亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鄰域法在天氣預(yù)報(bào)中的應(yīng)用研究進(jìn)展

        2024-12-31 00:00:00潘留杰代刊張宏芳祁春娟梁綿劉嘉慧敏戴昌明李培榮沈嬌嬌
        大氣科學(xué)學(xué)報(bào) 2024年6期

        摘要" 鄰域法在天氣預(yù)報(bào)中有著廣泛的應(yīng)用,其關(guān)鍵應(yīng)用領(lǐng)域包括2個(gè)方面,一是基于鄰域法的高分辨率數(shù)值模式檢驗(yàn),二是鄰域概率或者集合預(yù)報(bào)的鄰域概率。首先,回顧了鄰域法“一對(duì)多”和“多對(duì)多”的兩種鄰域法檢驗(yàn)框架,歸納了鄰域法數(shù)據(jù)處理方法、常用評(píng)分指數(shù)的物理意義。其次,總結(jié)了網(wǎng)格尺度上的鄰域概率和大于網(wǎng)格尺度鄰域概率的基本思想和統(tǒng)計(jì)意義,重點(diǎn)闡述了與集合預(yù)報(bào)相結(jié)合產(chǎn)生的鄰域集合概率(neighborhood ensemble probability,NEP)預(yù)報(bào)、鄰域最大集合概率(neighborhood maximum ensemble probability,NMEP)預(yù)報(bào)的算法流程和內(nèi)在含義。第三,進(jìn)一步結(jié)合典型應(yīng)用個(gè)例,分析了鄰域法檢驗(yàn)和鄰域集合概率的優(yōu)缺點(diǎn)和適用性??傮w來(lái)說(shuō),鄰域法檢驗(yàn)可以在不同的時(shí)空尺度上比較預(yù)報(bào)產(chǎn)品的性能,具有獨(dú)特的優(yōu)勢(shì)。雖然NEP和NMEP兩種鄰域概率都可以提高降水的預(yù)報(bào)評(píng)分,但NEP更適合于大尺度、系統(tǒng)性降水預(yù)報(bào),NMEP對(duì)對(duì)流性、極端性降水有更好的應(yīng)用效果。最后,給出了使用鄰域法應(yīng)注意的問(wèn)題以及未來(lái)研究應(yīng)用的發(fā)展方向。

        關(guān)鍵詞鄰域檢驗(yàn);FSS(fractions skill score);鄰域概率;鄰域集合概率

        2023-12-07收稿,2024-01-22接受

        中國(guó)氣象局氣象能力提升聯(lián)合研究專項(xiàng)(24NLTSZ003);陜西省重點(diǎn)研發(fā)計(jì)劃社會(huì)發(fā)展領(lǐng)域項(xiàng)目(2024SF-YBXM-556);中國(guó)氣象局創(chuàng)新發(fā)展專項(xiàng)(CXFZ2022J023);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2021JQ-964)

        引用格式:潘留杰,代刊,張宏芳,等,2024.鄰域法在天氣預(yù)報(bào)中的應(yīng)用研究進(jìn)展[J].大氣科學(xué)學(xué)報(bào),47(6):962-975.

        Pan L J,Dai K,Zhang H F,et al.,2024.Application and research progress of the neighborhood method in weather forecasting[J].Trans Atmos Sci,47(6):962-975.doi:10.13878/j.cnki.dqkxxb.20231207001.(in Chinese).

        在過(guò)去的幾十年中,隨著計(jì)算資源的快速增加和數(shù)值模式的不斷發(fā)展,數(shù)值天氣預(yù)報(bào)(numerical weather prediction,NWP)的水平網(wǎng)格間距越來(lái)越小,模式中的積云參數(shù)化方案逐漸被能夠更加精細(xì)、準(zhǔn)確描述小尺度大氣動(dòng)力框架的對(duì)流可分辨模型(convection allowing model,CAM)所替代。盡管采用CAM的NWP能夠比更粗分辨率的對(duì)流參數(shù)化方案產(chǎn)生更加清晰的對(duì)流結(jié)構(gòu),但傳統(tǒng)檢驗(yàn)方法通?;陬A(yù)報(bào)與觀測(cè)事件點(diǎn)對(duì)點(diǎn)的匹配來(lái)評(píng)價(jià)數(shù)值模式的預(yù)報(bào)表現(xiàn),這種檢驗(yàn)往往導(dǎo)致客觀檢驗(yàn)結(jié)果與預(yù)報(bào)員對(duì)模式的主觀評(píng)判不盡相同(Mass et al.,2002;Weisman et al.,2008;蘇翔和袁慧玲,2020;吳瑞姣等,2020;張小雯等,2020;劉侃等,2023)。

        空間檢驗(yàn)方法是伴隨著高分辨率數(shù)值預(yù)報(bào)的發(fā)展而發(fā)展起來(lái)的(Mittermaier and Roberts,2010;Duc et al.,2013;潘留杰等,2014,2023),發(fā)展空間檢驗(yàn)方法最初的動(dòng)力在于平衡客觀檢驗(yàn)結(jié)論和預(yù)報(bào)員主觀判定之間的差異。鄰域法、尺度分離法、目標(biāo)對(duì)象法和變形場(chǎng)法是最主要的高分辨率數(shù)值模式空間檢驗(yàn)方法。與許多空間檢驗(yàn)方法類似,考慮到模式對(duì)小尺度天氣事件的預(yù)報(bào)能力有限,在網(wǎng)格尺度上非常準(zhǔn)確地預(yù)報(bào)小尺度天氣事件并不現(xiàn)實(shí),鄰域法通過(guò)放寬預(yù)報(bào)和觀測(cè)事件在網(wǎng)格尺度上的匹配限制來(lái)評(píng)價(jià)模式的預(yù)報(bào)表現(xiàn)(潘留杰等,2015,2016a,2017a;Kochasic et al.,2017;Johnson et al.,2020;栗晗等,2022)。這種將單點(diǎn)預(yù)報(bào)放到一個(gè)較大的背景空間中進(jìn)行檢驗(yàn)的方法,不僅可以加深對(duì)數(shù)值模式預(yù)報(bào)性能的理解,而且可以為預(yù)報(bào)員提供更加全面的視角。

        考慮到鄰近格點(diǎn)要素的預(yù)報(bào)信息能夠相互補(bǔ)償,從單一確定性預(yù)報(bào)可以生成概率預(yù)報(bào),Theis et al.(2005)給出了從確定預(yù)報(bào)生成概率預(yù)報(bào)的技術(shù)指南,并被廣泛應(yīng)用(Ben Bouallègue et al.,2013;Schwartz et al.,2015)。由于其方法直觀、物理概念清晰、易于理解和實(shí)現(xiàn),鄰域法概率預(yù)報(bào)很快擴(kuò)展到集合預(yù)報(bào)領(lǐng)域(Schwartz et al.,2010)。基于集合預(yù)報(bào)的成員預(yù)報(bào)導(dǎo)出每個(gè)網(wǎng)格點(diǎn)的概率預(yù)報(bào),在此基礎(chǔ)上進(jìn)行平滑,平滑過(guò)程可以看作是在概率計(jì)算中包含所有成員的空間鄰域預(yù)報(bào)上來(lái)擴(kuò)大集合樣本量的計(jì)算方法。在集合概率預(yù)報(bào)基礎(chǔ)上按照一定的空間尺度進(jìn)行平滑的方法稱之為網(wǎng)格尺度或模糊邏輯鄰域概率(fuzzy logic neighborhood probability)。Ben Bouallègue and Theis(2014)的研究表明,平滑對(duì)預(yù)報(bào)技巧具有積極的影響,特別是在局地小尺度天氣事件的可靠性方面表現(xiàn)較好,但在分辨率方面有一定的損失。

        天氣預(yù)報(bào)的準(zhǔn)確率通常與空間尺度、時(shí)間窗等有關(guān),區(qū)域范圍(Ebert and McBride,2000;Ebert,2008)、時(shí)間間隔(Gilleland et al.,2009,2010;張宏芳等,2014)、點(diǎn)與面之間的關(guān)系(Golding,2000;Germann and Zawadzki,2004;Hagen-Zanker et al.,2005;Marsigli et al.,2008)等都會(huì)對(duì)預(yù)報(bào)結(jié)論產(chǎn)生影響。鄰域集合預(yù)報(bào)概率隨定義的空間尺度不同有明顯的差異。平滑能夠增加預(yù)報(bào)的可靠性,但不可避免地降低空間分辨率,當(dāng)預(yù)報(bào)概率為接近零的低概率或者100%的高概率時(shí),這種做法通常是正確的(Murphy et al.,1980;Nachamkin and Schmidt,2015)。然而,在多數(shù)情況下,當(dāng)概率達(dá)到一定的閾值時(shí),就需要發(fā)出預(yù)警或者給出確定性的預(yù)報(bào)(Johnson and Wang,2012)。因此產(chǎn)生了另一種大于網(wǎng)格尺度的鄰域概率——“升尺度”(upscaling)技術(shù)(Clark et al.,2010)。升尺度通過(guò)改變預(yù)報(bào)與輸出要素的空間尺度來(lái)提高預(yù)報(bào)能力??臻g尺度內(nèi)通過(guò)集合預(yù)報(bào)成員構(gòu)建鄰域概率預(yù)報(bào),鄰域概率是該區(qū)域內(nèi)任意點(diǎn)鄰域尺度上事件的發(fā)生概率,同時(shí)能夠在區(qū)域內(nèi)保留細(xì)網(wǎng)格數(shù)值模式預(yù)報(bào)的優(yōu)點(diǎn),具有獨(dú)特的優(yōu)勢(shì)(Clark et al.,2011)。

        隨著NWP的時(shí)空分辨率越來(lái)越高,適用于高分辨率數(shù)值模式檢驗(yàn)的鄰域法將會(huì)得到更多更廣泛的應(yīng)用。本文從鄰域法的基本概念出發(fā),系統(tǒng)地回顧和總結(jié)了鄰域法檢驗(yàn)、鄰域概率、集合預(yù)報(bào)的鄰域概率的研究進(jìn)展和一些典型的應(yīng)用,詳細(xì)討論了鄰域法檢驗(yàn)和鄰域概率應(yīng)用中的注意事項(xiàng),以期為更好地在天氣預(yù)報(bào)中應(yīng)用鄰域法提供參考。

        1" 鄰域法簡(jiǎn)介

        1.1" 鄰域檢驗(yàn)框架和確定性預(yù)報(bào)的鄰域概率

        鄰域法檢驗(yàn)是模糊檢驗(yàn)的一種,它假定預(yù)報(bào)的空間位置和觀測(cè)不完全匹配,但空間位置誤差在可接受的范圍內(nèi),預(yù)報(bào)仍有意義,即定義這種匹配情況下的檢驗(yàn)為鄰域法檢驗(yàn)。允許位移偏離的程度或大小即為鄰域半徑,鄰域半徑內(nèi)部的區(qū)域即為鄰域窗。圖1給出了傳統(tǒng)和鄰域檢驗(yàn)的概念示意圖,可以是“一對(duì)多”的一個(gè)站點(diǎn)觀測(cè)匹配周?chē)鄠€(gè)預(yù)報(bào)格點(diǎn),也可以是一個(gè)格點(diǎn)預(yù)報(bào)匹配鄰域窗內(nèi)的多個(gè)站點(diǎn),其基本思想是以單點(diǎn)觀測(cè)或預(yù)報(bào)為中心搜尋鄰域內(nèi)所有格點(diǎn)的預(yù)報(bào)或觀測(cè)(Barthold et al.,2015)。鄰域窗可以是圓形(Roberts and Lean,2008)。鄰域半徑的大小取決于網(wǎng)格間距、時(shí)間分辨率和氣候背景,因此鄰域大小不是一個(gè)確定的值,而是變化的,在鄰域檢驗(yàn)中,通常以格點(diǎn)為單位采用“窮舉法”計(jì)算預(yù)報(bào)評(píng)分,進(jìn)而獲得最優(yōu)鄰域半徑,得到的檢驗(yàn)結(jié)果通常是鄰域半徑的函數(shù),其物理意義表示預(yù)報(bào)相對(duì)于觀測(cè)的空間位置的偏移程度。

        觀測(cè)和預(yù)報(bào)也可同時(shí)在給定的鄰域窗內(nèi)進(jìn)行匹配,稱之為“多對(duì)多”鄰域檢驗(yàn)。這種方法的優(yōu)點(diǎn)在于去除了觀測(cè)的不確定性?!岸鄬?duì)多”鄰域檢驗(yàn)最常見(jiàn)的是NM(neighborhood maximum)匹配方案,它根據(jù)鄰域窗內(nèi)的最大值是否滿足事件標(biāo)準(zhǔn),定義該格點(diǎn)處的事件發(fā)生率(Ben Bouallègue and Theis,2014;Barthold et al.,2015)。如果預(yù)報(bào)和觀測(cè)到的事件都發(fā)生在半徑為r的鄰域窗內(nèi)的任何地方,則記為命中;如果預(yù)報(bào)事件發(fā)生在r鄰域窗內(nèi),但觀測(cè)事件未發(fā)生,則為空?qǐng)?bào);當(dāng)鄰域窗內(nèi)沒(méi)有發(fā)生預(yù)報(bào),但出現(xiàn)了觀測(cè)事件,則為漏報(bào)。

        基于鄰域檢驗(yàn)匹配方案可以從單一確定性預(yù)報(bào)生成鄰域概率預(yù)報(bào)。鄰域概率檢驗(yàn)方法與慣常的概率預(yù)報(bào)檢驗(yàn)方法基本一致。將單一確定性預(yù)報(bào)轉(zhuǎn)換成概率預(yù)報(bào),首先是格點(diǎn)“單點(diǎn)事件標(biāo)記”,即設(shè)定If表示單個(gè)格點(diǎn)的預(yù)報(bào),根據(jù)If是否滿足閾值條件轉(zhuǎn)換成1、0預(yù)報(bào);其次是基于鄰域窗內(nèi)的“單點(diǎn)事件標(biāo)記”,計(jì)算鄰域窗內(nèi)以某個(gè)格點(diǎn)為中心預(yù)報(bào)事件發(fā)生的概率,即為該點(diǎn)的鄰域概率。用〈〉s表示鄰域半徑為s的鄰域窗內(nèi)的所有值,假定觀測(cè)數(shù)據(jù)和預(yù)報(bào)數(shù)據(jù)是均勻網(wǎng)格且格距匹配,對(duì)于確定性預(yù)報(bào)鄰域半徑s內(nèi)以某個(gè)格點(diǎn)為中心的鄰域概率〈Pf〉s則為:

        〈Pf〉s=1n∑If。(1)

        與預(yù)報(bào)類似,假定Io表示單個(gè)格點(diǎn)的觀測(cè)值,則鄰域窗內(nèi)觀測(cè)事件發(fā)生的頻率〈Po〉s為:

        〈Po〉s=1n∑Io。(2)

        圖2給出了一個(gè)暴雨預(yù)報(bào)的鄰域概率轉(zhuǎn)換個(gè)例。假定鄰域半徑設(shè)為1,包括中心格點(diǎn)的鄰域窗內(nèi)的格點(diǎn)數(shù)為9,在降水分布為圖2a的情況下,暴雨預(yù)報(bào)的單點(diǎn)事件標(biāo)記為圖2b,中心點(diǎn)暴雨單點(diǎn)概率為零,但受周邊格點(diǎn)降水的影響,鄰域概率為0.33(圖2c),仍然有可能出現(xiàn)暴雨。圖2c沒(méi)有計(jì)算受邊界影響格點(diǎn)的鄰域概率,當(dāng)受邊界影響時(shí),參與鄰域概率計(jì)算的格點(diǎn)數(shù)可能會(huì)減少。值得注意的是,多大的鄰域窗能夠獲得最好的預(yù)報(bào)表現(xiàn),是鄰域概率計(jì)算的關(guān)鍵因素,對(duì)于一個(gè)給定的研究區(qū)域,基于“窮舉法”計(jì)算不同鄰域半徑的預(yù)報(bào)評(píng)分,當(dāng)增加鄰域半徑,預(yù)報(bào)評(píng)分不再增加或開(kāi)始減小,此時(shí)的鄰域半徑即為最優(yōu)鄰域半徑。

        利用鄰域概率預(yù)報(bào)和觀測(cè)頻率,可檢驗(yàn)概率預(yù)報(bào)的Brier評(píng)分(Murphy,1973;Kharin and Zwiers,2003;潘留杰等,2016b,2017b)或其他概率預(yù)報(bào)評(píng)分。設(shè)定鄰域半徑為s的預(yù)報(bào)〈F〉s和觀測(cè)〈O〉s的誤差表現(xiàn)為〈E〉s。鄰域法檢驗(yàn)的主要框架為:選擇半徑為s(s=1,2,…,S)的鄰域和強(qiáng)度為k(k=1,2,…,K)的閾值,計(jì)算鄰域檢驗(yàn)結(jié)果。這包括2個(gè)步驟:對(duì)于每一個(gè)格點(diǎn),統(tǒng)計(jì)鄰域窗內(nèi)的所有預(yù)報(bào),如果觀測(cè)也是格點(diǎn)的“多對(duì)多”檢驗(yàn),同樣統(tǒng)計(jì)每個(gè)格點(diǎn)周?chē)挠^測(cè);對(duì)于每個(gè)強(qiáng)度閾值,計(jì)算強(qiáng)度——尺度統(tǒng)計(jì)量的確定性或概率的檢驗(yàn)評(píng)分。檢驗(yàn)結(jié)果為隨尺度S和強(qiáng)度K而變化的K×S矩陣。

        1.2" 鄰域法檢驗(yàn)評(píng)分

        所有的列聯(lián)表二分法檢驗(yàn)評(píng)分都可以基于鄰域法進(jìn)行拓展。主要的對(duì)比指標(biāo)有鄰域窗內(nèi)數(shù)值平均(Ebert,2009)、最小覆蓋(Yates et al.,2006)、模糊邏輯(Ebert et al.,2003)、組合閾值(Atger,2001)和占比技巧(Roberts and Lean,2008)評(píng)分等。其中占比技巧應(yīng)用最為廣泛,該方法直接比較鄰域窗中觀測(cè)和預(yù)報(bào)滿足閾值事件的覆蓋率。對(duì)于確定性模式,如果預(yù)報(bào)事件的概率與觀測(cè)事件的頻率趨于一致,則預(yù)報(bào)是有用的。具體實(shí)現(xiàn)時(shí),不是直接比較鄰域事件發(fā)生的頻率,而是計(jì)算分?jǐn)?shù)覆蓋比率評(píng)分(fractions brier score,SFB)。SFB定義如下:

        SFB=1N∑Nn=1(〈Pf〉s-〈Po〉s)2。(3)

        式中:N是整個(gè)區(qū)域內(nèi)以S為尺度的鄰域窗的個(gè)數(shù);〈Pf〉s和〈Po〉s分別表示鄰域窗內(nèi)預(yù)報(bào)和觀測(cè)超過(guò)給定閾值事件的概率。由于SFB是一種負(fù)向評(píng)分指數(shù),即SFB越小,模式預(yù)報(bào)技巧越高,所以對(duì)SFB進(jìn)行轉(zhuǎn)換,即為FSS(fractions skill score,SFS):

        SFS=1-SFB1N∑Nn=1〈Pf〉2s+∑Nn=1〈Po〉2s 。(4)

        式中:〈Pf〉s和〈Po〉s含義與式(3)相同。分母表示最壞情況下的預(yù)報(bào),即預(yù)報(bào)和觀測(cè)的區(qū)域沒(méi)有重疊,SFS的值域范圍是0~1。

        2" 集合預(yù)報(bào)的鄰域概率

        基于確定性預(yù)報(bào),可以從某一個(gè)格點(diǎn)與其周邊相鄰格點(diǎn)的空間關(guān)系來(lái)建立要素場(chǎng)中事件發(fā)生概率的大小。但鄰域概率更為廣泛的應(yīng)用是在集合或集成預(yù)報(bào)多成員的基礎(chǔ)上,綜合考慮成員預(yù)報(bào)和要素的空間位置關(guān)系,構(gòu)建集合預(yù)報(bào)的鄰域概率,通常被稱之為鄰域集合概率。

        2.1" 網(wǎng)格尺度的鄰域概率

        集合預(yù)報(bào)的成員預(yù)報(bào)在數(shù)據(jù)處理上相當(dāng)于一個(gè)確定性預(yù)報(bào)。假定q表示降水量閾值,fij是集合預(yù)報(bào)系統(tǒng)第j(j=1,2,…,N)個(gè)集合預(yù)報(bào)成員的第i(i=1,2,…,M)個(gè)格點(diǎn)的降水預(yù)報(bào),那么對(duì)集合預(yù)報(bào)第j個(gè)成員的單點(diǎn)事件標(biāo)記P(q)B,ij可簡(jiǎn)單表示為:

        P(q)B,ij=1,if fij≥q;

        0,if fijlt;q。(5)

        式中:P(q)B,ij是q的函數(shù),通過(guò)選擇鄰域窗將P(q)B,ij轉(zhuǎn)換成概率預(yù)報(bào)。定義第i個(gè)格點(diǎn)周?chē)偢顸c(diǎn)數(shù)為Nb。P(q)B,ij可以轉(zhuǎn)換為鄰域概率P(q)N,ij:

        P(q)N,ij=1Nb∑Nbk=1P(q)B,ij, k∈Si。(6)

        式中:Si表示第i個(gè)格點(diǎn)的鄰域窗內(nèi)的點(diǎn)集。從P(q)B,ij到P(q)N,ij需要在鄰域窗內(nèi)求平均,由于平均有平滑效果,所以鄰域的長(zhǎng)度可稱作平滑尺度r。嚴(yán)格地說(shuō),P(q)N,ij是集合預(yù)報(bào)第j個(gè)成員中第i個(gè)格點(diǎn)鄰域窗內(nèi)預(yù)報(bào)事件超過(guò)閾值的比例,P(q)N,ij與r密切相關(guān),r的大小直接影響概率P(q)N,ij。所有集合預(yù)報(bào)成員鄰域概率的平均,即為集合預(yù)報(bào)的鄰域概率(neighborhood ensemble probability,NEP,PNE),也被稱為模糊邏輯概率(Schwartz et al.,2010)。第i個(gè)格點(diǎn),降水量閾值為q的PNE的計(jì)算式為:

        P(q)NE,i=1N∑Nj=1P(q)N,ij。(7)

        與P(q)N,ij一樣,PNE是q的函數(shù),受鄰域半徑r的控制。第i個(gè)格點(diǎn)的PNE是對(duì)所有網(wǎng)格點(diǎn)上的集合預(yù)報(bào)成員概率P(q)B,ij計(jì)算平均獲得的集合預(yù)報(bào)成員概率P(q)E,i:

        P(q)E,i=1N∑Nj=1P(q)B,ij。(8)

        鄰域窗為Nb,第i個(gè)格點(diǎn),降水量閾值為q的集合預(yù)報(bào)的鄰域概率PNE也可以通過(guò)下式獲得:

        P(q)NE,i=1Nb∑Nbk=1P(q)E,k, k∈Si。(9)

        兩種方法獲得的集合預(yù)報(bào)的鄰域概率在數(shù)學(xué)上是相同的,但式(8)和式(9)的計(jì)算效率更高。

        2.2" 大于網(wǎng)格尺度的鄰域概率

        在集合預(yù)報(bào)框架內(nèi),選取鄰域窗內(nèi)預(yù)報(bào)成員集合平均的最大值(Schwartz and Sobash,2017)可被看作是一種升尺度,通過(guò)該方法能夠獲得集合預(yù)報(bào)鄰域最大概率(neighborhood maximum ensemble probability,NMEP,PNME)。需要注意的是,NMEP對(duì)集合預(yù)報(bào)成員進(jìn)行了平均,但NMEP在空間上是離散的。通過(guò)平滑可以將離散的NMEP轉(zhuǎn)換成連續(xù)的概率場(chǎng),在一定程度上消除細(xì)小的相位誤差,提高了預(yù)報(bào)評(píng)分(Skinner et al.,2016)。高斯濾波是常用的平滑方式,轉(zhuǎn)換公式(Schwartz and Sobash,2017)為:

        PS,NME,i=∑Mm=112πσ2exp-12xi-mσ2PNME,i。(10)

        式中:PS,NME,i表示平滑后的PNME,i;xi-m是第i個(gè)點(diǎn)到第m個(gè)點(diǎn)的距離;標(biāo)準(zhǔn)差σ是一個(gè)可調(diào)整的控制平滑權(quán)重的尺度。

        圖3給出了集合預(yù)報(bào)的鄰域概率示意圖。對(duì)于Nm個(gè)成員的集合預(yù)報(bào)來(lái)說(shuō),每一個(gè)成員預(yù)報(bào)按照閾值轉(zhuǎn)換成單點(diǎn)概率(圖3a),Nm個(gè)成員的集合預(yù)報(bào)概率通過(guò)對(duì)單點(diǎn)概率計(jì)算平均值,即為集合預(yù)報(bào)概率(圖3b)。單點(diǎn)概率計(jì)算的集合預(yù)報(bào)概率并不會(huì)受到側(cè)邊界的影響。鄰域集合概率PNE為鄰域半徑內(nèi)集合預(yù)報(bào)概率的平均值(圖3c),但研究區(qū)域的側(cè)邊界會(huì)受到影響。以9個(gè)格點(diǎn)的鄰域窗為例,中間區(qū)域鄰域窗內(nèi)計(jì)算時(shí)基于完整9個(gè)格點(diǎn),方形鄰域窗的4個(gè)頂點(diǎn)鄰域概率計(jì)算基于4個(gè)格點(diǎn),其余為基于6個(gè)格點(diǎn)獲得的鄰域概率。與PNE類似,PNME(圖3d)也會(huì)受到側(cè)邊界的影響。

        2.3" 自適應(yīng)鄰域概率

        NEP和NMEP通常使用固定鄰域半徑,從而忽略了集合傳播中的地理和時(shí)間變化。Blake et al.(2018)提出了集合一致性尺度(ensemble agreement scale,EAS)技術(shù),當(dāng)局部一致性減?。ㄔ龃螅r(shí),通過(guò)增加(減?。┼徲虬霃絹?lái)局部調(diào)整鄰域窗的大小。

        Dij= (A-B)2(A+B)2,"" if Agt;0 and Bgt;0;

        1, if A=0 or B=0。(11)

        式中:Dij為兩個(gè)成員之間的一致性或差異性;A和B為超過(guò)閾值大小的平均值。較小的Dij表示具有較大的一致性,通過(guò)設(shè)定閾值Dcrit,ij來(lái)進(jìn)行判定,有:

        Dij≤Dcrit,ij,Dcrit,ij=α。(12)

        式中:α反映了可容忍的偏差程度。α=0表示在網(wǎng)格尺度上不容忍任何偏差;α=1表示容忍任何偏差。

        3" 鄰域法應(yīng)用

        3.1" 鄰域法檢驗(yàn)

        鄰域法檢驗(yàn)不僅可以提供位移誤差和預(yù)測(cè)技能的真實(shí)評(píng)估,而且可以將不同分辨率的空間預(yù)報(bào)場(chǎng)進(jìn)行比較,從而減少高分辨率模式預(yù)報(bào)中的“雙重懲罰”問(wèn)題(Mittermaier and Roberts,2010;Mittermaier,2014)。按照預(yù)報(bào)評(píng)分屬性的不同,鄰域法檢驗(yàn)可以分為確定性要素檢驗(yàn)和概率預(yù)報(bào)檢驗(yàn),按照要素預(yù)報(bào)類型的檢驗(yàn)可以分為降水預(yù)報(bào)檢驗(yàn)和其他要素檢驗(yàn),按照要素出現(xiàn)的頻次或稀有性可以分為常規(guī)要素和極端災(zāi)害性天氣的檢驗(yàn)。當(dāng)鄰域窗較大或比較小時(shí),鄰域法檢驗(yàn)評(píng)分對(duì)預(yù)報(bào)偏差敏感(Duc et al.,2013;Mittermaier,2021;Rempel et al.,2022;Pan et al.,2024),研究區(qū)域足夠大是鄰域法檢驗(yàn)的重要基礎(chǔ),如果研究區(qū)域太小,則可能無(wú)法測(cè)量位移誤差的全部尺度。此外,針對(duì)不同形狀鄰域窗的檢驗(yàn)評(píng)估差異,也有一些分析和比較(Nachamkin and Schmidt,2015);研究表明,圓形和方形鄰域窗對(duì)檢驗(yàn)結(jié)果的影響不敏感。

        傳統(tǒng)評(píng)分和FSS的聯(lián)合檢驗(yàn)(屠妮妮等,2022)、高分辨率模式降水的空間尺度預(yù)報(bào)表現(xiàn)(唐文苑等,2018;劉靜等,2019;唐文苑和鄭永光,2019;李子良等,2021;俞碧玉和朱科鋒,2022)、風(fēng)速和溫度的預(yù)報(bào)效果分析(張博和趙濱,2019;林曉霞等,2021)是鄰域法檢驗(yàn)在國(guó)內(nèi)應(yīng)用的主要方面。圖4給出了基于ECMWF模式預(yù)報(bào)的一個(gè)鄰域法FSS和ETS(equitable threat score)檢驗(yàn)評(píng)分的典型應(yīng)用。個(gè)例中的觀測(cè)資料為與預(yù)報(bào)時(shí)段一致的CMORPH(NOAA Climate Prediction Center morphing method)衛(wèi)星與自動(dòng)站逐小時(shí)降水融合資料。由圖4可見(jiàn),在低閾值降水時(shí),隨著尺度的增大,F(xiàn)SS和ETS評(píng)分同時(shí)增大,而在高閾值降水時(shí),增大空間尺度盡管有可能提高面積預(yù)報(bào)準(zhǔn)確率,但使得降水強(qiáng)度預(yù)報(bào)性能急劇下降。趙濱和張博(2018)研究發(fā)現(xiàn),合適的鄰域半徑是鄰域法檢驗(yàn)的核心問(wèn)題,半徑過(guò)小難以獲得最優(yōu)可用預(yù)報(bào)尺度,半徑過(guò)大則會(huì)將不同預(yù)報(bào)系統(tǒng)合并檢驗(yàn)引起評(píng)估誤導(dǎo)。對(duì)于高分辨率模式,隨著尺度的增加FSS逼近于2b/(b2+1),這里b為整個(gè)研究區(qū)域內(nèi)預(yù)報(bào)和觀測(cè)超過(guò)給定閾值事件概率的比率。

        在預(yù)報(bào)相對(duì)于觀測(cè)出現(xiàn)偏移的情況下,傳統(tǒng)的預(yù)報(bào)評(píng)分不能區(qū)分預(yù)報(bào)的好壞程度。FSS作為一種空間檢驗(yàn)評(píng)分,能夠克服這種缺陷。Skok and Hladnik(2018)通過(guò)一個(gè)理想化的風(fēng)場(chǎng)預(yù)報(bào)試驗(yàn)方案進(jìn)行了證明。在理想化的風(fēng)場(chǎng)試驗(yàn)(圖5)中包括500×500個(gè)格點(diǎn),實(shí)況環(huán)境風(fēng)場(chǎng)為一致的1 m/s西風(fēng),假定受山脈或地形的影響,橢圓區(qū)域的上半部分和下半部分分別有西南陣風(fēng)和西北陣風(fēng)(圖5a)。預(yù)報(bào)的陣風(fēng)強(qiáng)度以及背景風(fēng)場(chǎng)與實(shí)況完全一致,但陣風(fēng)的空間位置相對(duì)實(shí)況的位移逐漸從零增加到100個(gè)格點(diǎn)(圖5b)。通過(guò)計(jì)算傳統(tǒng)的預(yù)報(bào)評(píng)分RMSE和FSS評(píng)分可以看到,RMSE和FSS是位移的函數(shù),當(dāng)位移為0時(shí),RMSE為0,F(xiàn)SS為1。隨著位移的增大,RMSE增大,F(xiàn)SS減小,即預(yù)報(bào)評(píng)分變差。然而,一旦位移達(dá)到100個(gè)網(wǎng)格點(diǎn)時(shí),RMSE停止增加,表明當(dāng)空間位移較大時(shí),傳統(tǒng)檢驗(yàn)評(píng)分無(wú)法區(qū)分不正確預(yù)報(bào)事件的好壞程度。但FSS分值隨著位移的增加繼續(xù)減小,遠(yuǎn)超過(guò)100個(gè)網(wǎng)格點(diǎn)的位移,表明FSS評(píng)分即使在空間位移較大的情況下也能區(qū)分預(yù)報(bào)的優(yōu)劣。

        為了減少高分辨率模式相對(duì)于全球模式的“雙重懲罰”效應(yīng),在鄰域窗內(nèi)基于列聯(lián)表的誤差補(bǔ)償策略被提出(Stein and Stoop,2019),即位于同一鄰域窗中的漏報(bào)事件對(duì)空?qǐng)?bào)、命中和正確預(yù)報(bào)未出現(xiàn)事件可以相互補(bǔ)償。這相當(dāng)于說(shuō),如果預(yù)報(bào)和觀測(cè)到的相同量級(jí)的事件之間的位置誤差小于鄰域大小,則可以忽略或容忍,從而補(bǔ)償高分辨率模式的預(yù)報(bào)相位誤差,但補(bǔ)償過(guò)程中觀測(cè)和預(yù)報(bào)事件的頻率保持不變。對(duì)于經(jīng)典的二分法列聯(lián)表T事件分類有:

        T=abcd。(13)

        鄰域窗內(nèi)采用誤差補(bǔ)償?shù)牧新?lián)表T事件分類有:

        T=a+minb,cb-min (b,c)

        c-minb,cd+min(b,c)。(14)

        式中:a為事件命中的次數(shù);b為空?qǐng)?bào)的次數(shù);c為漏報(bào)的次數(shù);d為正確預(yù)報(bào)未超過(guò)閾值事件的次數(shù)。式(14)是以定義的鄰域窗為單位進(jìn)行事件劃分,min()為取最小值函數(shù)。

        Stein and Stoop(2019)采用誤差補(bǔ)償列聯(lián)表,分析了高分辨率數(shù)值模式在不同鄰域半徑下的降水預(yù)報(bào)評(píng)分表現(xiàn);結(jié)果發(fā)現(xiàn),當(dāng)降水閾值高于5.0 mm·d-1時(shí),命中率下降較快(圖6a),而空?qǐng)?bào)率隨著閾值的增加而增加(圖6b)。由于鄰域內(nèi)使用了誤差補(bǔ)償策略,鄰域越大,這些評(píng)分的預(yù)報(bào)表現(xiàn)越好(圖6c)。分析表明,相對(duì)于單純的FSS評(píng)分,誤差補(bǔ)償列聯(lián)表能夠進(jìn)一步抑制高分辨率中尺度模式中因“雙重懲罰”效應(yīng)帶來(lái)的評(píng)分偏低的現(xiàn)象,與主觀判斷結(jié)果更為一致。同時(shí),預(yù)報(bào)和觀測(cè)之間的位置偏移距離作為鄰域大小的函數(shù),可以從誤差補(bǔ)償策略的評(píng)分中反映出來(lái),且誤差補(bǔ)償策略的列聯(lián)表不會(huì)改變預(yù)報(bào)偏差,對(duì)整個(gè)研究區(qū)域來(lái)說(shuō),預(yù)報(bào)偏差也不取決于鄰域的大小。

        3.2" 鄰域集合概率

        NEP在CAM的集合降水預(yù)報(bào)(Johnson and Wang,2012;Yussouf et al.,2013;Romine et al.,2014;Schwartz,2017)和天氣雷達(dá)反射率模擬預(yù)報(bào)(Snook et al.,2012;Hitchcock et al.,2016)等方面有著廣泛的應(yīng)用。這些研究主要是針對(duì)小時(shí)雨量小于15 mm的降水鄰域概率預(yù)報(bào)或者雷達(dá)反射率因子≥19 dBZ的降水概率計(jì)算,很少有工作針對(duì)小時(shí)較大雨強(qiáng)的降水計(jì)算NEP并進(jìn)行檢驗(yàn)(Yussouf et al.,2016)。可能的原因是,NEP對(duì)稀有事件通常不具有良好的可靠性或分辨率。因此,NEP的這種屬性導(dǎo)致其更適合應(yīng)用于氣候概率較大的事件預(yù)報(bào)。與NEP不同,盡管NMEP可以在空間上進(jìn)行平滑,但NMEP的生成本身不包含空間平滑,因此它對(duì)稀有事件具有更好的分辨能力(Barthold et al.,2015;Schwartz et al.,2015)。

        國(guó)內(nèi)學(xué)者對(duì)集成鄰域概率也有廣泛的研究。劉雪晴等(2020)利用區(qū)域集合預(yù)報(bào)系統(tǒng)降水預(yù)報(bào)資料進(jìn)行鄰域集合概率方法試驗(yàn),并針對(duì)鄰域概率法的等權(quán)重和鄰域尺度問(wèn)題,設(shè)計(jì)了鄰域格點(diǎn)權(quán)重修正方案,同時(shí)評(píng)估了試驗(yàn)方案的預(yù)報(bào)效果。羅聰?shù)龋?021)利用鄰域最優(yōu)概率方法對(duì)華南區(qū)域GRAPES快速更新循環(huán)同化預(yù)報(bào)系統(tǒng)的24 h預(yù)報(bào)進(jìn)行逐時(shí)降水訂正和檢驗(yàn)評(píng)估;結(jié)果表明,鄰域最優(yōu)概率方法能有效地提升降水客觀預(yù)報(bào)能力。劉瑩等(2022)利用區(qū)域集合模式的小時(shí)降水產(chǎn)品開(kāi)展了集合預(yù)報(bào)鄰域法訂正試驗(yàn),認(rèn)為鄰域集合最大概率預(yù)報(bào)能充分顯示大范圍的降水中心,可以為預(yù)報(bào)員提供多視角預(yù)報(bào)參考。

        針對(duì)極端降水天氣,朱科鋒等(2022)分析了河南“21.7”極端暴雨天氣過(guò)程的對(duì)流可分辨尺度集合預(yù)報(bào)的降水概率預(yù)報(bào)表現(xiàn)(圖7);結(jié)果表明,與傳統(tǒng)的降水概率相比,鄰域集合概率顯著提升了日降雨和小時(shí)降雨的概率預(yù)報(bào)技巧。這些研究還表明,NEP和NMEP都可以產(chǎn)生鄰域集合預(yù)報(bào)概率,但兩種概率預(yù)報(bào)產(chǎn)品不能相互替代,一種集合概率預(yù)報(bào)的閾值也并不適用于另一種產(chǎn)品。Schwartz and Sobash(2017)的研究表明,在暴雨以下量級(jí)預(yù)報(bào)中,NEP有很好的應(yīng)用效果,但就暴雨及以上量級(jí)的預(yù)報(bào)來(lái)說(shuō),NMEP對(duì)極值預(yù)報(bào)的精度損失更小,可以更有效預(yù)報(bào)極端天氣事件,從而有效避免漏報(bào)。

        4" 討論

        檢驗(yàn)評(píng)估是鄰域法在氣象預(yù)報(bào)中最主要的應(yīng)用之一。基于鄰域窗的預(yù)報(bào)和觀測(cè)值可以在定義閾值的基礎(chǔ)上,構(gòu)建“一對(duì)多”和“多對(duì)多”等多種不同的匹配方案,也可以在鄰域窗內(nèi)將強(qiáng)度超過(guò)某個(gè)閾值的比例定義為其在鄰域窗內(nèi)發(fā)生的概率,并檢驗(yàn)鄰域概率的預(yù)報(bào)表現(xiàn)。本文給出的檢驗(yàn)評(píng)分只是鄰域法檢驗(yàn)中最常用的一部分,在鄰域法檢驗(yàn)中想要深入獲取所有鄰域半徑下產(chǎn)品的全部預(yù)報(bào)表現(xiàn)十分困難,因此,對(duì)鄰域法檢驗(yàn)的使用者來(lái)說(shuō),首先要明確預(yù)報(bào)需求,什么是一個(gè)好的預(yù)報(bào),然后利用好的檢驗(yàn)?zāi)P?,通過(guò)計(jì)算評(píng)分指數(shù)對(duì)預(yù)報(bào)做出判斷。大多數(shù)情況下,現(xiàn)有的方法能夠?yàn)槭褂谜咛峁┰诓煌臻g尺度下的預(yù)報(bào)判斷信息,如果沒(méi)有合適的判別模型,也能夠方便地利用鄰域法特點(diǎn)、預(yù)報(bào)和觀測(cè)的強(qiáng)度分布等構(gòu)造一個(gè)或多個(gè)評(píng)分指數(shù),譬如ROC(receiver operating characteristic)曲線圖(Theis et al.,2005)以及與尺度相關(guān)的方差等,來(lái)評(píng)估不同尺度下預(yù)報(bào)對(duì)觀測(cè)的重現(xiàn)能力。

        鄰域概率在CAM后處理中有著廣泛的應(yīng)用。確定性預(yù)報(bào)的鄰域概率一般通過(guò)給定的閾值條件,在鄰域窗內(nèi)對(duì)預(yù)報(bào)事件進(jìn)行標(biāo)記,計(jì)算預(yù)報(bào)事件的發(fā)生概率,集合預(yù)報(bào)概率NEP和鄰域最大集合預(yù)報(bào)概率NMEP是最主要的兩種鄰域集合預(yù)報(bào)概率方法。這兩種方法產(chǎn)生鄰域集合預(yù)報(bào)概率的差別在于:大多數(shù)CAM的集合概率預(yù)報(bào)偏低(Romine et al,2014),由于NMEP在鄰域窗內(nèi)取最大值,所以它能更好地表現(xiàn)預(yù)報(bào)的極端信息,提高極端事件的命中率。而對(duì)流極端天氣通常發(fā)生在較小的空間和時(shí)間尺度上,NEP算法中固有的平滑使得到的概率接近于零,幾乎沒(méi)有什么意義(Schwartz and Sobash,2017)。但NMEP會(huì)對(duì)小概率事件造成過(guò)度的空?qǐng)?bào),增大極端事件的預(yù)測(cè)頻率,在使用時(shí)一方面可以通過(guò)增加成員的數(shù)量來(lái)進(jìn)一步增加可靠性,另一方面可以增大閾值參數(shù)或利用客觀算法進(jìn)行抑制。結(jié)合實(shí)際業(yè)務(wù),也可對(duì)NEP和NMEP進(jìn)行綜合診斷分析,原因在于:NEP對(duì)NMEP概率有較好的抑制作用,只有當(dāng)事件發(fā)生的概率較低時(shí),NMEP才與NEP接近。此外,NEP和NMEP方法獲得的預(yù)報(bào)結(jié)果在統(tǒng)計(jì)學(xué)檢驗(yàn)上存在顯著差異,其預(yù)報(bào)表現(xiàn)不僅與降水性質(zhì)、概率閾值相關(guān),而且與預(yù)報(bào)區(qū)域降水的氣候態(tài)以及評(píng)價(jià)標(biāo)準(zhǔn)等緊密相關(guān)。在實(shí)際應(yīng)用中,一方面應(yīng)明確描述其使用的鄰域方法和事件定義,另一方面應(yīng)對(duì)不同預(yù)報(bào)產(chǎn)品和研究區(qū)域等影響降水預(yù)報(bào)準(zhǔn)確率的因素進(jìn)行深入分析,并采用合適的鄰域半徑和集成方案來(lái)提高降水預(yù)報(bào)表現(xiàn)。

        需要說(shuō)明的是,本文以降水、風(fēng)速為主歸納了鄰域法的重點(diǎn)應(yīng)用,但事實(shí)上,在氣象要素預(yù)報(bào)的各種情景下,鄰域法都有較好的適用性,譬如災(zāi)害性天氣上升氣流螺旋度(Sobash et al.,2011,2016;Clark et al.,2013;Schwartz et al.,2015)、基于物理量集成的高閾值垂直渦度場(chǎng)(Zhang et al.,2016)、中尺度對(duì)流系統(tǒng)(Stratman et al.,2013;Snook et al.,2015,2016)、閃電(Lynn et al.,2015)、低層垂直渦度(Yussouf et al.,2013;Wheatley et al.,2015)等在災(zāi)害性天氣中的要素或物理量的概率預(yù)報(bào)。

        5" 結(jié)論和展望

        本文系統(tǒng)回顧了鄰域法檢驗(yàn)的技術(shù)框架、常用的檢驗(yàn)評(píng)分以及兩種集成鄰域概率的計(jì)算流程,給出了鄰域法檢驗(yàn)和概率的典型應(yīng)用,詳細(xì)討論了鄰域法檢驗(yàn)和鄰域概率應(yīng)用中的注意事項(xiàng),得到如下主要結(jié)論:

        1)鄰域法可以在時(shí)間或空間的多個(gè)尺度比較預(yù)報(bào)產(chǎn)品的性能。對(duì)于不同分辨率的網(wǎng)格預(yù)報(bào),通過(guò)尺度變換,可獲得模式在多大尺度上的預(yù)報(bào)更加準(zhǔn)確等重要信息。

        2)鄰域法檢驗(yàn)對(duì)預(yù)報(bào)和觀測(cè)的數(shù)據(jù)處理具有通用性,傳統(tǒng)的二分法檢驗(yàn)或概率預(yù)報(bào)在鄰域法檢驗(yàn)中都是適用的,其獨(dú)特的優(yōu)勢(shì)在于,相對(duì)傳統(tǒng)的二分法檢驗(yàn),它增加了基于尺度變化獲得的一些診斷量。FSS評(píng)分在鄰域法檢驗(yàn)中得到了最為廣泛的應(yīng)用。

        3)基于鄰域法可以計(jì)算確定性預(yù)報(bào)的鄰域概率,但更廣泛的應(yīng)用是利用集合預(yù)報(bào)多成員或多個(gè)確定性預(yù)報(bào)獲得NEP或者NMEP兩種鄰域集合概率。

        4)NEP和NMEP都可以提高降水的預(yù)報(bào)評(píng)分,但兩者的應(yīng)用范圍顯著不同,NEP更適合于大尺度、系統(tǒng)性降水預(yù)報(bào),對(duì)于對(duì)流性、極端性降水來(lái)說(shuō),NMEP的應(yīng)用效果更好。

        基于目前的研究進(jìn)展,本文認(rèn)為以下方面值得進(jìn)一步研究:

        1)鄰域半徑的合理選擇問(wèn)題。合適的鄰域半徑是鄰域法檢驗(yàn)和鄰域集合概率的核心問(wèn)題。在實(shí)際應(yīng)用中,一般通過(guò)“窮舉法”計(jì)算不同鄰域半徑的預(yù)報(bào)評(píng)分來(lái)獲得最優(yōu)鄰域尺度。但是在不斷增加的空間尺度上通過(guò)評(píng)分的大小來(lái)捕獲產(chǎn)品的預(yù)報(bào)表現(xiàn),可能會(huì)受到小的、低可預(yù)測(cè)性事件的影響。當(dāng)下墊面復(fù)雜且研究區(qū)域較大時(shí),用單一的鄰域尺度來(lái)量化產(chǎn)品的預(yù)報(bào)表現(xiàn)或基于此構(gòu)建鄰域概率,可能會(huì)得不到理想的結(jié)果。關(guān)注研究區(qū)域和預(yù)報(bào)產(chǎn)品的特性,構(gòu)建差異性或自適應(yīng)最優(yōu)鄰域半徑,是一個(gè)重要的研究方向。

        2)鄰域維度拓展問(wèn)題。已有鄰域法檢驗(yàn)的研究主要考慮了二維空間維度,集成預(yù)報(bào)的鄰域概率通過(guò)增加成員,形成三維空間,但目前時(shí)間維鄰域法的應(yīng)用研究還不多見(jiàn),為了量化NWP的時(shí)間偏差,一般采用時(shí)域追蹤方法。對(duì)高時(shí)間分辨率的NWP來(lái)說(shuō),將鄰域法拓展到時(shí)間維對(duì)鄰域法檢驗(yàn)及其概率具有重要意義。此外,就一些災(zāi)害性天氣事件而言,拓展閾值條件也是鄰域法檢驗(yàn)值得探索的一個(gè)方面。

        3)鄰域法的檢驗(yàn)和概率預(yù)報(bào)的評(píng)價(jià)指標(biāo)問(wèn)題。FSS評(píng)分是鄰域法檢驗(yàn)最主要的評(píng)價(jià)指標(biāo),其他傳統(tǒng)的二分法評(píng)價(jià)指標(biāo)也可以以鄰域窗為基礎(chǔ)展開(kāi)?;贜EP和NMEP獲得的概率預(yù)報(bào),一般通過(guò)已有的概率預(yù)報(bào)檢驗(yàn)方法進(jìn)行評(píng)價(jià)。事實(shí)上,NEP有空間平滑的作用,獲得的概率偏小,而NMEP則突出了局地和單個(gè)成員的貢獻(xiàn),對(duì)極端事件預(yù)報(bào)能力較好,但概率偏大。如何構(gòu)建有效的評(píng)價(jià)指標(biāo)使其結(jié)果更好地表現(xiàn)鄰近格點(diǎn)的補(bǔ)償作用,或者結(jié)合目標(biāo)檢驗(yàn)等一些空間檢驗(yàn)方法解析鄰域概率預(yù)報(bào)的屬性特征,提高預(yù)報(bào)技巧,對(duì)鄰域概率和鄰域檢驗(yàn)都是重要的研究課題。

        4)鄰域法與人工智能的結(jié)合。鄰域法通過(guò)相鄰格點(diǎn)信息的相互補(bǔ)償,挖掘預(yù)報(bào)產(chǎn)品中更多的有用信息,但這些信息的獲得,目前為止仍然是一種基于歷史資料的統(tǒng)計(jì)結(jié)果,在鄰域窗設(shè)定、集合鄰域半徑優(yōu)選、不同集合成員最優(yōu)鄰域窗的自洽和耦合等方面仍然存在很多未知、可探索的領(lǐng)域。將鄰域法與人工智能算法結(jié)合起來(lái),形成正向自反饋,在天氣預(yù)報(bào)中的研究應(yīng)用前景廣闊。

        致謝:兩位匿名審稿人提出了寶貴的修改意見(jiàn)和建議。謹(jǐn)致謝忱!

        參考文獻(xiàn)(References)

        Atger F,2001.Verification of intense precipitation forecasts from single models and ensemble prediction systems[J].Nonlin Processes Geophys,8(6):401-417.doi:10.5194/npg-8-401-2001.

        Barthold F E,Workoff T E,Cosgrove B A,et al.,2015.Improving flash flood forecasts:the HMT-WPC flash flood and intense rainfall experiment[J].Bull Amer Meteor Soc,96(11):1859-1866.doi:10.1175/BAMS-D-14-00201.1.

        Ben Bouallègue Z,Theis S E,Gebhardt C,2013.Enhancing COSMO-DE ensemble forecasts by inexpensive techniques[J].Meteor Z,22(1):49-59.doi:10.1127/0941-2948/2013/0374.

        Ben Bouallègue Z,Theis S E,2014.Spatial techniques applied to precipitation ensemble forecasts:from verification results to probabilistic products[J].Meteor Appl,21(4):922-929.doi:10.1002/met.1435.

        Blake B T,Carley J R,Alcott T I,et al.,2018.An adaptive approach for the calculation of ensemble gridpoint probabilities[J].Wea Forecasting,33(4):1063-1080.doi:10.1175/WAF-D-18-0035.1.

        Clark A J,Gallus W A Jr,Weisman M L,2010.Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM[J].Wea Forecasting,25(5):1495-1509.doi:10.1175/2010waf2222404.1.

        Clark A J,Kain J S,Stensrud D J,et al.,2011.Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[J].Mon Wea Rev,139(5):1410-1418.doi:10.1175/2010mwr3624.1.

        Clark A J,Gao J D,Marsh P T,et al.,2013.Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity[J].Wea Forecasting,28(2):387-407.doi:10.1175/WAF-D-12-00038.1.

        Duc L,Saito K,Seko H,2013.Spatial-temporal fractions verification for high-resolution ensemble forecasts[J].Tellus A:Dyn Meteor Oceanogr,65(1):18171.doi:10.3402/tellusa.v65i0.18171.

        Ebert E E,McBride J L,2000.Verification of precipitation in weather systems:determination of systematic errors[J].J Hydrol,239(1/2/3/4):179-202.doi:10.1016/S0022-1694(00)00343-7.

        Ebert E E,Damrath U,Wergen W,et al.,2003.The WGNE assessment of short-term quantitative precipitation forecasts[J].Bull Amer Meteor Soc,84(4):481-492.doi:10.1175/bams-84-4-481.

        Ebert E E,2008.Fuzzy verification of high-resolution gridded forecasts:a review and proposed framework[J].Meteor Appl,15(1):51-64.doi:10.1002/met.25.

        Ebert E E,2009.Neighborhood verification:a strategy for rewarding close forecasts[J].Wea Forecasting,24(6):1498-1510.doi:10.1175/2009waf2222251.1.

        Germann U,Zawadzki I,2004.Scale dependence of the predictability of precipitation from continental radar images.Part Ⅱ:probability forecasts[J].J Appl Meteor,43(1):74-89.doi:10.1175/1520-0450(2004)0430074:SDOTPOgt;2.0.CO;2.

        Golding B W,2000.Quantitative precipitation forecasting in the UK[J].J Hydrol,239(1/2/3/4):286-305.doi:10.1016/S0022-1694(00)00354-1.

        Gilleland E,Ahijevych D,Brown B G,et al.,2009.Intercomparison of spatial forecast verification methods[J].Wea Forecasting,24(5):1416-1430.doi:10.1175/2009waf2222269.1.

        Gilleland E,Ahijevych D A,Brown B G,et al.,2010.Verifying forecasts spatially[J].Bull Amer Meteor Soc,91(10):1365-1376.doi:10.1175/2010bams2819.1.

        Hagen-Zanker A,Straatman B,Uljee I,2005.Further developments of a fuzzy set map comparison approach[J].Int J Geogr Inf Sci,19(7):769-785.doi:10.1080/13658810500072137.

        Hitchcock S M,Coniglio M C,Knopfmeier K H,2016.Impact of MPEX upsonde observations on ensemble analyses and forecasts of the 31 May 2013 convective event over Oklahoma[J].Mon Wea Rev,144(8):2889-2913.doi:10.1175/mwr-d-15-0344.1.

        Johnson A,Wang X G,2012.Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble[J].Mon Wea Rev,140(9):3054-3077.doi:10.1175/MWR-D-11-00356.1.

        Johnson A,Wang X G,Wang Y M,et al.,2020.Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 hazardous weather testbeds[J].Wea Forecasting,35(1):169-191.doi:10.1175/waf-d-19-0060.1.

        Kharin V V,Zwiers F W,2003.Improved seasonal probability forecasts[J].J Climate,16(11):1684-1701.doi:10.1175/1520-0442(2003)016lt;1684:ispfgt;2.0.co;2.

        Kochasic M C,Gallus W A Jr,Schaffer C J,2017.Further evaluation of probabilistic convective precipitation forecasts using the QPF-PoP neighborhood relationship[J].Wea Forecasting,32(4):1423-1440.doi:10.1175/waf-d-16-0227.1.

        栗晗,王新敏,朱楓,2022.“21.7”河南極端暴雨多模式預(yù)報(bào)性能綜合評(píng)估[J].大氣科學(xué)學(xué)報(bào),45(4):573-590." Li H,Wang X M,Zhu F,2022.Comprehensive evaluations of multi-model forecast performance for “21.7” Henan extreme rainstorm[J].Trans Atmos Sci,45(4):573-590.doi:10.13878/j.cnki.dqkxxb.20211019002.(in Chinese).

        李子良,趙濱,李國(guó)平,2021.鄰域空間檢驗(yàn)技術(shù)在集合降水預(yù)報(bào)檢驗(yàn)中的應(yīng)用[J].大氣科學(xué)學(xué)報(bào),44(2):189-198." Li Z L,Zhao B,Li G P,2021.An extended spatial verification technique for ensemble precipitation forecasts[J].Trans Atmos Sci,44(2):189-198.doi:10.13878/j.cnki.dqkxxb.20200729001.(in Chinese).

        林曉霞,馮業(yè)榮,陳子通,等,2021.華南區(qū)域高分辨率數(shù)值模式前汛期預(yù)報(bào)初步評(píng)估[J].熱帶氣象學(xué)報(bào),37(4):656-668." Lin X X,F(xiàn)eng Y R,Chen Z T,et al.,2021.Preliminary evaluation of forecast skill of GRAPES Guangzhou Regional Modeling System[J].J Trop Meteor,37(4):656-668.doi:10.16032/j.issn.1004-4965.2021.062.(in Chinese).

        劉靜,才奎志,譚政華,2019.高分辨率模式雷達(dá)回波預(yù)報(bào)能力分析[J].氣象,45(12):1710-1717." Liu J,Cai K Z,Tan Z H,2019.Analysis of radar echo forecasting capability of different high-resolution models[J].Meteor Mon,45(12):1710-1717.doi:10.7519/j.issn.1000-0526.2019.12.008.(in Chinese).

        劉侃,陳超輝,何宏讓,等,2023.基于局地增長(zhǎng)模培育法的對(duì)流可分辨尺度WRF模式對(duì)河南“21.7” 特大暴雨的預(yù)報(bào)評(píng)估[J].大氣科學(xué)學(xué)報(bào),46(5):725-737." Liu K,Chen C H,He H R,et al.,2023.Assessment of the convection-allowing scale WRF model using LBGM theory:a case study of severe torrential rain in Henan Province,July 2021[J].Trans Atmos Sci,46(5):725-737.doi:10.13878/j.cnki.dqkxxb.20220830001.(in Chinese).

        劉雪晴,陳靜,陳法敬,等,2020.降水鄰域集合概率方法尺度敏感性試驗(yàn)[J].大氣科學(xué),44(2):282-296." Liu X Q,Chen J,Chen F J,et al.,2020.Scale sensitivity experiments of precipitation neighborhood ensemble probability method[J].Chin J Atmos Sci,44(2):282-296.doi:10.3878/j.issn.1006-9895.1903.18228.(in Chinese).

        劉瑩,陳朝平,陳瑩,等,2022.基于CMA-REPS小時(shí)降水的鄰域集合預(yù)報(bào)應(yīng)用試驗(yàn)[J].氣象研究與應(yīng)用,43(2):98-104." Liu Y,Chen C P,Chen Y,et al.,2022.Application experiment of neighborhood ensemble forecasting based on CMA-REPS hourly precipitation[J].J Meteor Res Appl,43(2):98-104.doi:10.19849/j.cnki.CN45-1356/P.2022.2.17.(in Chinese).

        羅聰,時(shí)洋,吳乃庚,等,2021.基于鄰域最優(yōu)概率的GRAPES快速更新循環(huán)同化預(yù)報(bào)系統(tǒng)逐時(shí)降水訂正方法[J].熱帶氣象學(xué)報(bào),37(4):569-578.Luo C,Shi Y,Wu N G,et al.,2021.Correction method based on neighborhood optimal probability for hourly precipitation forecast from GRAPES rapid updating cycle assimilation and forecasting system[J].J Trop Meteor,37(4):569-578.doi:10.16032/j.issn.1004-4965.2021.054.(in Chinese).

        Lynn B H,Kelman G,Ellrod G,2015.An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts[J].Wea Forecasting,30(2):405-423.doi:10.1175/waf-d-13-00028.1.

        Marsigli C,Montani A,Paccangnella T,2008.A spatial verification method applied to the evaluation of high-resolution ensemble forecasts[J].Meteor Appl,15(1):125-143.doi:10.1002/met.65.

        Mass C F,Ovens D,Westrick K,et al.,2002.Does increasing horizontal resolution produce more skillful forecasts?[J].Bull Amer Meteor Soc,83(3):407-430.doi:10.1175/1520-0477(2002)083lt;0407:dihrpmgt;2.3.co;2.

        Mittermaier M,Roberts N,2010.Intercomparison of spatial forecast verification methods:identifying skillful spatial scales using the fractions skill score[J].Wea Forecasting,25(1):343-354.doi:10.1175/2009WAF2222260.1.

        Mittermaier M P,2014.A strategy for verifying near-convection-resolving model forecasts at observing sites[J].Wea Forecasting,29(2):185-204.doi:10.1175/waf-d-12-00075.1.

        Mittermaier M P,2021.A “Meta” analysis of the fractions skill score:the limiting case and implications for aggregation[J].Mon Wea Rev,149(10):3491-3504.doi:10.1175/mwr-d-18-0106.1.

        Murphy A H,1973.A new vector partition of the probability score[J].J Appl Meteor,12(4):595-600.doi:10.1175/1520-0450(1973)012lt;0595:anvpotgt;2.0.co;2.

        Murphy A H,Lichtenstein S,F(xiàn)ischhoff B,et al.,1980.Misinterpretations of precipitation probability forecasts[J].Bull Amer Meteor Soc,61(7):695-701.doi:10.1175/1520-0477(1980)061lt;0695:moppfgt;2.0.co;2.

        Nachamkin J E,Schmidt J,2015.Applying a neighborhood fractions sampling approach as a diagnostic tool[J].Mon Wea Rev,143(11):4736-4749.doi:10.1175/mwr-d-14-00411.1.

        潘留杰,張宏芳,王建鵬,2014.數(shù)值天氣預(yù)報(bào)檢驗(yàn)方法研究進(jìn)展[J].地球科學(xué)進(jìn)展,29(3):327-335." Pan L J,Zhang H F,Wang J P,2014.Progress on verification methods of numerical weather prediction[J].Adv Earth Sci,29(3):327-335.doi:10.11867/j.issn.1001-8166.2014.03.0327.(in Chinese).

        潘留杰,張宏芳,陳小婷,等,2015.基于鄰域法的高分辨率模式降水的預(yù)報(bào)能力分析[J].熱帶氣象學(xué)報(bào),31(5):632-642." Pan L J,Zhang H F,Chen X T,et al.,2015.Neighborhood-based precipitation forecasting capability analysis of high-resolution models[J].J Trop Meteor,31(5):632-642.doi:10.16032/j.issn.1004-4965.2015.05.006.(in Chinese).

        潘留杰,張宏芳,薛春芳,等.2016a.數(shù)值模式評(píng)估系統(tǒng)MET及其初步應(yīng)用[J].氣象科技進(jìn)展,6(4):37-43." Pan L J,Zhang H F,Xue C F,et al.,2016a.Numerical weather prediction model testing and evaluation systems MET and application[J].Adv Meteor Sci Tech,6(4):37-43.(in Chinese).

        潘留杰,薛春芳,張宏芳,等,2016b.兩個(gè)集合預(yù)報(bào)系統(tǒng)對(duì)秦嶺及周邊降水預(yù)報(bào)性能對(duì)比[J].應(yīng)用氣象學(xué)報(bào),27(6):676-687." Pan L J,Xue C F,Zhang H F,et al.,2016b.Comparative analysis on precipitation forecasting capabilities of two ensemble prediction systems around Qinling area[J].J Appl Meteor Sci,27(6):676-687.doi:10.11898/1001-7313.20160604.(in Chinese).

        潘留杰,薛春芳,張宏芳,等,2017a.三種高分辨率格點(diǎn)降水預(yù)報(bào)檢驗(yàn)方法的對(duì)比[J].氣候與環(huán)境研究,22(1):45-58." Pan L J,Xue C F,Zhang H F,et al.,2017a.Comparison of three verification methods for high-resolution grid precipitation forecast[J].Clim Environ Res,22(1):45-58.doi:10.3878/j.issn.1006-9585.2016.16012.(in Chinese).

        潘留杰,張宏芳,陳小婷,等,2017b.ECMWF集合預(yù)報(bào)在中國(guó)中部地區(qū)的降水概率預(yù)報(bào)性能評(píng)估[J].高原氣象,36(1):138-147." Pan L J,Zhang H F,Chen X T,et al.,2017b.Evaluation of precipitation probability forecasts of ECMWF ensemble prediction system in central China[J].Plateau Meteor,36(1):138-147.doi:10.7522/j.issn.1000-0534.2016.00014.(in Chinese).

        潘留杰,張宏芳,劉靜,等,2023.智能網(wǎng)格SCMOC及多模式降水預(yù)報(bào)對(duì)比[J].大氣科學(xué)學(xué)報(bào),46(2):217-229." Pan L J,Zhang H F,Liu J,et al.,2023.Comparative analysis of SCMOC and various numerical models for precipitation forecasting[J].Trans Atmos Sci,46(2):217-229.doi:10.13878/j.cnki.dqkxxb.20220213001.(in Chinese).

        Pan L J,Zhang H F,Liang M,et al.,2024.Assessment of ECMWF’s precipitation forecasting performance for China from 2017 to 2022[J].J Trop Meteor,30(3):257-274.doi:10.3724/j.1006-8775.2024.023.

        Rempel M,Schaumann P,Hess R,et al.,2022.Adaptive blending of probabilistic precipitation forecasts with emphasis on calibration and temporal forecast consistency[J].Artif Intell Earth Syst,1(4):1-17.doi:10.1175/aies-d-22-0020.1.

        Roberts N M,Lean H W,2008.Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J].Mon Wea Rev,136(1):78-97.doi:10.1175/2007mwr2123.1.

        Romine G S,Schwartz C S,Berner J,et al.,2014.Representing forecast error in a convection-permitting ensemble system[J].Mon Wea Rev,142(12):4519-4541.doi:10.1175/MWR-D-14-00100.1.

        Schwartz C S,Kain J S,Weiss S J,et al.,2010.Toward improved convection-allowing ensembles:model physics sensitivities and optimizing probabilistic guidance with small ensemble membership[J].Wea Forecasting,25(1):263-280.doi:10.1175/2009WAF2222267.1.

        Schwartz C S,Romine G S,Sobash R A,et al.,2015.NCAR’s experimental real-time convection-allowing ensemble prediction system[J].Wea Forecasting,30(6):1645-1654.doi:10.1175/waf-d-15-0103.1.

        Schwartz C S,2017.A comparison of methods used to populate neighborhood-based contingency tables for high-resolution forecast verification[J].Wea Forecasting,32(2):733-741.doi:10.1175/waf-d-16-0187.1.

        Schwartz C S,Sobash R A,2017.Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches:a review and recommendations[J].Mon Wea Rev,145(9):3397-3418.doi:10.1175/mwr-d-16-0400.1.

        Skinner P S,Wicker L J,Wheatley D M,et al.,2016.Application of two spatial verification methods to ensemble forecasts of low-level rotation[J].Wea Forecasting,31(3):713-735.doi:10.1175/WAF-D-15-0129.1.

        Skok G,Hladnik V,2018.Verification of gridded wind forecasts in complex alpine terrain:a new wind verification methodology based on the neighborhood approach[J].Mon Wea Rev,146(1):63-75.doi:10.1175/mwr-d-16-0471.1.

        Snook N,Xue M,Jung Y,2012.Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data[J].Mon Wea Rev,140(7):2126-2146.doi:10.1175/mwr-d-11-00117.1.

        Snook N,Xue M,Jung Y,2015.Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system[J].Mon Wea Rev,143(4):1035-1057.doi:10.1175/mwr-d-13-00262.1.

        Snook N,Jung Y,Brotzge J,et al.,2016.Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013[J].Wea Forecasting,31(3):811-825.doi:10.1175/waf-d-15-0152.1.

        Sobash R A,Kain J S,Bright D R,et al.,2011.Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts[J].Wea Forecasting,26(5):714-728.doi:10.1175/waf-d-10-05046.1.

        Sobash R A,Schwartz C S,Romine G S,et al.,2016.Severe weather prediction using storm surrogates from an ensemble forecasting system[J].Wea Forecasting,31(1):255-271.doi:10.1175/waf-d-15-0138.1.

        Stein J,Stoop F,2019.Neighborhood-based contingency tables including errors compensation[J].Mon Wea Rev,147(1):329-344.doi:10.1175/mwr-d-17-0288.1.

        Stratman D R,Coniglio M C,Koch S E,et al.,2013.Use of multiple verification methods to evaluate forecasts of convection from hot-and cold-start convection-allowing models[J].Wea Forecasting,28(1):119-138.doi:10.1175/waf-d-12-00022.1.

        蘇翔,袁慧玲,2020.集合預(yù)報(bào)統(tǒng)計(jì)學(xué)后處理技術(shù)研究進(jìn)展[J].氣象科技進(jìn)展,10(2):30-41." Su X,Yuan H L,2020.The research progress of ensemble statistical postprocessing methods[J].Adv Meteor Sci Technol,10(2):30-41.doi:10.3969/j.issn.2095-1973.2020.02.005.(in Chinese).

        唐文苑,鄭永光,張小雯,2018.基于FSS的高分辨率模式華北對(duì)流預(yù)報(bào)能力評(píng)估[J].應(yīng)用氣象學(xué)報(bào),29(5):513-523." Tang W Y,Zheng Y G,Zhang X W,2018.FSS-based evaluation on convective weather forecasts in North China from high resolution models[J].J Appl Meteor Sci,29(5):513-523.doi:10.11898/1001-7313.20180501.(in Chinese).

        唐文苑,鄭永光,2019.基于快速更新同化數(shù)值預(yù)報(bào)的小時(shí)降水量時(shí)間滯后集合訂正技術(shù)[J].氣象,45(3):305-317." Tang W Y,Zheng Y G,2019.Improvement of hourly precipitation forecast using a time-lagged ensemble based on rapid refresh assimilation and forecast[J].Meteor Mon,45(3):305-317.doi:10.7519/j.issn.1000-0526.2019.03.002.(in Chinese).

        Theis S E,Hense A,Damrath U,2005.Probabilistic precipitation forecasts from a deterministic model:a pragmatic approach[J].Meteor Appl,12(3):257-268.doi:10.1017/S1350482705001763.

        屠妮妮,衡志煒,何光碧,等,2022.多數(shù)值模式對(duì)2021年7月兩次大暴雨過(guò)程預(yù)報(bào)能力檢驗(yàn)評(píng)估[J].高原山地氣象研究,42(2):46-55." Tu N N,Heng Z W,He G B,et al.,2022.Verification of forecasting ability of two rainstorms in July 2021 by multiple numerical models[J].Plateau Mt Meteor Res,42(2):46-55.doi:10.3969/j.issn.1674-2184.2022.02.007.(in Chinese).

        Weisman M L,Davis C,Wang W,et al.,2008.Experiences with 0—36-h explicit convective forecasts with the WRF-ARW model[J].Wea Forecasting,23(3):407-437.doi:10.1175/2007waf2007005.1.

        Wheatley D M,Knopfmeier K H,Jones T A,et al.,2015.Storm-scale data assimilation and ensemble forecasting with the NSSL experimental warn-on-forecast system.Part I:radar data experiments[J].Wea Forecasting,30(6):1795-1817.doi:10.1175/waf-d-15-0043.1.

        吳瑞姣,邱學(xué)興,周昆,等,2020.安徽省WRF模式短時(shí)強(qiáng)降水的預(yù)報(bào)檢驗(yàn)[J].氣象科技,48(2):254-262." Wu R J,Qiu X X,Zhou K,et al.,2020.Capability of forecasting short-term precipitation based on WRF in Anhui[J].Meteor Sci Technol,48(2):254-262.doi:10.19517/j.1671-6345.20190150.(in Chinese).

        Yates E,Anquetin S,Ducrocq V,et al.,2006.Point and areal validation of forecast precipitation fields[J].Meteor Appl,13(1):1-20.doi:10.1017/s1350482705001921.

        俞碧玉,朱科鋒,2022.多種空間檢驗(yàn)方法在不同分辨率模式降水預(yù)報(bào)評(píng)估中的應(yīng)用[J].氣象科學(xué),42(3):341-355." Yu B Y,Zhu K F,2022.Application of multiple spatial verification methods to precipitation forecasts from different resolution models[J].J Meteor Sci,42(3):341-355.doi:10.12306/2021jms.0055.(in Chinese).

        Yussouf N,Mansell E R,Wicker L J,et al.,2013.The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes[J].Mon Wea Rev,141(10):3388-3412.doi:10.1175/mwr-d-12-00237.1.

        Yussouf N,Kain J S,Clark A J,2016.Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system[J].Wea Forecasting,31(3):957-983.doi:10.1175/waf-d-15-0160.1.

        張博,趙濱,2019.一種集成風(fēng)向風(fēng)速的風(fēng)場(chǎng)空間檢驗(yàn)方法[J].應(yīng)用氣象學(xué)報(bào),30(2):154-163." Zhang B,Zhao B,2019.A spatial verification method for integrating wind speed and direction[J].J Appl Meteor Sci,30(2):154-163.doi:10.11898/1001-7313.20190203.(in Chinese).

        張宏芳,潘留杰,楊新,2014.ECMWF、日本高分辨率模式降水預(yù)報(bào)能力的對(duì)比分析[J].氣象,40(4):424-432." Zhang H F,Pan L J,Yang X,2014.Comparative analysis of precipitation forecasting capabilities of ECMWF and Japan high-resolution models[J].Meteor Mon,40(4):424-432.doi:10.7519/j.issn.1000-0526.2014.04.004.(in Chinese).

        Zhang J,Howard K,Langston C,et al.,2016.Multi-radar multi-sensor (MRMS) quantitative precipitation estimation:initial operating capabilities[J].Bull Amer Meteor Soc,97(4):621-638.doi:10.1175/BAMS-D-14-00174.1.

        張小雯,唐文苑,鄭永光,等,2020.GRAPES_3 km數(shù)值模式對(duì)流風(fēng)暴預(yù)報(bào)能力的多方法綜合評(píng)估[J].氣象,46(3):367-380." Zhang X W,Tang W Y,Zheng Y G,et al.,2020.Comprehensive evaluations of GRAPES_3 km numerical model in forecasting convective storms using various verification methods[J].Meteor Mon,46(3):367-380.doi:10.7519/j.issn.1000-0526.2020.03.008.(in Chinese).

        趙濱,張博,2018.鄰域空間檢驗(yàn)方法在降水評(píng)估中的應(yīng)用[J].暴雨災(zāi)害,37(1):1-7." Zhao B,Zhang B,2018.Application of neighborhood spatial verification method on precipitation evaluation[J].Torrential Rain Disasters,37(1):1-7.doi:10.3969/j.issn.1004-9045.2018.01.001.(in Chinese).

        朱科鋒,張晨悅,薛明,等,2022.對(duì)流可分辨尺度集合預(yù)報(bào)對(duì)河南“21.7”極端降水事件可預(yù)報(bào)性研究[J].中國(guó)科學(xué):地球科學(xué),52(10):1905-1928." Zhu K F,Zhang C Y,Xue M,et al.,2022.Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking “21.7” extreme rainfall event in Henan Province,China[J].Sci Sinica:Terrae,52(10):1905-1928.doi: 10.1360/N072022-0046.(in Chinese).

        ·ARTICLE·

        Application and research progress of the neighborhood method in weather forecasting

        PAN Liujie1,2,DAI Kan3,ZHANG Hongfang2,4,QI Chunjuan1,2,LIANG Mian1,2,LIU Jiahuimin1,2,DAI Changming1,2,LI Peirong1,2,SHEN Jiaojiao4

        1Shaanxi Meteorological Observatory, Xian 710014, China;

        2Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau, Xian 710014, China;

        3National Meteorological Center, Beijing 100081, China;

        4Shaanxi Meteorological Service Centre, Xian 710014, China

        Abstract" The traditional dichotomous contingency table test, which evaluates the objective performance of numerical weather prediction (NWP) based on the point-to-point matching between forecasted and observed events, has notable limitation when applied to high-resolution NWP or convection-allowing models (CAM). The neighborhood method addresses these limitations by relaxing the grid scale matching constraints between forecasted and observed events, making it particularly valuable for evaluating high-resolution numerical weather forecasts and the post-processing of objective probability forecasts. This paper systematically reviews the key applications of the neighborhood method in weather forecasting, focusing on two key aspects: one is the verification of high-resolution numerical models using neighborhood method; and other is the neighborhood probability or neighborhood probability of ensemble forecasts. First, the study outlines the verification frameworks of two neighborhood methods,“one-to-many” and “many-to-many”, and discusses the data processing techniques associated with the neighborhood method, alongside the physical interpretation of common scoring matrices such as FBS (fractions brier score) and FSS (fractions skill score). It is concluded that, in addition to traditional dichotomous contingency table-based verification metrics, the neighborhood method facilitates comparisons of forecast performance across multiple spatial and temporal scales. This enables the derivation of diagnostic metrics for NWP forecast performance based on scale changes, providing unique advantages. Second, it summarizes the fundamental concepts and statistical meaning of the grid scale neighborhood probability and the neighborhood probability at scales larger than the grid. Discussion focuses on expounding the algorithm workflow and internal meaning of neighborhood ensemble probability (NEP) forecast and neighborhood maximum ensemble probability (NMEP) forecast derived from ensemble forecasts. Third, by examining typical application cases, it analyzes the advantages, disadvantages and applicability of the neighborhood method and neighborhood ensemble probability. Results show that both NEP and NMEP enhance precipitation forecast scores. NEP performs better for large-scale and systematic precipitation forecasts, whereas NMEP is more effective for convective and extreme precipitation events. However, the selection of an appropriate neighborhood radius remains a critical technical challenge, as it is influenced by variations in underlying surface conditions and the optimal neighborhood scales of different NWP products. Finally, the paper discusses future directions for the application of the neighborhood method in weather forecasting. Promising areas of research and application include integrating neighborhood ensemble probability with the temporal dimension, developing metrics for the rare-event ensemble neighborhood probability, and exploring synergies between the neighborhood method and artificial intelligence. These directions hold significant potential for advancing the utility and impact of the neighborhood method in weather forecasting.

        Keywords" neighborhood verification; fractions skill score; neighborhood probability; neighborhood ensemble probability

        doi:10.13878/j.cnki.dqkxxb.20231207001

        (責(zé)任編輯:倪東鴻)

        国产亚洲精品美女久久久久| 大地资源网在线观看免费官网| 成年女人vr免费视频| 国产啪精品视频网站| 国产a级精精彩大片免费看| 中文字幕一区二区三区.| 亚洲av高清一区二区三区| 日韩人妻ol丝袜av一二区 | 成人大片免费观看视频| 亚洲av永久无码精品放毛片| 亚洲av无码成人精品区天堂 | 韩国主播av福利一区二区| 久久国产精品精品国产色| 国产成人av三级在线观看韩国| 无码av中文一区二区三区桃花岛| 人人玩人人添人人澡| 精品91精品91精品国产片| 日本女优五十路中文字幕| 国产成人av在线免播放观看新 | 久久人妻AV无码一区二区| 亚洲国产丝袜美女在线| 老熟妇乱子伦牲交视频| 国产成人精品一区二区三区免费| 91久久国产自产拍夜夜嗨| 美女扒开内裤露黑毛无遮挡| 日韩av一区二区观看| 亚洲av午夜福利精品一区| 三上悠亚av影院在线看| 免费一区啪啪视频| 97激情在线视频五月天视频| 欧美亅性猛交内射| 精品人妻一区二区三区四区| 亚洲香蕉毛片久久网站老妇人 | 亚洲欧美一区二区三区| 音影先锋色天堂av电影妓女久久| 中文字幕亚洲精品一二三区| 国产一区二区三区男人吃奶| av网站免费线看精品| 性欧美暴力猛交69hd| 亚洲精品乱码久久久久99| 成熟妇女毛茸茸性视频|