摘要:自身免疫性肝炎(AIH)是由自身免疫系統(tǒng)攻擊肝細胞所致的慢性肝炎,目前關(guān)于AIH的發(fā)病機制尚不十分明確。炎癥小體是先天免疫的重要組成部分,參與多種病理生理學過程。研究表明核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(NLRP3)炎性小體相關(guān)的炎性反應在AIH的發(fā)病機制中起重要作用,其主要介導促炎因子的釋放和細胞焦亡,進而參與AIH的病理生理過程。因此,可以通過抑制NLRP3炎性小體的激活來延緩AIH發(fā)生發(fā)展,從而為AIH的防治提供新思路。
關(guān)鍵詞:肝炎,自身免疫性;NLR家族,熱蛋白結(jié)構(gòu)域包含蛋白3;治療學
基金項目:甘肅省科技計劃項目任務書(22YF7FA105);甘肅省衛(wèi)生健康行業(yè)科研計劃項目合同書(GSWSKY2021-054);甘肅省非感染性肝病臨床醫(yī)學研究中心(21JR7RA017);聯(lián)勤保障部隊第九四〇醫(yī)院基金臨床醫(yī)學肝病診治中心(2021yxky079)
Research advances in the mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in autoimmune hepatitis
WANG Lifei1,2,LUO Longlong1,2,XING Guojing2,3,LU Lixia2,LI Bin2,ZHANG Jiucong2,YU Xiaohui2.(1.The First Clinical Medical College of Gansu University of Chinese Medicine,Lanzhou 730000,China;2.Department of Gastroenterology,The 940 Hospital of Joint Logistic Support Force of PLA,Lanzhou 730050,China;3.Department of Gastroenterology,General Hospital of Ningxia Medical University,Yinchuan 750001,China)
Corresponding authors:ZHANG Jiucong,zhangjiucong@163.com(ORCID:0000-0003-4006-3033);YU Xiaohui,yuxiaohui528@126.com(ORCID:0000-0002-8633-3281)
Abstract:Autoimmune hepatitis(AIH)is chronic hepatitis caused by the attack of live cells by the immune system,and at present,the pathogenesis of AIH remains unclear.Inflammasomes are important components of innate immunity and are involved in a variety of pathophysiological processes.Studies have shown that inflammatory response associated with nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)plays an important role in the pathogenesis of AIH,which mainly mediates the release of proinflammatory factors and pyroptosis,thereby participating in the pathophysiological process of AIH.Therefore,the development and progression of AIH can be delayed by inhibiting the activation of NLRP3 inflammasomes,which provides new ideas for the prevention and treatment of AIH.
Key words:Hepatitis,Autoimmune;NLR Family,Pyrin Domain-Containing 3 Protein;Therapeutics
Research funding:Gansu Province Science and Technology Plan Project Assignment(22YF7FA105);Gansu Province Health Industry Scientific Research Plan Project Contract(GSWSKY2021-054);Gansu Clinical Medical Research Center for Non-infectious Liver Diseases(21JR7RA017);Liver Disease Diagnosis and Treatment Center,940th Hospital Foundation,Joint Logistics Support Force(2021yxky079)
自身免疫性肝炎(AIH)是一種慢性肝臟炎癥性疾病,以肝細胞損傷為主要特點,可發(fā)展為肝硬化和肝衰竭[1]。AIH在女性中更常見,其發(fā)病率和患病率呈上升趨勢[2]。大部分AIH患者隱匿起病,無明顯癥狀或僅出現(xiàn)乏力、體質(zhì)量減輕、惡心、瘙癢等非特異性癥狀。典型的生化特征是血清膽紅素、轉(zhuǎn)氨酶、γ-球蛋白和免疫球蛋白G水平升高,以及血清抗核抗體和平滑肌抗體陽性[3-5]。目前AIH的一線治療是糖皮質(zhì)激素加硫唑嘌呤方案[6],其目的是改善患者癥狀及控制炎癥,達到生化緩解,此外,霉酚酸酯、他克莫司和環(huán)孢素可作為AIH的二線治療藥物,但停藥后患者易復發(fā)[3]。因此,深入研究其發(fā)病機制意義重大。
核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎癥小體是固有免疫反應的重要組成,參與調(diào)控多種自身免疫性疾病[7]。NLRP3炎癥小體被認為可能參與AIH的發(fā)病過程,因此,本文現(xiàn)將國內(nèi)外關(guān)于NLRP3炎癥小體與AIH的研究進展作一綜述。
1 NLRP3炎癥小體概述
1.1 NLRP3炎癥小體的結(jié)構(gòu)NOD樣受體(NOD-like receptors,NLR)是一種典型的模式識別受體,其在病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMP)和損傷相關(guān)分子模式(damage-associated molecular patterns,DAMP)的識別中發(fā)揮著重要作用[8]。作為NLR家族最具特征性的炎癥小體,NLRP3炎癥小體的研究最為廣泛。NLRP3炎性小體是由核心蛋白NLRP3、凋亡相關(guān)斑點樣蛋白(apoptosis-associated spot-like proteins,ASC)和半胱氨酸天冬氨酸蛋白酶1(cysteine aspartase-1,caspase-1)組成的大型蛋白復合物[9]。NLRP由氨基端熱蛋白結(jié)構(gòu)域(pyrin domain,PYD)、中心部分的核苷酸寡聚化結(jié)構(gòu)域(nucleoside triphosphatase domain,NACHT)和羧基末端的富含亮氨酸重復結(jié)構(gòu)域組成。ASC的氨基端包括PYD,羧基端包括半胱天冬酶募集結(jié)構(gòu)域(caspase activation and recruitment domain,CARD),它們相互作用激活caspase-1[10-11]。
所有的亞結(jié)構(gòu)在NLRP3炎癥小體組裝中執(zhí)行特定的功能。在上游信號的激活下,NLRP3的NACHT結(jié)構(gòu)域相互作用,誘導NLRP3寡聚化,然后,同型PYD-PYD相互作用促進ASC招募和成核螺旋ASC絲的形成。ASC通過同型CARD-CARD相互作用招募和激活caspase-1,最后,成簇的caspase-1裂解到由CARD和P20組成的P33復合體上,形成一種具有蛋白水解活化作用的結(jié)構(gòu)[12]。
1.2 NLRP3炎癥小體的激活過程NLRP3炎癥小體的激活是宿主抵御病原體入侵的重要機制,NLRP3炎癥小體的過度激活會導致炎癥,促進疾病的發(fā)展,并損害組織和器官功能(圖1)。NLRP3炎癥小體的經(jīng)典激活途徑涉及啟動和激活兩個關(guān)鍵步驟。在啟動階段,特異性模式識別受體,如TLR和細胞因子受體識別PAMP和細胞因子,激活NF-κB信號通路,上調(diào)NLRP3、pro-IL-1β和pro-IL-18。在激活階段,NLRP3通過NACHT結(jié)構(gòu)域聚合,然后招募ASC,進而招募和激活前caspase-1[13-14],這三種蛋白組裝成一個多聚體蛋白,稱為NLRP3炎癥小體?;罨腸aspase-1將pro-IL-1β和pro-IL-18切割成具有生物活性的形式,從而誘導炎癥[15]?;罨腸aspase-1也能切割消皮素D,從而觸發(fā)一種特定形式的細胞死亡,即焦亡[16]。
NLRP3炎癥小體的激活是由多種上游信號觸發(fā)的,包括K+外排、Cl?外排、Ca2+內(nèi)流、溶酶體損傷、線粒體功能障礙和ROS生成[17]。P2X7R是由細胞外ATP調(diào)節(jié)的配體門控離子通道,其也可激活NLRP3炎癥小體[18]。此外,NEK7是一種與有絲分裂相關(guān)的絲-蘇氨酸激酶,NEK7特異性與NLRP3相互作用,形成NEK7-NLRP3復合體,進而誘導ASC斑點信息、caspase-1激活,并最終導致NLRP3炎性小體激活[19]。NLRP3炎癥小體激活后釋放促炎細胞因子IL-1β和IL-18。因此,NLRP3/IL-1軸對炎癥反應和免疫系統(tǒng)功能至關(guān)重要。
2 NLRP3炎癥小體在AIH發(fā)病過程中的作用
最近研究[20]發(fā)現(xiàn),炎癥小體介導的細胞焦亡和大量細胞因子的產(chǎn)生影響AIH的炎癥反應和肝損傷的炎癥程度,這是AIH進展的關(guān)鍵因素之一(圖2)。研究[21]表明調(diào)節(jié)性T淋巴細胞(Treg)、自然殺傷性T淋巴細胞(NKT)和細胞毒性T淋巴細胞(CTL)在AIH發(fā)病機制中起重要作用。Th1細胞分泌IL-2和IFN-γ刺激CTL,激活巨噬細胞釋放IL-1β、IL-18和TNF-α,從而導致T淋巴細胞的進一步激活和肝損傷。其次,由細胞因子介導的NKT的激活也可以導致AIH的發(fā)生[22],TNF家族超受體OX40可激活NKT中的caspase-1剪切消皮素D,誘發(fā)細胞焦亡,并釋放IL-1β產(chǎn)生肝臟炎性損傷[23],AIH小鼠模型中的NKT可以表達共刺激OX40和高水平的caspase-1[24],caspase-1的激活導致IL-1β介導的細胞焦亡的成熟和分泌,OX40/OX40L的激活又能促進CD4+T淋巴細胞的增殖、分化,抑制Treg的活性,Treg的活性降低可以導致炎性細胞因子和IFN-γ大量分泌,進而加重肝臟炎性細胞的浸潤,誘導AIH的發(fā)生[23,25]。
ConA誘導的肝炎可導致T淋巴細胞的激活,產(chǎn)生大量的促炎細胞因子,并損傷或殺傷肝細胞,在一定程度上模擬人AIH[26]。研究[27]發(fā)現(xiàn),在ConA誘導的AIH模型小鼠的肝臟中NLRP3、caspase-1、IL-1β均高表達,為了進一步探索NLRP3炎癥小體在AIH中的作用,研究人員將NLRP3敲除后發(fā)現(xiàn),與野生型小鼠相比,NLRP3敲除小鼠肝細胞損傷明顯減輕,且血清AST和ALT水平降低,肝細胞中caspase-1和IL-1β表達下調(diào)。Liu等[28]最新研究表明,嘌呤能使P2X4受體在ConA誘導的AIH模型中高表達,其通過增強促炎細胞因子IL-1β、TNF-α和IL-6和NLRP3炎癥小體的表達,進而促進AIH的發(fā)生發(fā)展。
三氯乙烯(trichloroethylene,TCE)介導的AIH炎癥類似于ConA介導的肝炎,兩者都與T淋巴細胞有關(guān)。TCE刺激導致氧化應激誘導的炎癥小體激活,導致肝臟免疫反應失調(diào),誘導自身免疫性疾病的形成[29]。研究[30]表明,TCE可導致ROS生成增加,引發(fā)炎性小體激活和疾病。這些研究強烈提示NLRP3炎癥小體激活參與了AIH的炎癥反應,并在其發(fā)病機制中發(fā)揮了重要作用。
3靶向NLRP3炎性小體的潛在治療作用
越來越多的證據(jù)表明,NLRP3炎性小體參與了AIH的發(fā)展。抑制NLRP3炎癥小體的激活可能減輕AIH的炎癥反應,具體機制仍在不斷探索中(圖2),明確NLRP3炎性小體在不同條件下的激活及致病機制,有助于尋找AIH可能的治療靶點。
3.1 IL-1受體拮抗劑在ConA誘導的肝炎中,血液中NLRP3炎癥小體的表達和活化的caspase-1、IL-1β和乳酸脫氫酶的水平升高,且焦亡是ConA誘導的小鼠肝細胞死亡的主要方式[31]。此外,NLRP3炎癥小體及其下游產(chǎn)物在肝細胞中高表達[32]。研究[33]表明重組人IL-1受體拮抗劑(recombinant human IL-1 receptor antagonists,RhIL-1RA)可以抑制NLRP3炎癥小體的激活和IL-1β的產(chǎn)生。mtROS可促進微生物相關(guān)分子模式(microbe associated molecular patterns,MAMP)和DAMP激活NLRP3炎癥小體,RhIL-1RA通過降低ConA誘導小鼠的ROS水平和肝細胞中NLRP3、活性caspase-1和IL-1β的產(chǎn)生可以顯著抑制細胞焦亡[34]。這些結(jié)果表明,RhIL-1RA可以降低ROS的產(chǎn)生、減少NLRP3炎癥小體生成和防止細胞焦亡,同時可與IL-1β競爭降低ConA誘導的肝炎嚴重程度。
3.2 miRNA miRNA是單鏈非編碼RNA,長度在19~24個核苷酸,其可調(diào)節(jié)NLRP3炎癥小體的形成[35]。各種miRNA,包括miR-223、miR-22和miR-7,可以控制NLRP3 miRNA的表達[36],特別是miR-223結(jié)合到NLRP3 mRNA的3'-非翻譯區(qū)(3'-UTR),并在結(jié)合點上阻斷蛋白質(zhì)翻譯[37]。研究證實miR-22和miR-7在炎癥期間靶向NLRP3的表達,可抑制炎癥反應的過度激活[38],miR-211-5p可通過靶向調(diào)控免疫細胞及肝細胞TLR4,降低NLRP3的表達,進而減輕肝損傷[39]。miR-223在骨髓間充質(zhì)干細胞(bone marrow mesenchymal stem cells,BMSC)中高表達。在小鼠模型中,BMSC來源的外泌體可有效逆轉(zhuǎn)AIH和肝細胞損傷,并下調(diào)NLRP3的表達和降低caspase-1的水平[40]。表明BMSC的外泌體miR-223可抑制NLRP3炎癥小體的激活,進而改善AIH。
3.3富馬酸二甲酯實驗研究[41-42]表明,NLRP3炎癥小體在持續(xù)炎癥引起的纖維化和肝損傷中發(fā)揮作用,抑制炎癥小體和細胞焦亡可能是預防炎癥性肝損傷的有效治療途徑。富馬酸二甲酯是一種潛在的線粒體保護劑,其可降低血清炎癥細胞因子水平,減輕肝損傷[43]。近期研究[44]表明,富馬酸二甲酯除了可減少線粒體損傷和mtROS生成外,還可調(diào)節(jié)PKA信號轉(zhuǎn)導,抑制NLRP3炎癥小體組裝,從而減輕ConA誘導的AIH肝損傷,其機制可能是通過富馬酸二甲酯促進PKA信號轉(zhuǎn)導,增加PKA特異性位點上Ser/Thr殘基上NLRP3的磷酸化,從而降低NLRP3炎癥小體的激活。
3.4 TLR4/NF-κB/NLRP3信號通路TLR4/NF-κB通路是機體內(nèi)炎癥信號轉(zhuǎn)導的經(jīng)典通路。TLR4可通過促進其下游的NF-κB磷酸化激活上調(diào)NLRP3的表達[45],介導自身免疫性疾病的發(fā)生和發(fā)展。大量研究發(fā)現(xiàn),許多中草藥提取物對TLR4/NF-κB/NLRP3介導的AIH有很好的調(diào)控作用,可應用于AIH的治療。
刺芒柄花素是一種具有多種生物功能的天然草藥提取物,研究[46]表明,在ConA誘導的AIH中,其能顯著降低小鼠血清和肝組織中促炎細胞因子水平,可能機制為抑制NF-κB信號通路和NLRP3炎癥小體的激活。
葫蘆素E是高氧合的四環(huán)三萜類化合物,其具有強大的抗炎、免疫調(diào)節(jié)和抗腫瘤特性[47]。研究[48]發(fā)現(xiàn),葫蘆素E對ConA誘導的AIH有明顯的肝保護作用,顯著減弱了血清肝毒性指標和肝臟病變嚴重程度,其機制是抑制氧化應激、上調(diào)沉默調(diào)節(jié)蛋白1、核轉(zhuǎn)錄因子紅系2相關(guān)因子2和血紅素加氧酶1,進而阻斷NF-κB/NLRP3信號通路,抑制NLRP3炎癥小體介導的細胞焦亡。
合生素作為益生菌與益生元結(jié)合使用的生物制劑,其可調(diào)節(jié)腸道菌群和免疫應答,維持腸道屏障的完整性,并且可阻斷脂多糖易位,抑制TLR4/NF-κB通路的激活,進而減少炎癥因子的產(chǎn)生,緩解AIH[49]。Kang等[50]研究表明合生素不僅通過調(diào)節(jié)腸-肝軸抑制細菌脂多糖進入肝臟,恢復腸道菌群和腸道屏障,而且可抑制肝臟TLR4/NF-κB/NLRP3信號通路減輕AIH小鼠的肝損傷和炎癥,進而改善肝功能。
4小結(jié)
綜上所述,隨著對NLRP3炎癥小體的深入研究,可以明確NLRP3炎癥小體活化在AIH發(fā)生發(fā)展中具有重要病理機制。抑制炎癥小體NLRP3的活性,可抑制AIH炎癥反應,進而緩解AIH,但現(xiàn)階段某些NLRP3炎癥小體激活的抑制劑發(fā)揮作用的機制和相關(guān)靶基因的研究仍停留在基礎實驗階段,臨床試驗是否有效尚未得到驗證,因此,了解NLRP3炎性小體在不同條件下的激活及致病機制,有助于為AIH尋找潛在的治療靶點。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:王麗菲、羅龍龍負責檢索文獻,撰寫論文;邢國靜、盧利霞、李斌參與修改論文;于曉輝、張久聰負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]FISCHER HP,GOLTZ D.Autoimmune liver diseases[J].Pathologe,2020,41(5):444-456.DOI:10.1007/s00292-020-00807-7.
[2]SHIFFMAN ML.Autoimmune hepatitis:Epidemiology,subtypes,and presentation[J].Clin Liver Dis,2024,28(1):1-14.DOI:10.1016/j.cld.2023.06.002.
[3]MURATORI L,LOHSE AW,LENZI M.Diagnosis and management of autoimmune hepatitis[J].BMJ,2023,380:e070201.DOI:10.1136/bmj-2022-070201.
[4]KOMORI A.Recent updates on the management of autoimmune hepatitis[J].Clin Mol Hepatol,2021,27(1):58-69.DOI:10.3350/cmh.2020.0189.
[5]PAPE S,SNIJDERS RJALM,GEVERS TJG,et al.Systematic review of response criteria and endpoints in autoimmune hepatitis by the In?ternational Autoimmune Hepatitis Group[J].J Hepatol,2022,76(4):841-849.DOI:10.1016/j.jhep.2021.12.041.
[6]LU Y,SUN FF,ZENG Z,et al.Research advances on autoimmune hepatitis[J/CD].Chin J Liver Dis(Electronic Version),2022,14(4):1-9.DOI:10.3969/j.issn.1674-7380.2022.04.001.
路遙,孫芳芳,曾湛,等.自身免疫性肝炎研究進展[J/CD].中國肝臟病雜志(電子版),2022,14(4):1-9.DOI:10.3969/j.issn.1674-7380.2022.04.001.
[7]LI Z,GUO JL,BI LQ.Role of the NLRP3 inflammasome in autoim?mune diseases[J].Biomed Pharmacother,2020,130:110542.DOI:10.1016/j.biopha.2020.110542.
[8]RUMPRET M,von RICHTHOFEN HJ,PEPERZAK V,et al.Inhibitory pat?tern recognition receptors[J].J Exp Med,2022,219(1):e20211463.DOI:10.1084/jem.20211463.
[9]LEU SY,TSANG YL,HO LC,et al.NLRP3 inflammasome activation,metabolic danger signals,and protein binding partners[J].J Endo?crinol,2023,257(2):e220184.DOI:10.1530/JOE-22-0184.
[10]SCHMIDT FI,LU A,CHEN JW,et al.A single domain antibody frag?ment that recognizes the adaptor ASC defines the role of ASC do?mains in inflammasome assembly[J].J Exp Med,2016,213(5):771-790.DOI:10.1084/jem.20151790.
[11]NAMBAYAN RJT,SANDIN SI,QUINT DA,et al.The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains,PYD and CARD[J].J Biol Chem,2019,294(2):439-452.DOI:10.1074/jbc.RA118.004407.
[12]MOLLA MD,AYELIGN B,DESSIE G,et al.Caspase-1 as a regula?tory molecule of lipid metabolism[J].Lipids Health Dis,2020,19(1):34.DOI:10.1186/s12944-020-01220-y.
[13]FU JN,WU H.Structural mechanisms of NLRP3 inflammasome as?sembly and activation[J].Annu Rev Immunol,2023,41:301-316.DOI:10.1146/annurev-immunol-081022-021207.
[14]BLEVINS HM,XU YM,BIBY S,et al.The NLRP3 inflammasome path?way:A review of mechanisms and inhibitors for the treatment of in?flammatory diseases[J].Front Aging Neurosci,2022,14:879021.DOI:10.3389/fnagi.2022.879021.
[15]BOUCHER D,MONTELEONE M,COLL RC,et al.Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity[J].J Exp Med,2018,215(3):827-840.DOI:10.1084/jem.20172222.
[16]DUBYAK GR,MILLER BA,PEARLMAN E.Pyroptosis in neutrophils:Multimodal integration of inflammasome and regulated cell death signaling pathways[J].Immunol Rev,2023,314(1):229-249.DOI:10.1111/imr.13186.
[17]SWANSON KV,DENG M,TING JPY.The NLRP3 inflammasome:Mo?lecular activation and regulation to therapeutics[J].Nat Rev Immu?nol,2019,19(8):477-489.DOI:10.1038/s41577-019-0165-0.
[18]PELEGRIN P.P2X7 receptor and the NLRP3 inflammasome:Partners in crime[J].Biochem Pharmacol,2021,187:114385.DOI:10.1016/j.bcp.2020.114385.
[19]SHARIF H,WANG L,WANG WL,et al.Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J].Nature,2019,570(7761):338-343.DOI:10.1038/s41586-019-1295-z.
[20]BERINGER A,MIOSSEC P.IL-17 and IL-17-producing cells and liver diseases,with focus on autoimmune liver diseases[J].Autoimmun Rev,2018,17(12):1176-1185.DOI:10.1016/j.autrev.2018.06.008.
[21]BUTCHER MJ,ZHU JF.Recent advances in understanding the Th1/Th2 effector choice[J].Fac Rev,2021,10:30.DOI:10.12703/r/10-30.
[22]WU YN,ZHANG R,SONG XC,et al.C6orf120 gene knockout in rats mitigates concanavalin A-induced autoimmune hepatitis via regulat?ing NKT cells[J].Cell Immunol,2022,371:104467.DOI:10.1016/j.cellimm.2021.104467.
[23]LAN PX,F(xiàn)AN YH,ZHAO Y,et al.TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury[J].J Clin In?vest,2017,127(6):2222-2234.DOI:10.1172/JCI91075.
[24]SMYK DS,MAVROPOULOS A,MIELI-VERGANI G,et al.The role of invariant NKT in autoimmune liver disease:Can vitamin D act as an immunomodulator?[J].Can J Gastroenterol Hepatol,2018,2018:8197937.DOI:10.1155/2018/8197937.
[25]SIRBE C,SIMU GL,SZABO I,et al.Pathogenesis of autoimmune hepatitis-cellular and molecular mechanisms[J].Int J Mol Sci,2021,22(24):13578.DOI:10.3390/ijms222413578.
[26]CHRISTEN U,HINTERMANN E.Animal models for autoimmune hepati?tis:Are current models good enough?[J].Front Immunol,2022,13:898615.DOI:10.3389/fimmu.2022.898615.
[27]LUAN JY,ZHANG XY,WANG SF,et al.NOD-like receptor protein 3 inflammasome-dependent IL-1βaccelerated ConA-induced hepatitis[J].Front Immunol,2018,9:758.DOI:10.3389/fimmu.2018.00758.
[28]LIU ZJ,SUN MY,LIU WH,et al.Deficiency of purinergic P2X4 re?ceptor alleviates experimental autoimmune hepatitis in mice[J].Bio?chem Pharmacol,2024,221:116033.DOI:10.1016/j.bcp.2024.116033.
[29]WANG H,WANG GD,LIANG YJ,et al.Redox regulation of he?patic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity[J].Free Radic Biol Med,2019,143:223-231.DOI:10.1016/j.freeradbiomed.2019.08.014.
[30]WANG H,WANG GD,ANSARI GAS,et al.Trichloroethene metabolite dichloroacetyl chloride induces apoptosis and compromises phago?cytosis in Kupffer cells:Activation of inflammasome and MAPKs[J].PLoS One,2018,13(12):e0210200.DOI:10.1371/journal.pone.0210200.
[31]WANG KC,WU WR,JIANG XW,et al.Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoim?mune hepatitis[J].Microbiol Spectr,2022,10(5):e0171722.DOI:10.1128/spectrum.01717-22.
[32]GUAN YL,GU YY,LI H,et al.NLRP3 inflammasome activation mechanism and its role in autoimmune liver disease[J].Acta Biochim Biophys Sin,2022,54(11):1577-1586.DOI:10.3724/abbs.2022137.
[33]HUANG Y,XU W,ZHOU RB.NLRP3 inflammasome activation and cell death[J].Cell Mol Immunol,2021,18(9):2114-2127.DOI:10.1038/s41423-021-00740-6.
[34]XIE HB,PENG JL,ZHANG XS,et al.Effects of mitochondrial reac?tive oxygen species-induced NLRP3 inflammasome activation on tri?chloroethylene-mediated kidney immune injury[J].Ecotoxicol Envi?ron Saf,2022,244:114067.DOI:10.1016/j.ecoenv.2022.114067.
[35]LU FB,CHEN DZ,CHEN L,et al.Attenuation of experimental autoim?mune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying microRNA-223-3p[J].Mol Cells,2019,42(12):906-918.DOI:10.14348/molcells.2019.2283.
[36]HUANG C,XING X,XIANG XY,et al.MicroRNAs in autoimmune liver diseases:From diagnosis to potential therapeutic targets[J].Biomed Pharmacother,2020,130:110558.DOI:10.1016/j.biopha.2020.110558.
[37]YU YN,DONG H,ZHANG Y,et al.MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome[J].Arch Virol,2022,167(9):1841-1854.DOI:10.1007/s00705-022-05499-3.
[38]LA ROSA F,MANCUSO R,AGOSTINI S,et al.Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease[J].Pharmaceuticals,2021,14(11):1187.DOI:10.3390/ph14111187.
[39]LIU D,CHENG HL,LUO JF.Exogenous hydrogen sulfide miR-211-5p targeting TLR4 pathway mitigates liver damage in autoimmune hepatitis mice[J].Immunol J,2022,38(10):838-845.DOI:10.13431/j.cnki.immunol.j.20220117.
劉丹,程海林,羅劍鋒.MiR-211-5p靶向TLR4通路減輕自身免疫性肝炎小鼠肝損害[J].免疫學雜志,2022,38(10):838-845.DOI:10.13431/j.cnki.immunol.j.20220117.
[40]CHEN L,LU FB,CHEN DZ,et al.BMSCs-derived miR-223-contain?ing exosomes contribute to liver protection in experimental autoim?mune hepatitis[J].Mol Immunol,2018,93:38-46.DOI:10.1016/j.molimm.2017.11.008.
[41]de CARVALHO RIBEIRO M,SZABO G.Role of the inflammasome in liver disease[J].Annu Rev Pathol,2022,17:345-365.DOI:10.1146/annurev-pathmechdis-032521-102529.
[42]COLL RC,SCHRODER K,PELEGRíN P.NLRP3 and pyroptosis blockers for treating inflammatory diseases[J].Trends Pharmacol Sci,2022,43(8):653-668.DOI:10.1016/j.tips.2022.04.003.
[43]SHI FL,NI ST,LUO SQ,et al.Dimethyl fumarate ameliorates autoim?mune hepatitis in mice by blocking NLRP3 inflammasome activation[J].Int Immunopharmacol,2022,108:108867.DOI:10.1016/j.in?timp.2022.108867.
[44]SANGINETO M,GRABHERR F,ADOLPH TE,et al.Dimethyl fuma?rate ameliorates hepatic inflammation in alcohol related liver disease[J].Liver Int,2020,40(7):1610-1619.DOI:10.1111/liv.14483.
[45]RAMOS-TOVAR E,MURIEL P.NLRP3 inflammasome in hepatic dis?eases:A pharmacological target[J].Biochem Pharmacol,2023,217:115861.DOI:10.1016/j.bcp.2023.115861.
[46]LIU GW,ZHAO WX,BAI JM,et al.Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties[J].Biochem Cell Biol,2021,99(2):231-240.DOI:10.1139/bcb-2020-0197.
[47]SILVESTRE GFG,DE LUCENA RP,DA SILVA ALVES H.Cucurbitacins and the immune system:Update in research on anti-inflammatory,anti?oxidant,and immunomodulatory mechanisms[J].Curr Med Chem,2022,29(21):3774-3789.DOI:10.2174/0929867329666220107153253.
[48]MOHAMED GA,IBRAHIM SRM,EL-AGAMY DS,et al.Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through en?hancing SIRT1/Nrf2/HO-1 and inhibiting NF-κB/NLRP3 signaling pathways[J].J Ethnopharmacol,2022,292:115223.DOI:10.1016/j.jep.2022.115223.
[49]LIU QQ,YANG H,KANG X,et al.A synbiotic ameliorates con A-in?duced autoimmune hepatitis in mice through modulation of gut mi?crobiota and immune imbalance[J].Mol Nutr Food Res,2023,67(7):e2200428.DOI:10.1002/mnfr.202200428.
[50]KANG YB,KUANG XY,YAN H,et al.A novel synbiotic alleviates au?toimmune hepatitis by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB/NLRP3 signaling pathway[J].mSystems,2023,8(2):e0112722.DOI:10.1128/msystems.01127-22.
收稿日期:2024-01-11;錄用日期:2024-03-11
本文編輯:王亞南
引 證 本 文 : WANG LF, LUO LL, XING GJ, et al. Research advances in the mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in autoimmune hepatitis[J]. J Clin Hepatol, 2024, 40(10): 2092-2097.
王麗菲, 羅龍龍, 邢國靜, 等. NLRP3炎癥小體在自身免疫性肝炎 中的作用機制[J]. 臨床肝膽病雜志, 2024, 40(10): 2092-2097.