶回實驗室后,立即進行可溶性固形物、可滴定酸和還原糖含量等理化指標檢測。從不同處理的果實樣品中隨機取出約40粒,分別榨成勻漿、過濾,用手持糖度計測定可溶性固形物含量;采用斐林試劑法測定還原糖含量;采用指示劑滴定法,以酒石酸作為基準物質(zhì),測定樣品可滴定酸含量[15]。
1.2.3 花色苷定性定量分析檢測 花色苷提取:參考王舒?zhèn)サ萚16]的方法,提取花色苷過0.22 μm有機相濾膜。應用超高效液相色譜(UPLC)、光電二極管陣列檢測器(PDA)和電噴霧離子化質(zhì)譜(ESI)綜合分析技術(UPLC-PDA-MS/MS-ESI),上樣進行分析。
花色苷檢測:葡萄果實中花色苷類物質(zhì)測定方法參照王博[17]和Liang等[18]的略有改動。質(zhì)譜條件,電噴霧(ESI)離子源,多反應監(jiān)測(multiple reaction monitoring,MRM)模式,離子源溫度為150 ℃,脫溶劑氣溫度為400 ℃,脫溶劑氣的流量為800 L·h-1,錐孔氣的流速為50 L·h-1,以及碰撞氣(通常使用高純氬氣)的流速為0.14 mL·min-1。色譜條件,色譜柱為Waters ACQUITY UPLC? HSS T3(2.1 mm×150 mm,1.8 μm);乙腈作為流動相A,5%甲酸溶液作為流動相B,進樣量設定為2.0 μL,流速控制在0.3 mL·min-1,保持柱溫40 ℃;洗脫梯度:0~1.0 min(5%~10% A),1.0~16 min(10%~25% A),16~18 min(25%~40% A),18~19 min(40%~100% A),20 min回到初始狀態(tài),平衡10 min。檢測器波長設置為520 nm。
1.2.4 轉錄組分析 RNA提取、建庫:使用植物RNA提取試劑盒從葡萄中分離出總RNA,參考韋偉等[19]的方法,通過Nanodrop 2000儀器測量RNA樣品的濃度與純度,利用瓊脂糖凝膠電泳技術評估RNA的完整性,并借助Agilent 5300設備計算RNA完整性數(shù)值(RIN)。利用Oligo(dT)磁珠法純化總RNA的mRNA,并將mRNA進行隨機打斷,形成片段,以mRNA片段為模板合成cDNA,為了適合后續(xù)測序分析,將雙鏈cDNA的黏性末端修復為平末端。構建的cDNA文庫在Illumimna Novaseq 6000平臺(上海美吉生物醫(yī)藥科技有限公司)進行測序。
測序數(shù)據(jù)分析:對原始測序數(shù)據(jù)進行過濾得到高質(zhì)量的測序數(shù)據(jù),使用Hisat2軟件與參考基因組進行比對,并評估結果。使用RSEM軟件對基因的表達水平進行定量分析,利用DESeq2軟件,篩選標準為表達差異倍數(shù)|log2FC|≧l和校正過的P值(P-adjust<0.05),進行基因差異表達分析,篩選出的差異表達基因進行KEGG富集分析。
1.2.5 基因表達量分析 qRT-PCR驗證:使用MJZol total RNA extraction kit(上海美吉生物醫(yī)藥科技有限公司)試劑盒提取總RNA,使用HiScript Q RT SuperMix for qPCR (+gDNA wiper)(南京諾唯贊生物科技有限公司)試劑盒反轉錄為cDNA,使用ChamQ SYBR Color qPCR Master Mix (2X)(南京諾唯贊生物科技有限公司)試劑盒,用熒光定量PCR儀(ABI7300型,美國)進行qRT-PCR檢測,選用GAPDH基因作為內(nèi)參基因。優(yōu)化后的條件為預變性95 ℃ 5 min,變性95 ℃ 30 s,退火50~55 ℃ 30 s,35個循環(huán),延伸72 ℃ 1 min。運用2-△△CT算法計算相對表達量。特異性引物信息見表1。
1.3 數(shù)據(jù)處理
采用Microsoft office 2013進行數(shù)據(jù)處理,使用Origin 2024繪圖。利用SPSS 17.0統(tǒng)計軟件進行顯著性和相關性分析,采用單因素方差分析法(one-way ANOVA)和Duncan法進行方差分析。
2 結果與分析
2.1 遮陽對葡萄果實品質(zhì)的影響
由表2可以看出,隨著果實逐漸成熟所有處理的可溶性固形物含量(w,后同)均呈上升趨勢且在采收期達到最大值。對照為31.47%,T1為27.53%,T2為29.13%,差異達顯著水平。遮陽可明顯降低果實可溶性固形物含量。
隨著果實轉色至成熟各處理的滴定酸含量逐漸減少(表3),其中花后57~71 d,正值果實轉色初期至完全轉色期階段,此階段的各處理滴定酸含量(ρ,后同)迅速下降,對照由19.00 g·L-1降為4.19 g·L-1,T1由19.56 g·L-1降為4.38 g·L-1。果實成熟期對照滴定酸含量為3.06 g·L-1,T1為3.19 g·L-1,T2為3.16 g·L-1,說明遮陽處理可減緩成熟期果實滴定酸含量的下降趨勢,各處理差異不顯著。
表4顯示,隨著果實轉色成熟各處理的還原糖含量呈上升趨勢,采收期對照還原糖含量達到243.27 g·L-1,T1為214.47 g·L-1,差異顯著,說明轉色初期對樹體進行遮陽處理明顯減少了果實還原糖的積累量;T2為259.02 g·L-1顯著高于對照的含量,說明完全轉色期對樹體進行遮陽可促進果實還原糖的積累。
由圖1可以看出,隨著果實轉色成熟,各處理的糖酸比均呈現(xiàn)逐漸上升而后下降又略有上升的變化趨勢,且對照和T2處理的糖酸比始終高于T1處理,果實采收期時T2的糖酸比比T1提高了21.63%,差異達顯著水平;比對照提高了3.23%,差異不顯著。
2.2 遮陽處理對葡萄花色苷組分及含量的影響
2.2.1 遮陽處理對馬瑟蘭葡萄花色苷組分的影響 對馬瑟蘭葡萄果實花后57~106 d各處理進行花色苷組分檢測,對照、T1和T2中檢測到的16種花色苷中(表5),其中,花翠素類(Delphinidin,Dp)3種,花青素類(Cyanidin,Cy)3種,甲基花翠素類(Petunidin,Pt)3種,甲基花青素類(Peonidin,Pn)3種,二甲基花翠素類(Malvidin,Mv)4種,各處理的花色苷種類均一致,由此說明遮陽處理不會改變葡萄果實中花色苷的組成。
2.2.2 遮陽處理對馬瑟蘭葡萄花色苷?;揎棾煞窒鄬康挠绊?由表6可知,在采收期的馬瑟蘭葡萄中主要檢測到的?;惢ㄉ諡橐阴;惡拖愣辊;?類。各處理中,酰化修飾成分相對含量在36.06%~43.89%,T2的?;惢ㄉ障鄬孔罡邽?3.89%,對照的?;惢ㄉ障鄬孔畹蜑?6.06%。由此說明,轉色期遮陽可提高葡萄果實中酰基化花色苷的比例,進而提高花色苷的穩(wěn)定性。
2.2.3 遮陽處理對馬瑟蘭葡萄花色苷含量的影響 葡萄轉色至采收期,馬瑟蘭葡萄果實中的總花色苷含量呈先上升后下降的波動變化趨勢(圖2-A),花后99 d時達到最大,且對照的總花色苷含量顯著高于T1(轉色初期-采收期對樹體頂端遮陽)和T2(完全轉色期-采收期對樹體頂端遮陽)的總花色苷含量,對照為2.19 mg·g-1,比T1增加了83.11%,比T2增加了13.82%。至花后106 d葡萄采收時總花色苷含量增幅減緩,含量有所下降,此時T2的總花色苷含量最高,且T2與T1的差異達顯著水平,T2與對照差異不顯著。
由圖2-B可知,葡萄果實從轉色至采收,花翠素(Dp)含量呈波動變化趨勢,對照的Dp含量在花后99 d時達到最高,為0.22 mg·g-1,比T1高了248.44%,比T2高了13.20%,差異均達顯著水平;T1在花后71 d時達到最高,為0.08 mg·g-1,比對照降低了21.90%,比T2降低了57.07%,且差異達顯著水平;T2在花后85 d達到最高,為0.23 mg·g-1,且Dp含量顯著高于對照和T1,比對照高了159.77%,比T1高了326.42%。至葡萄采收時,各處理的Dp含量均降低,對照的Dp含量高于T1和T2的,且各處理間差異顯著。
葡萄果實從轉色至采收,花青素(Cy)含量的變化趨勢同Dp相似(圖2-C),其中對照的Cy含量在花后99 d達到最高,為0.03 mg·g-1,比T1高了350%,差異達顯著水平,比T2高了3.85%,差異不顯著;T1的Cy含量在花后71 d時達到最高,為0.01 mg·g-1,比T2降低了48%,且差異達顯著水平;T2在花后85 d時Cy含量達到最高,為0.03 mg·g-1,且Cy含量顯著高于對照和T1,比對照高了211.11%,比T2高了366.67%。葡萄采收時,對照的Cy含量顯著高于T1和T2的Cy含量,由此說明,遮陽明顯抑制了Cy含量的積累,且T2比T1的抑制作用更顯著。
隨著葡萄果實轉色至采收,對照的甲基花翠素(Pt)含量在花后99 d達到最高,為0.22 mg·g-1,比T1高了200%,比T2高了10.20%,差異達顯著水平;T1的Pt含量在花后71 d時達到最高,為0.09 mg·g-1,比對照降低了19.27%,比T2降低了51.65%,差異均達到顯著水平;T2在花后85 d時Pt含量達到最高,為0.21 mg·g-1,且Pt含量顯著高于對照和T1,比對照高了113.27%,比T2高了254.24%。葡萄采收時,對照的Pt含量顯著高于T1、T2的Pt含量,說明遮陽減緩了Pt含量的積累,T1與T2無顯著差異(圖2-D)。
由圖2-E可知,馬瑟蘭葡萄果實轉色至采收,對照的甲基花青素(Pn)含量在花后99 d達到最高,為0.16 mg·g-1,比T1高了376.67%,比T2高了15.56%,差異均達顯著水平;T1的Pn含量在花后106 d時達到最高,為0.06 mg·g-1,比對照降低了16.22%,比T2增加了19.23%,且差異均達顯著水平;T2在花后85 d時Pn含量達到最高,為0.14 mg·g-1,且Pn含量顯著高于對照和T1,比對照高114.06%,比T2高341.94%。葡萄采收時,對照的Pn含量顯著高于T1、T2的Pn含量,由此說明,遮陽明顯抑制了Pn含量的積累,且T2比T1的抑制作用更顯著。
葡萄果實轉色至采收期,二甲花翠素類(Mv)含量逐漸增加(圖2-F),對照、T1和T2的Mv含量均在花后99 d達到最大,且對照的Mv含量最高,為1.59 mg·g-1,比T1的Mv含量高55.57%,比T2高14.19%,差異均達到顯著水平。葡萄采收時,各處理的Mv含量均有所下降,T2的Mv含量高于對照和T1的Mv含量,且有顯著差異,對照和T1無顯著差異。
2.3 遮陽處理對馬瑟蘭葡萄花色苷轉錄組的影響
在Illumimna Novaseq 6000平臺完成了花后71 d和花后99 d的對照、T1和T2共6個樣品的轉錄組分析,為了保證數(shù)據(jù)質(zhì)量,在信息分析前對原始數(shù)據(jù)進行質(zhì)控,過濾后的Clean reads在44 236 559和48 151 904之間,Q20在96.35%和96.73%之間,Q30在93.94%和94.39%之間,Clean reads數(shù)量最多的為花后71 d的對照樣本,數(shù)量最少的為花后99 d的T1樣本(表7)。
經(jīng)比對統(tǒng)計分析,花后99 d時,對照樣本的Total mapped最多,達到43 804 344個,T1樣本的最少,為40 408 372個。Multiple mapped比例為2.74%~3.58%,花后99 d的對照樣本最小,花后71 d的T2樣本最大,Uniquely mapped數(shù)量在39 043 793~41 759 326之間,Uniquely mapped的比例為86.70%~89.29%(表8)。
對樣本關系分析(圖3)發(fā)現(xiàn),馬瑟蘭葡萄在花后71 d和花后99 d,各處理共有基因為14394個,花后71 d,對照、T1、T2特有基因分別為160個、74個、34個,花后99 d,對照、T1、T2特有基因分別為177個、45個、193個。
不同處理與對照比較,基因表達量差異如圖4所示,對照(花后99 d)vs T1(花后99 d)下調(diào)基因和上調(diào)基因數(shù)目均為最多,其中,下調(diào)基因達到1393個,上調(diào)基因達到979個,對照(花后71 d)vs T1(花后71 d)下調(diào)基因544個,上調(diào)基因220個,對照(花后71 d)vs T2(花后71 d)下調(diào)基因達到740個,上調(diào)基因83個。對照(花后99 d)vs T2(花后99 d)上調(diào)基因289個,下調(diào)基因330個。
不同遮陽處理的基因集分析如圖5,對照(花后71 d)vs T1(花后71 d)、對照(花后71 d)vs T2(花后71 d)、對照(花后99 d)vs T1(花后99 d)和 對照(花后99 d)vs T2(花后99 d)之間共有基因36個;對照(花后71 d)vs T1(花后71 d)和對照(花后71 d)vs T2(花后71 d)共有基因428個,對照(花后99 d)vs T1(花后99 d)和 對照(花后99 d)vs T2(花后99 d)共有基因442個;對照(花后71 d)vs T1(花后71 d)特有基因208個,對照(花后71 d)vs T2(花后71 d)特有基因231個,對照(花后99 d)vs T1(花后99 d)特有基因1682個,對照(花后99 d)vs T2(花后99 d)特有基因118個。
KEGG富集分析揭示了馬瑟蘭葡萄在轉色期顯著差異基因主要參與的代謝途徑和信號通路。花色苷是通過類黃酮代謝途徑中的特定分支進行生物合成的,該途徑也被富集出來(圖6、圖7)?;ê?1 d代謝通路的KEGG富集分析(圖6),以P-adjust<0.05為標準對兩兩比較后的代謝通路進行選擇,對照(花后71 d)vs T1(花后71 d)和對照(花后71 d)vs T2(花后71 d)中,分別有8個和12個代謝途徑被顯著富集。對照(花后71 d)vs T1(花后71 d)中最顯著的幾個代謝途徑為半乳糖代謝(Galactose metabolism)、植物激素信號轉導(Plant hormone signal transduction)、光合作用-天線蛋白(Photosynthesis -antenna proteins)、ABC轉運蛋白(ABC transporters)、二萜生物合成(Diterpenoid biosynthesis)、淀粉和蔗糖代謝(Starch and sucrose metabolism)、脂肪酸降解(Fatty acid degradation)、黃酮類化合物生物合成(Flavonoid biosynthesis)。對照(花后71 d)vs T2(花后71 d)中最顯著的幾個代謝途徑為丙烷、哌啶和吡啶生物堿生物合成(Tropane,piperidine and pyridine alkaloid biosynthesis)、植物晝夜節(jié)律(Circadian rhythm - plant)、黃酮類化合物生物合成(Flavonoid biosynthesis)、光合作用-天線蛋白(Photosynthesis -antenna proteins)、二苯乙烯類、二芳基庚烷類和姜酚的生物合成(Stilbenoid,diarylheptanoid and gingerol biosynthesis)、植物病原菌互作(Plant-pathogen interaction)、半乳糖代謝(galactose metabolism )、植物激素信號轉導(Plant hormone signal transduction)、ABC轉運蛋白(ABC transporters)、單萜類生物合成(Monoterpenoid biosynthesis)、苯丙烷類生物合成(Phenylpropanoid biosynthesis)、氮代謝(Nitrogen metabolism)。
花后99 d代謝通路的KEGG富集分析(圖7),以P-adjust<0.05為標準對兩兩比較后的代謝通路進行選擇,對照(花后99 d)vs T1(花后99 d)和對照(花后99 d)vs T2(花后99 d)中,分別有12個和10個代謝途徑被顯著富集。對照(花后99 d)vs T1(花后99 d)富集到的最為顯著的途徑有苯丙烷、哌啶和吡啶生物堿生物合成(Tropane,piperidine and pyridine alkaloid biosynthesis),苯丙烷類生物合成(Phenylpropanoid biosynthesis),黃酮類生物合成(Flavonoid biosynthesis),植物晝夜節(jié)律(Circadian rhythm-plant),苯丙氨酸代謝(Phenylalanine metabolism),ABC轉運蛋白(ABC transporters),二苯類、二芳基庚烷類和姜酚類生物合成(Stilbenoid,diarylheptanoid and gingerol biosynthesis),光合作用(Photosynthesis),半乳糖代謝(Galactose metabolism),酪氨酸代謝(Tyrosine metabolism),泛醌及其他萜醌類化合物的生物合成(Ubiquinone and other terpenoid-quinone biosynthesis),異喹啉生物堿生物合成(Isoquinoline alkaloid biosynthesis)。對照(花后99 d)vs T2(花后99 d)富集到植物晝夜節(jié)律(Circadian rhythm-plant),苯丙烷、哌啶和吡啶生物堿生物合成(Tropane,piperidine and pyridine alkaloid biosynthesis),類黃酮生物合成(Flavonoid biosynthesis),苯丙烷生物合成(Phenylpropanoid biosynthesis),二苯乙烯,二芳基庚烷和姜酚生物合成(Stilbenoid,diarylheptanoid and gingerol biosynthesis),ABC轉運蛋白(ABC transporters),苯丙氨酸代謝(Phenylalanine metabolism),光合作用-天線蛋白(Photosynthesis -antenna proteins),脂肪酸延伸(Fatty acid elongation),卟啉代謝(Porphyrin metabolism)途徑最為顯著。
通過兩兩比較之后每個組合均富集到較多的代謝途徑,而筆者在本研究中重點關注的是苯丙烷類化合物的生物合成和類黃酮生物合成兩個代謝途徑。類黃酮代謝途徑中在對照(花后71 d)vs T1(花后71 d)、對照(花后71 d)vs T2(花后71 d)、對照(花后99 d)vs T1(花后99 d)和對照(花后99 d)vs T2(花后99 d)中分別富集到的差異基因數(shù)目為9個、21個、38個和28個,而苯丙烷類生物合成富集到的基因個數(shù)最多達到51個。
2.4 遮陽處理對馬瑟蘭葡萄花色苷合成相關基因表達的影響
qRT-PCR驗證轉錄組數(shù)據(jù),隨機篩選了苯丙烷類生物合成和類黃酮生物合成兩個代謝途徑中的差異表達基因通過qRT-PCR分析相對表達水平,以此進一步說明轉錄組數(shù)據(jù)的可靠性。利用差異表達基因功能富集分析和表達量分析的方法,從馬瑟蘭葡萄中篩選了15個與花色苷合成相關的差異表達基因,作為潛在的候選基因(表9)。經(jīng)基因功能注釋分析,這些基因可能與花色苷的生物合成有關。其中,除GAPDH(內(nèi)參)外,CHS3表達量最高,GST4次之。
對基因相對表達量進行分析,不同時期遮陽處理對馬瑟蘭葡萄果實花色苷合成相關基因的影響由圖8可以看出,轉色期遮陽處理后,葡萄果皮花色苷相關合成的上游基因,均有不同程度的上調(diào)表達。隨著果實的成熟,T1處理的PAL、F3H、F3’H基因表達類似,呈先下降后上升的變化趨勢,花后71 d三個基因的表達量均上調(diào),而后隨著果實成熟逐漸下降,PAL和F3’H在花后85 d時達到最小值,且均顯著低于對照和T2的基因表達量,F(xiàn)3H在花后92 d時達到最小值,且與對照和T2的基因表達量差異顯著;隨著果實成熟至采收,PAL、F3H和F3’H基因均逐漸上調(diào)表達,花后106 d時T1的3個基因表達量均顯著低于對照的基因表達量。T2處理的4CL和CHS基因表達呈波動變化趨勢,CHI呈先上升后下降的變化趨勢,花后71~85 d,4CL、CHS、CHI基因逐漸上調(diào)表達,均在花后85 d時表達量最高,且顯著高于對照和T1的表達水平,花后85~106 d,表達水平有所下調(diào),果實采收時,T2的4CL、CHI、CHS基因表達量水平顯著低于對照?;ê?1~106 d,T1處理下的CHS3和F3’5’H表達水平類似,隨著果實成熟花色苷的不斷積累,兩個基因的表達水平均呈下降-上升-下降的變化趨勢,CHS3在花后71 d時表達水平最高,而后逐漸下調(diào),至花后99 d表達量略有上升,果實采收期有所下調(diào),且此時的表達量顯著低于對照和T2;F3’5’H在花后71~92 d表達量逐漸下調(diào),花后99 d表達水平上升至最高,果實采收期又迅速下調(diào),并達到最低水平,表達量亦顯著低于對照和T2。T2處理的CHS3和F3’5’H表達水平類似,花后71~106 d,2個基因的表達量初期降低,隨后逐漸升高,CHS3的表達水平在花后71 d時達到最高,且顯著高于對照和T1的表達水平,而后下調(diào),并在花后85 d時達到最低,且顯著低于對照的CHS3表達水平,隨著果實轉色成熟T2的CHS3表達上調(diào),在花后106 d時CHS3表達量是T1的3.3倍,差異顯著;F3’5’H的表達水平在花后71~92 d略有下調(diào),并在花后92 d時達到最低,而后隨著果實轉色成熟F3’5’H表達上調(diào),在花后106 d時F3’5’H表達量達到最大,是T1的19.5倍,差異顯著。
圖9中DFR在轉色前期轉錄水平較高,在轉色中后期下調(diào)表達,其中,T1處理在花后106 d時上調(diào)表達,比對照高1.5倍,比T2高1.9倍,差異達顯著水平。T2處理的LDOX、UFGT和GST4基因表達量在花后71 d~106 d均高于T1,且除了LDOX在花后71 d的表達量差異不顯著外,其余各時期3個基因的表達量均達顯著差異水平。T2處理的OMT在轉色后至采收前的轉錄水平呈先升后降的波動變化趨勢,采收期時下調(diào)表達;T1處理的OMT在花后106 d時上調(diào)表達,且顯著高于對照和T2。調(diào)節(jié)因子MYB5b和MYB90在轉色至成熟前期轉錄水平較高,近成熟期至采收期轉錄水平有所下降。qRT-PCR分析發(fā)現(xiàn),篩選的15個基因中,CHI、F3H、F3’5’H、F3’H、DFR、LDOX、UFGT和OMT在各處理中的表達水平的變化趨勢和轉錄組測序不一致,其他基因的變化趨勢與轉錄組測序結果相吻合。
2.5 馬瑟蘭葡萄花色苷含量與花色苷合成相關基因的分析
在馬瑟蘭葡萄果實成熟過程中,花色苷含量與相關基因表達量的相關性分析除OMT外,均呈正相關(表10)。其中CHI轉錄水平與Dp和Cy含量顯著正相關,相關系數(shù)為0.489和0.512。MYB5b基因表達水平與Dp、Cy、Pn及Pt含量呈顯著正相關,說明MYB5b基因可能參與調(diào)節(jié)花色苷合成相關結構基因,進而影響花色苷組分及含量的變化。
3 討 論
賀蘭山東麓葡萄酒產(chǎn)區(qū)受氣候變化影響,干旱少雨,夏季炎熱、光照強,日照時數(shù)長,導致葡萄過快成熟,糖高酸低,花色苷合成快、色澤凋零也快,進而影響了果實品質(zhì)。通過遮光、改變栽培方式等方法調(diào)節(jié)果實糖、酸及酚類物質(zhì)積累,可有效提升果實品質(zhì)?;ㄉ兆鳛楣麑嵠焚|(zhì)的重要指標之一,其積累受到環(huán)境因素和生物合成途徑中相關基因表達水平的共同調(diào)控。樹體遮陽、果穗套袋等方法[20-21]可改變光照度,導致葡萄果實總花色苷含量下降,影響果實著色,延遲采收。套袋對葡萄花色苷種類沒有影響,花色苷含量則有所差異[22]。本研究結果表明,各處理中葡萄果實檢測的16種花色苷種類均一致,單體含量有所不同,與上述研究結果一致[22]。遮陽顯著減少了葡萄果實Dp類、Cy類、Pt類和Pn類花色苷的含量,轉色初期遮陽,除Mv類花色苷外,總花色苷含量及Dp類、Cy類、Pt類和Pn類含量則顯著下降;完全轉色期遮陽,總花色苷和Mv類花色苷含量則增加,進一步說明了不同時期遮陽對花色苷的影響并不相同[23],且Mv類花色苷在5類花色苷中仍占主要地位,與相關研究結果一致[24]。遮陽可降低葡萄果實含糖量,有效增加酸含量[25],顯著降低可溶性固形物含量[26]。本研究結果表明,完全轉色期遮陽處理促進了還原糖積累,且差異顯著,可能由于遮陽減少了光照度,提高了光合能力,促進了果實糖的積累。遮陽減緩了葡萄酸的下降趨勢,顯著降低了可溶性固形物含量,這與閆雪[26]的研究結果一致。
花色苷合成除受到光照、溫度及礦質(zhì)元素等外部因素的影響外[21],還受到合成途徑中調(diào)控關鍵酶表達的相關基因(PAL、CHS、F3'5'H、F3H、DFR、UFGT、OMT、GST等結構基因和MYB等調(diào)節(jié)基因)的影響。有研究發(fā)現(xiàn),果穗套袋可使PAL、4CL、F3’5’H、DFR、LDOX、OMT、MYB5a等相關基因表達量上調(diào),促進了果實花色苷的合成[27]。本試驗主要研究了PAL、4CL、CHI、CHS、CHS3、F3H、F3’5’H、F3’H、GST4、DFR、LDOX、UFGT、OMT、MYB5b、MYB90基因的表達水平?;ê?1~106 d,以上基因在果實中均被檢測到。轉色初期遮陽,采收時CHI、DFR和OMT基因表達量與其他處理相比有所上調(diào),且DFR和OMT達顯著水平,顯著降低了CHS和LDOX基因表達水平。完全轉色期遮陽,采收期的PAL、CHS3、F3’H、F3’5’H、UFGT、GST4和MYB90基因表達量與其他處理相比均有所上調(diào),進一步促進了花色苷的合成,?;ㄉ招揎棻壤脑黾樱嵘嘶ㄉ盏慕Y構穩(wěn)定性,繼而提高其顏色穩(wěn)定性[28]。對轉色至采收期的花色苷含量與相關基因表達量分析表明,MYB5b與花色苷含量呈顯著正相關,對花色苷的合成具有調(diào)節(jié)作用,與成果[23]的有關研究結果相吻合。F3’H和F3’5’H在花色苷生物合成途徑中起著關鍵作用,二者分別調(diào)控著花色苷合成的不同支路,繼而形成不同的花色苷[29],F(xiàn)3’H主要參與生成的Cy類花色苷和F3’5’H主要參與生成的Dp類花色苷含量不同導致果皮顏色也有所不同[27]。筆者在本研究中發(fā)現(xiàn),在轉色初期遮陽,采收時F3’H上調(diào)表達,F(xiàn)3’5’H下調(diào)表達;在完全轉色期遮陽,采收時F3’H和F3’5’H均上調(diào)表達,而轉色初期遮陽處理的Cy類和Dp類花色苷含量均顯著高于完全轉色期遮陽處理的Cy和Dp含量??赡苡捎贑HI表達水平與Cy和Dp含量呈顯著正相關,且轉色初期遮陽處理的CHI表達水平顯著高于完全轉色期遮陽處理的CHI表達水平,進而導致轉色初期遮陽處理的Cy和Dp含量顯著高于完全轉色期遮陽處理的Cy和Dp含量。亦或是其他關鍵基因存在差異性表達,導致Cy和Dp含量有所差異,還有待進一步研究。
4 結 論
遮陽顯著降低了可溶性固形物含量,增加了滴定酸含量,完全轉色期遮陽增加了部分花色苷合成相關基因的表達量,促進了花色苷的合成,提升了總花色苷含量且顯著增加了Mv類花色苷的含量。完全轉色期遮陽提高了?;ㄉ盏男揎棻壤?,增加了花色苷顏色的穩(wěn)定性,改善果實著色,提升葡萄色澤的穩(wěn)定性。因此,為有效緩解釀酒葡萄因光強導致花色苷結構不穩(wěn)定引起色澤過快凋零的問題,可在果實完全轉色期進行適當遮陽處理。
參考文獻 References:
[1] 李寧寧,張波,牛見明,史肖,馬騰臻,韓舜愈. 發(fā)酵前咖啡酸和迷迭香酸添加對干紅葡萄酒顏色與香氣的影響[J]. 食品與發(fā)酵工業(yè),2020,46(10):132-140.
LI Ningning,ZHANG Bo,NIU Jianming,SHI Xiao,MA Tengzhen,HAN Shunyu. The influence of pre-fermentative addition of caffeic acid and rosmarinic acid on the color and aroma compounds of dry red wines[J]. Food and Fermentation Industries,2020,46(10):132-140.
[2] 劉霞,邢佳雨,馮敬雯,陳建軍,焦揚,楊彬. 紅葡萄酒輔助呈色作用研究進展[J]. 中國釀造,2023,42(11):9-14.
LIU Xia,XING Jiayu,F(xiàn)ENG Jingwen,CHEN Jianjun,JIAO Yang,YANG Bin. Research progress on copigmentation of red wine[J]. China Brewing,2023,42(11):9-14.
[3] 韓富亮,李楊,李記明,徐巖. 紅葡萄酒花色苷結構和顏色的關系研究進展[J]. 食品與生物技術學報,2011,30(3):328-336.
HAN Fuliang,LI Yang,LI Jiming,XU Yan. Relation between anthocyanin structures and color in red wine:A review[J]. Journal of Food Science and Biotechnology,2011,30(3):328-336.
[4] 朱磊,李新月,胡禧熙,劉云清,于昕楚,武欣,臧延青,湯華成. 葡萄花色苷的組成及生物合成研究進展[J]. 黑龍江八一農(nóng)墾大學學報,2021,33(5):59-66.
ZHU Lei,LI Xinyue,HU Xixi,LIU Yunqing,YU Xinchu,WU Xin,ZANG Yanqing,TANG Huacheng. Research progress on composition and biosynthesis of grape anthocyanins[J]. Journal of Heilongjiang Bayi Agricultural University,2021,33(5):59-66.
[5] 史國強. 設施栽培對葡萄果實品質(zhì)及酚類積累的影響[D]. 太谷:山西農(nóng)業(yè)大學,2019.
SHI Guoqiang. Effects of facilities cultivation on the grape berries quality and phenols accumulation[D]. Taigu:Shanxi Agricultural University,2019.
[6] 孟祥云,王枝翠,王雨歌,樊新民,趙寶龍,劉懷鋒. 地面遮陰對新疆‘紅地球’葡萄果實著色的影響[J]. 果樹學報,2014,31(1):60-65.
MENG Xiangyun,WANG Zhicui,WANG Yuge,F(xiàn)AN Xinmin,ZHAO Baolong,LIU Huaifeng. Effects of terrestrial shading on the berry coloring of ‘Red Globe’ grape (Vitis vinifera L.) in Xinjiang[J]. Journal of Fruit Science,2014,31(1):60-65.
[7] DOWNEY M O,HARVEY J S,ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes[J]. Australian Journal of Grape and Wine Research,2008,10(1):55-73.
[8] 李艷春. 果實成熟期光照對赤霞珠葡萄光合作用、果實品質(zhì)及養(yǎng)分積累的影響[D]. 保定:河北農(nóng)業(yè)大學,2009.
LI Yanchun. The effect of light on photosynthesis,fruit quality and nutrient accumulation during Cabernet Sauvignon maturation period[D]. Baoding:Hebei Agricultural University,2009.
[9] RISTIC R,DOWNEY M O,ILAND P G,BINDON K,F(xiàn)RANCIS I L,HERDERICH M,ROBINSON S P. Exclusion of sunlight from Shiraz grapes alters wine colour,tannin and sensory properties[J]. Australian Journal of Grape and Wine Research,2007,13(2):53-65.
[10] SEN F,OKSAR R E,KESGIN M. Effect of shading and covering on ‘Sultana Seedless’ grape quality and storability[J]. Journal of Agricultural Science amp; Technology,2016,18(1):245-254.
[11] SERAT B,KULKARNI S S. Effect of shade net on yield and quality of grapes cv. Thompson seedless[J]. International Journal of Science and Research,2015,4(5):1841-1844.
[12] 倪志婧,馬文平,王薇,宋長冰,魏兆軍. 遮光處理對釀酒葡萄果實品質(zhì)的影響[J]. 合肥工業(yè)大學學報(自然科學版),2016,39(11):1563-1566.
NI Zhijing,MA Wenping,WANG Wei,SONG Changbing,WEI Zhaojun. Effect of shading treatment on the quality of wine grapes[J]. Journal of Hefei University of Technology (Natural Science),2016,39(11):1563-1566.
[13] 劉敏,成正龍,張晉升,鞠延侖,房玉林,孟江飛,張振文. 遮陽網(wǎng)對釀酒葡萄果實及葡萄酒品質(zhì)的影響[J]. 西北植物學報,2017,37(9):1764-1772.
LIU Min,CHENG Zhenglong,ZHANG Jinsheng,JU Yanlun,F(xiàn)ANG Yulin,MENG Jiangfei,ZHANG Zhenwen. Influence of shading net on qualities of Cabernet Sauvignon and Syrah berries and wines[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(9):1764-1772.
[14] AZUMA A,YAKUSHIJI H,KOSHITA Y,KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta,2012,236(4):1067-1080.
[15] 國家質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標準化管理委員會. 葡萄酒、果酒通用分析方法:GB/T 15038—2006[S]. 北京:中國標準出版社,2008:2-56.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Analytical methods of wine and fruit wine:GB/T 15038—2006[S]. Beijing:Standards Press of China,2008:2-56.
[16] 王舒?zhèn)ィ瑔痰?,徐通通,張軻,邵永明,董榮,張珍珍. 葡萄成熟度對‘赤霞珠’葡萄酒酚類物質(zhì)及抗氧化能力的影響[J]. 食品與發(fā)酵工業(yè),2022,48(12):202-209.
WANG Shuwei,QIAO Dan,XU Tongtong,ZHANG Ke,SHAO Yongming,DONG Rong,ZHANG Zhenzhen. Effect of grape maturity on phenolic and antioxidant activity of Cabernet Sauvignon wines[J]. Food and Fermentation Industries,2022,48(12):202-209.
[17] 王博. 根域限制促進鮮食葡萄果皮花色苷合成的機制研究[D]. 上海:上海交通大學,2013.
WANG Bo. Study on the mechanism of improved anthocyanin biosynthesis under root restriction in table grape berry skin[D]. Shanghai:Shanghai Jiao Tong University,2013.
[18] LIANG Z C,SANG M,F(xiàn)AN P G,WU B H,WANG L J,YANG S H,LI S H. CIELAB coordinates in response to berry skin anthocyanins and their composition in Vitis[J]. Journal of Food Science,2011,76(3):C490-C497.
[19] 韋偉,單守明,李光宗,許文娣. 北紅葡萄組織培養(yǎng)生根期愈傷組織的轉錄組分析[J]. 甘肅農(nóng)業(yè)大學學報,2023,58(4):127-136.
WEI Wei,SHAN Shouming,LI Guangzong,XU Wendi. Transcriptome analysis of callus at rooting stage in Beihong grape tissue culture[J]. Journal of Gansu Agricultural University,2023,58(4):127-136.
[20] 張珍珍,李倩,董榮,喬丹,閆雪,張軻. 樹體遮光對采收期‘赤霞珠’葡萄果實花色苷類物質(zhì)積累的影響[J]. 食品科學,2020,41(4):157-163.
ZHANG Zhenzhen,LI Qian,DONG Rong,QIAO Dan,YAN Xue,ZHANG Ke. Effects of shading treatment on accumulation of anthocyanin in grape fruit of ‘Cabernet Sauvignon’ at harvest[J]. Food Science,2020,41(4):157-163.
[21] 馬宗桓. 光照強度對葡萄果實品質(zhì)及花青苷合成的調(diào)控機理研究[D]. 蘭州:甘肅農(nóng)業(yè)大學,2019.
MA Zonghuan. Regulation mechanism of light intensity on fruit quality and anthocyanin synthesis in grape (V. vinifera L.) berry[D]. Lanzhou:Gansu Agricultural University,2019.
[22] 靳韋. 套袋對沙地“紅地球”葡萄果際微氣候及品質(zhì)的影響[D]. 銀川:寧夏大學,2015.
JIN Wei. Effects of the bagging on fruiting microenvironments and quality of grape (cv. Red Globe) in the sandy areas[D]. Yinchuan:Ningxia University,2015.
[23] 成果. 微環(huán)境調(diào)控‘赤霞珠’葡萄果實花色苷代謝的研究[D]. 楊凌:西北農(nóng)林科技大學,2015.
CHENG Guo. The research on anthocyanin biosynthesis in ‘Cabernet Sauvignon’ berries regulated by microenvironment[D]. Yangling:Northwest A amp; F University,2015.
[24] 喬子純,柳巧禛,代紅軍. 外源6-BA對‘美樂’葡萄花色苷合成的影響[J]. 果樹學報,2020,37(5):668-676.
QIAO Zichun,LIU Qiaozhen,DAI Hongjun. Effects of exogenous 6-BA on anthocyanin synthesis in ‘Merlot’ grape[J]. Journal of Fruit Science,2020,37(5):668-676.
[25] 李磊,谷威杰,蘇旺春,陳可欽,張克坤,房玉林. 遮陽網(wǎng)顏色和寬度對‘馬瑟蘭’葡萄果實和葡萄酒品質(zhì)的影響[J]. 西北植物學報,2024,44(9):1355-1364.
LI Lei,GU Weijie,SU Wangchun,CHEN Keqin,ZHANG Kekun,F(xiàn)ANG Yulin. The quality of ‘Marselan’ grapes and wines under sunshade nets with different widths and colors[J]. Acta Botanica Boreali-Occidentalia Sinica,2024,44(9):1355-1364.
[26] 閆雪. 遮光處理對‘赤霞珠’葡萄果實中輔色物質(zhì)代謝及葡萄酒顏色穩(wěn)定性的影響[D]. 烏魯木齊:新疆農(nóng)業(yè)大學,2021.
YAN Xue. Effect of shading treatment on the metabolism of Co-color substances and wine color stability in ‘Cabernet Sauyignon’ grape berry[D]. Urumqi:Xinjiang Agricultural University,2021.
[27] 張雷,賈玥,王繼源,陶建敏. 套袋對‘美人指’葡萄花色苷組分及合成相關基因表達的影響[J]. 果樹學報,2014,31(6):1032-1039.
ZHANG Lei,JIA Yue,WANG Jiyuan,TAO Jianmin. Effects of bagging on anthocyanins component and biosynthetic genes expression in ‘Manicure Finger’ grape[J]. Journal of Fruit Science,2014,31(6):1032-1039.
[28] 王二雷,黃佳瑩,段海章,徐彩娜. 花色苷穩(wěn)態(tài)化技術研究進展及應用前景[J]. 食品工業(yè)科技,2024,45(18):394-403.
WANG Erlei,HUANG Jiaying,DUAN Haizhang,XU Caina. Progress on the stabilization technology of anthocyanins and the application prospects[J]. Science and Technology of Food Industry,2024,45(18):394-403.
[29] 欒麗英. 油菜素內(nèi)酯和脫落酸對釀酒葡萄花色苷調(diào)控及葡萄酒品質(zhì)影響的研究[D]. 楊凌:西北農(nóng)林科技大學,2014.
LUAN Liying. Study on the regulation of anthocyanin synthesis of grape and the quality of wine after brassinolide and abscisic acid treatments[D]. Yangling:Northwest A amp; F University,2014.