亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        聚乙烯醇/透明質(zhì)酸復(fù)合導(dǎo)電水凝膠的制備及其傳感和抗菌性能

        2024-12-31 00:00:00王艷敏丁新波劉濤仇巧華HASANMdKamrul朱靈奇周家寶
        現(xiàn)代紡織技術(shù) 2024年8期

        摘 要:為制備兼具傳感和抗菌功能的導(dǎo)電水凝膠,以聚乙烯醇(PVA)和透明質(zhì)酸(HA)為原料,通過原位聚合和凍融法制得氧化鋅/聚(3, 4-乙烯二氧噻吩)/聚乙烯醇/透明質(zhì)酸(ZnO/PEDOT/PVA/HA,簡(jiǎn)寫ZP)導(dǎo)電水凝膠;并對(duì)其形貌、結(jié)構(gòu)組成、力學(xué)性能、傳感性能及其抗菌性能進(jìn)行分析。結(jié)果表明:氧化鋅的質(zhì)量分?jǐn)?shù)在0.3%時(shí),ZP導(dǎo)電水凝膠的電導(dǎo)率最高可達(dá)2.91 S/m;ZP導(dǎo)電水凝膠具有良好的拉伸應(yīng)變性能(≥100%)、靈敏的響應(yīng)速度(lt;142 ms)和較好的穩(wěn)定性(>1000次),能夠?qū)θ梭w不同部位的運(yùn)動(dòng)信號(hào)進(jìn)行監(jiān)測(cè)識(shí)別;此外,ZP導(dǎo)電水凝膠對(duì)金黃色葡萄球菌(S.aureus)和大腸桿菌(E.coli)具有良好的抑制效果。該導(dǎo)電水凝膠在柔性可穿戴傳感器及醫(yī)療健康監(jiān)測(cè)方面具有良好的應(yīng)用前景。

        關(guān)鍵詞:導(dǎo)電水凝膠;傳感性能;柔性可穿戴傳感器;抗菌性能

        中圖分類號(hào):TB332

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1009-265X(2024)08-0023-12

        收稿日期:20231113

        網(wǎng)絡(luò)出版日期:20240119

        基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(37900964);浙江理工大學(xué)科研啟動(dòng)基金項(xiàng)目(11150131722120)

        作者簡(jiǎn)介:王艷敏(1998—),女,河南商丘人,碩士研究生,主要從事現(xiàn)代紡織技術(shù)和產(chǎn)品開發(fā)應(yīng)用方面的研究。

        通信作者:丁新波,E-mail:dxblt@zstu.edu.cn

        隨著人們對(duì)健康要求的提高,越來越多的智能可穿戴傳感器[1走進(jìn)人們的生活。柔性可穿戴傳感器常用于人體運(yùn)動(dòng)監(jiān)測(cè)和個(gè)性化健康監(jiān)測(cè)等。在外界條件發(fā)生變化時(shí),傳感器以相應(yīng)電信號(hào)的形式反饋。水凝膠因其優(yōu)異的力學(xué)性能、柔韌性、黏附性和形狀可多變性,廣泛應(yīng)用于柔性可穿戴傳感器的制備中。將導(dǎo)電高聚物與水凝膠復(fù)合,可以提高水凝膠的導(dǎo)電性能,從而改善其傳感性能。其中導(dǎo)電高聚物聚(3, 4-乙烯二氧噻吩)(PEDOT)因具有優(yōu)異的化學(xué)穩(wěn)定性以及良好的生物相容性且易于制備而被廣泛研究[2-5。然而,水凝膠基質(zhì)及其濕潤的環(huán)境為細(xì)菌的繁殖提供了理想的條件,使水凝膠傳感器的使用壽命受到影響,甚至對(duì)使用者的健康造成潛在危害。因此,制備具有抗菌性能的導(dǎo)電水凝膠傳感器成為該領(lǐng)域的研究熱點(diǎn)之一。

        Mater等[6通過溶液鑄造法制備了殼聚糖(Cs)/刺槐豆膠(LBG)與Fe(III)、Zn(II)、Cu(II)金屬離子的水凝膠。該研究結(jié)果表明,金屬離子賦予了水凝膠導(dǎo)電性能,殼聚糖和金屬離子的引入使導(dǎo)電水凝膠對(duì)金黃色葡萄球菌和銅綠假單胞菌均具有較強(qiáng)的抑菌活性。Sun等[7采用自由基共聚法合成了兩性離子水聚膠,并將季銨鹽陽離子嵌入聚合物鏈中。該水凝膠具有良好的抗菌性能和可調(diào)的黏附性能,可作為柔性可穿戴傳感器用于人體運(yùn)動(dòng)信號(hào)檢測(cè)。然而,由于廣譜殺菌劑在長(zhǎng)時(shí)間使用后會(huì)提高細(xì)菌的耐藥性,對(duì)人體健康和生態(tài)環(huán)境帶來新的威脅。因此,選擇使用具有抗耐藥性的殺菌劑尤為重要。在各種納米抗菌材料中,金屬氧化物因其無毒、穩(wěn)定、高效等優(yōu)點(diǎn)而備受關(guān)注[8。其中,氧化鋅以其顯著的抗菌性能及與人體細(xì)胞9良好的生物相容性10,成為治療多藥耐藥細(xì)菌11-12的替代品13。由于其非特異性活性,氧化鋅(ZnO)也常用于對(duì)抗微生物耐藥性的研究中[14-16。此外,鋅離子抗菌時(shí)具有安全、環(huán)境友好[17和長(zhǎng)效抗菌18等特點(diǎn)。氧化鋅的抗菌性能依賴于多種殺菌機(jī)制,Zn2+可以抑制細(xì)菌代謝過程,如糖酵解和磷酸烯醇式丙酮酸和F-ATP酶反應(yīng),實(shí)現(xiàn)抗菌的作用[19;氧化鋅在常溫下可自我分解出可以自由運(yùn)動(dòng)帶負(fù)電的電子,同時(shí)留下帶正電的電子空穴,電子空穴可將空氣中的氧轉(zhuǎn)化成活性氧,與多種有機(jī)物發(fā)生氧化反應(yīng),從而把細(xì)菌殺死20

        本文將導(dǎo)電高聚物PEDOT和具有導(dǎo)電抗菌性能的氧化鋅與聚乙烯醇/透明質(zhì)酸水凝膠(PVA/HA)復(fù)合,以制備具有導(dǎo)電和抗菌性能的氧化鋅/聚(3, 4-乙烯二氧噻吩)/聚乙烯醇/透明質(zhì)酸(ZnO/PEDOT/PVA/HA,簡(jiǎn)寫ZP)導(dǎo)電水凝膠,并研究其微觀形貌及理化性能。同時(shí),將ZP導(dǎo)電水凝膠組裝成應(yīng)變傳感器,對(duì)人體手指、手腕等關(guān)節(jié)彎曲運(yùn)動(dòng)進(jìn)行監(jiān)測(cè)和識(shí)別,并進(jìn)行抗菌測(cè)試。本文測(cè)試該導(dǎo)電水凝膠在柔性可穿戴領(lǐng)域的應(yīng)用潛力,為后期該導(dǎo)電水凝膠應(yīng)用于醫(yī)療健康監(jiān)測(cè)提供依據(jù)。

        1 實(shí)驗(yàn)

        1.1 材料與設(shè)備

        聚乙烯醇材料(PVA1799)、醋酸鋅二水合物(Zn(CH3COO)2·2H2O)、3, 4-乙烯二氧噻吩(EDOT)、過硫酸銨(APS)以上藥品均為分析純,皆購于上海麥克林生物化學(xué)有限公司;透明質(zhì)酸(HA,MW=150000 Da, gt;99%)購于華熙生物科技股份有限公司;去離子水為實(shí)驗(yàn)室自制。

        Ultra55型場(chǎng)發(fā)射掃描電子顯微鏡(FE-SEM)用于表面形貌分析;JEM2100型透射電子顯微鏡(TEM)用于結(jié)構(gòu)表征;D8 discover 型X射線衍射儀用于結(jié)晶結(jié)構(gòu)掃描測(cè)試;Nicolet is50型傅里葉紅外光譜儀(FTIR)用于材料官能團(tuán)分析;Instron5969型萬能試驗(yàn)機(jī)測(cè)試導(dǎo)電水凝膠的力學(xué)性能;Keithley2400數(shù)字源表用于材料電化學(xué)性能測(cè)試。

        1.2 實(shí)驗(yàn)方法

        氧化鋅和ZP導(dǎo)電水凝膠的制備具體流程如下:

        a)圖1(a)是氧化鋅的制備示意。采用機(jī)械輔助熱分解工藝制備純氧化鋅[21。將2 g醋酸鋅[(CH3COO)2 2H2O]前驅(qū)體用研缽-研杵研磨45 min。然后將研磨后的粉末放在氧化鋁坩堝中,置于馬弗爐中進(jìn)行熱分解,以4 ℃/min的升溫速率升溫至300 ℃后持續(xù)加熱4 h。將獲得的粉末樣品用去離子水洗滌兩次,然后在100 ℃的烘箱中干燥8 h,最終得到氧化鋅。

        b)圖1(b)是ZP導(dǎo)電水凝膠的制備示意。首先,分別配制質(zhì)量分?jǐn)?shù)為10%的PVA水溶液和質(zhì)量分?jǐn)?shù)為0.5%的HA水溶液。將一定質(zhì)量比的PVA和去離子水置于燒杯中,在45 ℃下攪拌30 min后,升溫至90 ℃使PVA充分溶解2 h,得到均勻透明的純PVA溶液。將一定質(zhì)量比的HA和去離子水置于燒杯中,在50 ℃下攪拌30 min使HA充分溶解,得到均勻透明的純HA溶液。待溶液冷卻后將PVA和HA按9∶1的質(zhì)量比進(jìn)行配置,并于磁力攪拌器上混合均勻。之后分別加入不同質(zhì)量的ZnO粉末并通過超聲和攪拌24 h使ZnO粉末均勻分布在PVA/HA溶液中。接著在ZnO/PVA/HA溶液中加入質(zhì)量分?jǐn)?shù)為1%的EDOT單體并通過超聲攪拌使EDOT充分溶解在ZnO/PVA/HA溶液中,在EDOT單體分散均勻后將相同摩爾質(zhì)量的引發(fā)劑APS緩慢加入,控制反應(yīng)速度。在引發(fā)劑加入完成后,將溶液置于室溫下反應(yīng)24 h,待溶液中噻吩聚合完成后將所得溶液注入模具(40 mm×10 mm×1 mm)。通過凍融法[22在-5 ℃保存20 h使溶液充分凍結(jié),然后在室溫下解凍4 h,循環(huán)3次得到ZP導(dǎo)電水凝膠,分別命名為ZP0、ZP0.1、ZP0.3、ZP0.5、ZP0.7、ZP1.0。數(shù)字代表ZnO含量占PVA/HA溶液的質(zhì)量百分比。

        1.3 測(cè)試方法與表征

        1.3.1 理化特性測(cè)試

        先將樣品冷凍干燥,樣品干燥之后將樣品貼在電鏡臺(tái)子上并進(jìn)行鍍金,鍍金時(shí)間為100 s。在3 kV的加速電壓下,采用熱場(chǎng)發(fā)射掃描電子顯微鏡對(duì)冷凍干燥后的ZP導(dǎo)電水凝膠截面形貌進(jìn)行觀察分析;通過FTIR對(duì)導(dǎo)電水凝膠進(jìn)行化學(xué)結(jié)構(gòu)分析,其中波數(shù)范圍為4000~400 cm-1。X射線衍射儀用于結(jié)晶結(jié)構(gòu)掃描測(cè)試分析,管中電壓為40 kV,管中電流為40 mA,放射源為Cu靶Kα射線掃描范圍設(shè)定為5°~80°,掃描步長(zhǎng)為5 (°)/min。

        1.3.2 力學(xué)性能測(cè)試

        在拉伸強(qiáng)力試驗(yàn)機(jī)夾持下,對(duì)導(dǎo)電水凝膠的拉伸力學(xué)性能進(jìn)行測(cè)試。樣品的大小為20 mm×5 mm×1 mm,夾持距離為10 mm,拉伸速度為10 mm/min。拉伸應(yīng)力大小的計(jì)算公式為:

        σ=F/S(1)

        式中:σ為導(dǎo)電水凝膠的應(yīng)力,kPa;F為導(dǎo)電水凝膠所受張力,N;S為導(dǎo)電水凝膠的橫截面積,m2

        1.3.3 電學(xué)性能測(cè)試

        電導(dǎo)率測(cè)定通過中采用Keithley2400數(shù)字源表雙電極體系測(cè)試。在長(zhǎng)方體導(dǎo)電水凝膠(40 mm×10 mm×1 mm)的兩端貼上導(dǎo)電電極,通過銅導(dǎo)線與Keithley2400數(shù)字源表連接。通過公式計(jì)算電導(dǎo)率[23

        δ=L/RS(2)

        式中:δ為導(dǎo)電水凝膠的電導(dǎo)率,S/m;R為導(dǎo)電水凝膠的電阻,Ω;L為導(dǎo)電水凝膠的長(zhǎng)度,m;S為導(dǎo)電水凝膠的橫截面積,m2;

        使用Keithley2400數(shù)字源表和步進(jìn)器測(cè)試ZP導(dǎo)電水凝膠的應(yīng)變傳感器性能。取大小為20 mm×10 mm×1 mm的ZP導(dǎo)電水凝膠,將其固定在步進(jìn)器的夾具上,ZP導(dǎo)電水凝膠的兩端貼上銅片,并通過銅導(dǎo)線與數(shù)字萬用表連接,探究拉伸過程中ZP導(dǎo)電水凝膠的拉伸應(yīng)變和電阻信號(hào)變化,通過下式計(jì)算相對(duì)電阻變化率(ΔR/R0[23

        ΔR/R0=(R-R0)/R0(3)

        式中:ΔR/R0為相對(duì)電阻變化率,%;ΔR為ZP導(dǎo)電水凝膠拉伸過程中的電阻與初始電阻的差值,Ω;R為ZP導(dǎo)電水凝膠拉伸過程中的電阻,Ω;R0為ZP導(dǎo)電水凝膠未拉伸時(shí)的初始電阻,Ω;

        ZP導(dǎo)電水凝膠靈敏度的測(cè)量因子(GF)可以通過以下公式得到[23

        GF=(ΔR/R0)/ε(4)

        式中:ΔR/R0為相對(duì)電阻變化率,%;ε為所施加的應(yīng)變,%。

        1.3.4 應(yīng)變傳感器性能測(cè)試

        將ZP導(dǎo)電水凝膠制成20 mm×10 mm×1 mm條狀樣品,用銅線在樣品兩端連接數(shù)字萬用表制成可穿戴柔性傳感器,將其貼合在身體的不同關(guān)節(jié)(手指、手腕、膝蓋等)處,實(shí)時(shí)記錄電阻的變化,通過電阻率的變化監(jiān)測(cè)人體運(yùn)動(dòng)狀態(tài)。

        1.3.5 導(dǎo)電水凝膠的抗菌性能測(cè)試

        細(xì)菌培養(yǎng)基營養(yǎng)瓊脂配制:將6.4 g營養(yǎng)瓊脂溶于200 mL去離子水中,120 ℃高壓滅菌30 min,待高壓滅菌鍋溫度降至65 ℃取出,倒入培養(yǎng)皿中,冷卻形成固體培養(yǎng)基。營養(yǎng)肉湯的配置:將0.36 g營養(yǎng)肉湯溶于20 mL去離子水中,高壓滅菌后,冷卻至室溫下備用。細(xì)菌培養(yǎng):將大腸桿菌和金黃色葡萄球菌置于液體培養(yǎng)基中,在37 ℃恒溫?fù)u床中過夜培養(yǎng)活化。抑菌圈實(shí)驗(yàn):將200 μL細(xì)菌懸液(1×105 CFU/mL)均勻涂抹于固體培養(yǎng)基上,靜置吸收10 min。將導(dǎo)電水凝膠樣品放在瓊脂板上并輕輕按壓,然后在37 ℃下培養(yǎng)18 h后觀察抑菌圈大小。用尺子測(cè)量每個(gè)樣品的抑菌圈大小,并拍攝對(duì)應(yīng)培養(yǎng)皿的照片。導(dǎo)電水凝膠樣品的抗菌性能采用抑菌環(huán)直徑來評(píng)定,計(jì)算公式如式(5)所示:

        D′=D-d(5)

        式中:D′為抑菌環(huán)直徑,mm;D為抑菌圈外徑,mm;d為被測(cè)樣品直徑,mm。

        放置6個(gè)月后的樣品抗菌實(shí)驗(yàn)同上。

        2 結(jié)果與討論

        2.1 氧化鋅的結(jié)構(gòu)表征

        圖2(a)—(c)為氧化鋅的掃描電鏡圖和對(duì)應(yīng)的直徑分布圖及透射電鏡微觀形貌圖。從圖2(a)—(c)中可以看出ZnO直徑主要分布在40~50 nm,長(zhǎng)度約為500 nm。通過EDS對(duì)氧化鋅進(jìn)行了元素分析,如圖2(d)所示為氧化鋅的能譜圖,分別在0.525 keV和1.012 keV檢測(cè)到特征峰,分別為O元素和Zn元素,且O元素和Zn元素的重量百分比分別為17.41%和82.59%。在整個(gè)掃描范圍內(nèi),沒有檢測(cè)到雜質(zhì)峰,表明氧化鋅的成功制備。圖2(e)是氧化鋅的X射線衍射光譜。在2θ=31.98°、34.70°、36.49°、47.81°、56.77°處出現(xiàn)的衍射峰,分別是(100)、(002)、(101)、(102)、(110)平面,對(duì)應(yīng)氧化鋅典型纖鋅礦結(jié)構(gòu)的晶面(JCPDS 36-1451)[24。另外,XRD的衍射峰表明合成的氧化鋅是結(jié)晶的,且沒有發(fā)現(xiàn)除氧化鋅外其他物質(zhì)的衍射峰,表明制備的氧化鋅中沒有雜質(zhì)。圖2(f)為氧化鋅的紅外光譜圖,506 cm-1處的吸收峰是纖鋅礦六方相純氧化鋅的典型特征吸收峰25,以上結(jié)果證實(shí)了纖鋅礦結(jié)構(gòu)氧化鋅的成功制備。

        2.2 ZP導(dǎo)電水凝膠的結(jié)構(gòu)和組成表征

        圖3(a)是ZP0.3導(dǎo)電水凝膠的截面掃描電鏡圖,從圖中可以看出,ZP0.3導(dǎo)電水凝膠具有良好的三維網(wǎng)絡(luò)結(jié)構(gòu),這種網(wǎng)絡(luò)結(jié)構(gòu)的形成為電子傳輸提供了路徑,能夠有效提高導(dǎo)電水凝膠中電子的傳輸能力。當(dāng)ZP0.3導(dǎo)電水凝膠發(fā)生應(yīng)變時(shí),其三維網(wǎng)絡(luò)結(jié)構(gòu)迅速發(fā)生變化,使相應(yīng)的電阻發(fā)生變化,這有利于導(dǎo)電水凝膠的快速響應(yīng)。圖3(b)是ZP0.3導(dǎo)電水凝膠的能譜及對(duì)應(yīng)的元素分布圖,從圖中可以看出,C、O、S、Zn元素均勻分布在ZP0.3導(dǎo)電水凝膠上,這進(jìn)一步證實(shí)了導(dǎo)電高聚物和氧化鋅在ZP0.3導(dǎo)電水凝膠中均勻分布,這有助于得到高精度的傳感信號(hào)。

        通過紅外光譜來研究氧化鋅加入水凝膠中對(duì)導(dǎo)電水凝膠化學(xué)結(jié)構(gòu)的影響。圖4顯示了氧化鋅加入前后導(dǎo)電水凝膠化學(xué)結(jié)構(gòu)的變化。圖4中3264 cm-1和3296 cm-1分別是PVA和HA中—OH伸縮

        振動(dòng)峰,而在無氧化鋅的ZP0(PEDOT/HA/PVA)導(dǎo)電水凝膠中該伸縮振動(dòng)峰偏移至3207 cm-1,這主要是因?yàn)樵赯P0導(dǎo)電水凝膠中PVA和HA與PEDOT之間產(chǎn)生了氫鍵。PVA在1082 cm-1處的特征峰歸因于C—O鍵的拉伸振動(dòng),當(dāng)PEDOT導(dǎo)電高聚物在PVA/HA水凝膠中聚合后,受PEDOT中C—O—C鍵對(duì)稱伸縮振動(dòng)[26的影響該峰強(qiáng)度變大。1032 cm-1處的特征峰為HA上伯醇的C—OH伸縮振動(dòng)[27。980 cm-1處的特征峰是噻吩環(huán)上的S—C伸縮振動(dòng)[28,1170 cm-1處的特征峰是二氧烷環(huán)上的C—O鍵的伸縮振動(dòng),1400 cm-1附近的峰歸因于噻吩環(huán)上醌類結(jié)構(gòu)的CC和C—C鍵的伸縮振動(dòng)[29。425 cm-1是氧化鋅六方纖鋅礦的特征峰25。紅外結(jié)果表明:ZnO/PEDOT/HA/PVA導(dǎo)電水凝膠已經(jīng)成功制備,氧化鋅的加入并沒有對(duì)ZnO/PEDOT/HA/PVA導(dǎo)電水凝膠的化學(xué)結(jié)構(gòu)產(chǎn)生明顯影響。

        2.3 ZP導(dǎo)電水凝膠的力學(xué)性能及電學(xué)性能分析

        良好的力學(xué)性能是導(dǎo)電水凝膠應(yīng)用于柔性應(yīng)變傳感器的先決條件,為探究氧化鋅對(duì)導(dǎo)電水凝膠力學(xué)性能的影響,對(duì)ZP導(dǎo)電水凝膠的拉伸力學(xué)性能進(jìn)行了測(cè)試分析,并以無導(dǎo)電高聚物的PH(PVA/HA)水凝膠作為對(duì)照。如圖5(a)—(b)所示,對(duì)于ZP0(PEDOT/HA/PVA)導(dǎo)電水凝膠而言,導(dǎo)電高聚物在水凝膠中的原位聚合顯著增加了ZP0導(dǎo)電水凝膠的斷裂強(qiáng)度和斷裂伸長(zhǎng)率,其斷裂強(qiáng)度和斷裂伸長(zhǎng)率分別為675.42 kPa和416%,這是導(dǎo)電水凝膠中PVA和HA與PEDOT之間氫鍵相互作用的結(jié)果。當(dāng)氧化鋅加入ZP0導(dǎo)電水凝膠后,可以看ZP0.1—ZP1.0導(dǎo)電水凝膠的斷裂伸長(zhǎng)率減小,這可能是因?yàn)檠趸\的加入影響了ZP0導(dǎo)電水凝膠的三維網(wǎng)絡(luò)結(jié)構(gòu)。然而由于氫鍵的作用,ZP0.1—ZP1.0導(dǎo)電水凝膠的斷裂強(qiáng)度和斷裂伸長(zhǎng)率仍維持在較高水平。

        對(duì)于導(dǎo)電水凝膠傳感器而言,高電導(dǎo)率是電信號(hào)快速響應(yīng)的關(guān)鍵。通過PEDOT的原位聚合和氧化鋅的進(jìn)一步復(fù)合來提高水凝膠的電導(dǎo)率。PEDOT雙鍵中離域π電子沿著聚合物鏈的自由移動(dòng),使高聚物具有導(dǎo)電性;此外,在室溫下,氧化鋅中的大部分的鋅原子就能被激發(fā)而形成電子空穴,空穴傳導(dǎo)是氧化鋅具有導(dǎo)電性的原因之一[30,這都有利于提高水凝膠的電導(dǎo)率。如圖5(c)是水凝膠的電導(dǎo)率,PEDOT在水凝膠中的原位聚合能有效提高水凝膠的電導(dǎo)率,ZP0的電導(dǎo)率可達(dá)1.93 S/m。隨著氧化鋅含量的增加,ZP導(dǎo)電水凝膠的電導(dǎo)率最大增加至2.91 S/m,當(dāng)氧化鋅含量繼續(xù)增加時(shí),ZP導(dǎo)電水凝膠的電導(dǎo)率逐漸趨于平緩。這可能是因?yàn)楫?dāng)氧化鋅含量較低時(shí),氧化鋅能夠在不影響水凝膠三維網(wǎng)絡(luò)的前提下均勻分散于水凝膠的基質(zhì)中,并形成良好的導(dǎo)電網(wǎng)絡(luò)。當(dāng)氧化鋅質(zhì)量分?jǐn)?shù)超過0.3%時(shí),會(huì)在水凝膠體系中產(chǎn)生團(tuán)聚,繼而影響后續(xù)步驟中導(dǎo)電高聚物在水凝膠中的復(fù)合,使得水凝膠的電導(dǎo)率無法繼續(xù)增加。考慮到ZP導(dǎo)電水凝膠的機(jī)械性能和電導(dǎo)率對(duì)水凝膠傳感性能的影響,選擇ZP0.3作為柔性傳感器材料并對(duì)其傳感性能進(jìn)行進(jìn)一步研究。

        2.4 ZP0.3導(dǎo)電水凝膠的應(yīng)變傳感性能

        為確定所制備的ZP0.3導(dǎo)電水凝膠的傳感效果,對(duì)ZP0.3導(dǎo)電水凝膠的傳感性能進(jìn)行測(cè)試,圖6(a)是ZP0.3導(dǎo)電水凝膠在不同拉伸狀態(tài)下的I-V曲線,可以看出,隨著ZP0.3導(dǎo)電水凝膠被拉伸程度的增大,ZP0.3導(dǎo)電水凝膠的I-V曲線斜率發(fā)生規(guī)律性的變化,這是ZP0.3導(dǎo)電水凝膠電阻隨其應(yīng)變變化而發(fā)生改變的結(jié)果。如圖6(b)—(d)所示,在相同拉伸速度不同拉伸應(yīng)變條件下對(duì)ZP0.3導(dǎo)電水凝膠的應(yīng)變傳感性能進(jìn)行測(cè)試,在3%~9%、10%~50%和60%~100%的應(yīng)變范圍內(nèi)ZP0.3導(dǎo)電水凝膠的電阻變化率隨著水凝膠拉伸應(yīng)變的增加而增大。這主要是因?yàn)樵诶爝^程中,ZP0.3導(dǎo)電水凝膠的內(nèi)部導(dǎo)電網(wǎng)絡(luò)被拉伸,導(dǎo)電單元之間的距離增加,導(dǎo)致電子的傳輸路徑延長(zhǎng),電阻增大31,同時(shí)也表明ZP0.3導(dǎo)電水凝膠作為傳感器時(shí)具有對(duì)外界不同應(yīng)變刺激的監(jiān)測(cè)能力。此外,靈敏度(GF)是評(píng)價(jià)導(dǎo)電水凝膠傳感性能的重要因素之一。ZP0.3導(dǎo)電水凝膠電阻變化率對(duì)不同應(yīng)變的敏感響應(yīng)如圖6(e)所示,靈敏度曲線的斜率大小隨應(yīng)變逐漸增加,并可分為3個(gè)線性響應(yīng)區(qū)域:3%~9%的GF為1.61,10%~50%的GF為1.79,50%~100%的GF為2.81。ZP0.3導(dǎo)電水凝膠的電阻變化率與應(yīng)變大小之間在3%~100%的大范圍內(nèi)呈現(xiàn)線性相關(guān),這說明ZP0.3導(dǎo)電水凝膠可以同時(shí)對(duì)小應(yīng)變和大應(yīng)變的運(yùn)動(dòng)進(jìn)行監(jiān)測(cè)。同時(shí),對(duì)于人體運(yùn)動(dòng)監(jiān)測(cè),傳感器具有優(yōu)異響應(yīng)時(shí)間顯得尤為重要。圖6(g)是ZP0.3導(dǎo)電水凝膠在1%的拉伸應(yīng)變下的響應(yīng)時(shí)間,可以看出ZP0.3導(dǎo)電水凝膠的加載和卸載過程分別呈現(xiàn)出141.0 ms和147.3 ms的快速響應(yīng)。說明ZP0.3導(dǎo)電水凝膠作為柔性應(yīng)變傳感器時(shí),可以快速捕獲外部刺激信號(hào),并將其轉(zhuǎn)換為電信號(hào)輸出。圖6(f)是ZP0.3導(dǎo)電水凝膠在30%的拉伸應(yīng)變下的速度響應(yīng)。在不同拉伸速度下ZP0.3導(dǎo)電水凝膠呈現(xiàn)出明顯的速度響應(yīng),且不同速度下ZP0.3導(dǎo)電水凝膠的電導(dǎo)率穩(wěn)定在50%左右。此外,進(jìn)一步對(duì)ZP0.3導(dǎo)電水凝膠的耐疲勞性能進(jìn)行了評(píng)估,圖6(i)是ZP0.3導(dǎo)電水凝膠在拉伸應(yīng)變?yōu)?0%時(shí)多次循環(huán)拉伸電阻變化率的穩(wěn)定性。ZP0.3導(dǎo)電水凝膠在超過1000次的循環(huán)拉伸-釋放過程后,相對(duì)電阻變化率表現(xiàn)出優(yōu)異的穩(wěn)定性。在前3000 s的測(cè)試中,隨著ZP0.3導(dǎo)電水凝膠循環(huán)次數(shù)的增加,ZP0.3導(dǎo)電水凝膠的初始阻值也在增加,但ZP0.3導(dǎo)電水凝膠的相對(duì)電阻變化率

        仍穩(wěn)定在16.6%左右。這是因?yàn)殡S著測(cè)試時(shí)間的推移,ZP0.3導(dǎo)電水凝膠表面水分的丟失導(dǎo)致初始電阻逐漸增大,但導(dǎo)電高聚物在水凝膠中的原位聚合賦予水凝膠網(wǎng)絡(luò)的氫鍵作用使ZP0.3導(dǎo)電水凝膠在多次循環(huán)后仍具有優(yōu)異的拉伸應(yīng)變性能,這也是ZP0.3導(dǎo)電水凝膠相對(duì)電阻變化率穩(wěn)定在16.6%的主要原因。良好的穩(wěn)定性為ZP0.3導(dǎo)電水凝膠在應(yīng)

        變傳感器中的應(yīng)用奠定了基礎(chǔ)。

        2.5 ZP0.3導(dǎo)電水凝膠傳感器在人體運(yùn)動(dòng)監(jiān)測(cè)中的應(yīng)用

        將具有良好力學(xué)性能、導(dǎo)電性和傳感性能的ZP0.3導(dǎo)電水凝膠組裝成可穿戴應(yīng)變傳感器。將其黏附在人體的不同運(yùn)動(dòng)部位來監(jiān)測(cè)運(yùn)動(dòng)信號(hào)的變化。人體運(yùn)動(dòng)信號(hào)監(jiān)測(cè)結(jié)果如圖7所示,將厚度為1 mm的ZP0.3導(dǎo)電水凝膠緊密地附著在志愿者的手指、手腕、膝關(guān)節(jié)、頸部、腳踝處對(duì)人體運(yùn)動(dòng)信號(hào)進(jìn)行監(jiān)測(cè)。從圖7中可以看出,不同部位的彎曲會(huì)使ZP0.3導(dǎo)電水凝膠產(chǎn)生不同的電阻變化率,并且可以監(jiān)測(cè)到循環(huán)穩(wěn)定的信號(hào)峰,這說明ZP0.3導(dǎo)電水凝膠具有可靠的運(yùn)動(dòng)監(jiān)測(cè)穩(wěn)定性和可重復(fù)性,信號(hào)峰的形狀變化及對(duì)應(yīng)的電阻變化率的不同可以用來識(shí)別關(guān)節(jié)活動(dòng)。這說明當(dāng)ZP0.3導(dǎo)電水凝膠作為柔性應(yīng)變傳感器對(duì)人體運(yùn)動(dòng)進(jìn)行監(jiān)測(cè)時(shí),具有良好的監(jiān)測(cè)識(shí)別能力。

        2.6 ZP導(dǎo)電水凝膠的抗菌性能

        以PVA和PH(PVA/HA)水凝膠作為對(duì)照樣,通過抑菌圈法觀察ZP0和ZP0.3導(dǎo)電水凝膠對(duì)革蘭氏陽性S.aureus和革蘭氏陰性E.coli的抗菌活性。水凝膠的抗菌活性如圖8(a)所示,對(duì)于PVA和PH水凝膠,其對(duì)應(yīng)測(cè)試的兩種菌種周圍均無抑菌圈出

        現(xiàn),這表明PVA和PH水凝膠對(duì)這兩種細(xì)菌均無抗菌活性。而ZP0導(dǎo)電水凝膠樣品周圍出現(xiàn)了明顯的抑菌圈,在E.coli的抗菌測(cè)試中樣品周圍出現(xiàn)了含有分散E.coli的抑菌圈,這表明相較于E.coli,ZP0導(dǎo)電水凝膠對(duì)S.aureus表現(xiàn)出較好的抗菌活性。在ZP0.3導(dǎo)電水凝膠對(duì)S.aureus和E.coli的抗菌測(cè)試中,樣品周圍均出現(xiàn)了明顯的抑菌圈,表明ZP0.3導(dǎo)電水凝膠對(duì)S.aureus和E.coli均表現(xiàn)出良好的抗菌活性,這也說明了氧化鋅的加入增強(qiáng)了導(dǎo)電水凝膠的抗菌性能。ZP0和ZP0.3導(dǎo)電水凝膠對(duì)革蘭氏陽性S.aureus和革蘭氏陰性E.coli的抗菌耐久性測(cè)試結(jié)果如圖8(b)所示,在長(zhǎng)達(dá)6個(gè)月的放置后,ZP0和ZP0.3導(dǎo)電水凝膠仍具有明顯的抗菌活性。水凝膠抗菌活性對(duì)應(yīng)的抑菌圈直徑如表1所示。ZP0.3導(dǎo)電水凝膠長(zhǎng)時(shí)間的抗菌活性為其在醫(yī)療健康監(jiān)測(cè)方面的使用提供了可能。

        3 結(jié)論

        本文將聚(3, 4-乙烯二氧噻吩)導(dǎo)電高聚物和氧化鋅與聚乙烯醇/透明質(zhì)酸水凝膠進(jìn)行復(fù)合,采用凍融法制備了ZP導(dǎo)電水凝膠,并研究了其理化性能、電學(xué)性能和傳感性能以及抗菌性能。主要得出以下結(jié)論:

        a)通過凍融法制備的ZP0.3導(dǎo)電水凝膠具有良好的三維網(wǎng)絡(luò)結(jié)構(gòu),氧化鋅的加入能夠進(jìn)一步提高水凝膠的電導(dǎo)率,其電導(dǎo)率最高可達(dá)2.91 S/m。

        b)ZP0.3導(dǎo)電水凝膠對(duì)應(yīng)變速度、小應(yīng)變和大應(yīng)變都能產(chǎn)生積極的響應(yīng),且響應(yīng)效果穩(wěn)定;響應(yīng)靈敏度因子最高可達(dá)2.81,響應(yīng)時(shí)間小于142 ms,并具有出色的耐疲勞性能?;赯P0.3導(dǎo)電水凝膠的柔性可穿戴傳感器具有較高靈敏度和豐富的傳感性能,可以穩(wěn)定地監(jiān)測(cè)和識(shí)別各種運(yùn)動(dòng)形變。

        c)ZP0.3導(dǎo)電水凝膠對(duì)金黃色葡萄球菌(S.aureus)和大腸桿菌(E.coli)具良好的抗菌性能,為柔性可穿戴水凝膠傳感器在醫(yī)療健康監(jiān)測(cè)方面的應(yīng)用提供了可能。

        參考文獻(xiàn):

        [1]陳嶺,任孟,張德鎖. rGO/MWCNT/PDMS復(fù)合柔性壓力傳感器的制備與性能 [J]. 現(xiàn)代紡織技術(shù), 2023, 31 (5): 22-29.

        CHEN Ling, REN Meng, ZHANG Desuo. Preparation and properties of rGO/MWCNT/PDMS composite flexible pressure sensors[J]. Advanced Textile Technology, 2023, 31 (5): 22-29.

        [2]ZHANG Y F, GUO M M, ZHANG Y, et al. Flexible, stretchable and conductive PVA/PEDOT:PSS composite hydrogels prepared by SIPN strategy [J]. Polymer Testing, 2020, 81:106213.

        [3]WANG S, GUAN S, ZHU Z, et al. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration [J]. Materials Science amp; Engineering C-Materials for Biological Applications, 2017, 71: 308-316.

        [4]SUBRAMANI R, ELANGOMANNAN S, LOUIS K, et al. Fabrication of minerals substituted porous hydroxyapaptite/poly(3,4-ethylenedioxy pyrrole-co-3,4-ethylenedioxythio-phene) bilayer coatings on surgical grade stainless steel and its antibacterial and biological activities for orthopedic applications [J]. ACS Applied Materials amp; Interfaces, 2016, 8(19): 12404-12421.

        [5]LEPRINCE M, MAILLEY P, CHOISNARD L, et al. Design of hyaluronan-based dopant for conductive and resorbable PEDOT ink [J]. Carbohydrate Polymers, 2023, 301:120345.

        [6]MATAR G H, KAYMAZLAR E, ANDAC M, et al. Novel binary blended hydrogel films (chitosan-vanillin schiff base/locust bean gum and Fe(III), Cu(II) amp; Zn(II) complexes): Synthesis, characterization, conductivity, and antibacterial activity [J]. Journal of Polymers and the Environment, 2023, 31(8): 3509-3521.

        [7]SUN X, LIU X, HUANG P, et al. Tri-cationic copolymer hydrogels with adjustable adhesion and antibacterial properties for flexible wearable sensors [J]. Journal of Materials Chemistry C, 2023, 11(19): 6451-6458.

        [8]KUMAR R, UMAR A, KUMAR G, et al. Antimicrobial properties of ZnO nanomaterials: A review [J]. Ceramics International, 2017, 43(5): 3940-3961.

        [9]SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism [J]. Nano-Micro Letters, 2015, 7(3): 219-242.

        [10]WANG Q, JI P, YAO Y, et al. Gliadin-mediated green preparation of hybrid zinc oxide nanospheres with antibacterial activity and low toxicity [J]. Scientific Reports, 2021, 11(1):10373.

        [11]ZHANG M, QIAO X, HAN W, et al. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing [J]. Carbohydrate Polymers, 2021, 266: 118100.

        [12]LIANG Y, WANG M, ZHANG Z, et al. Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing [J]. Chemical Engineering Journal, 2019, 378: 122043.

        [13]YU Y C, HU M H, ZHUANG H Z, et al. Antibacterial gelatin composite hydrogels comprised of in situ formed zinc oxide nanoparticles [J]. Polymers, 2023, 15(19): 3978-3990.

        [14]DA SILVA B L, ABUCAFY M P, MANAIA E B, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview [J]. International Journal of Nanomedicine, 2019, 14: 9395-9410.

        [15]MOHAMMED Y H I, ALGHAMDI S, JABBAR B,et al. Green synthesis of zinc oxide nanoparticles using cymbopogon citratus extract and its antibacterial activity [J]. Acs Omega, 2023, 8(35):32027-32042.

        [16]GOMAA N H H, ABD EL AZIZ N K, EL NAENAEEY E S Y, et al. Antimicrobial potential of myricetin-coated zinc oxide nanocomposite against drug-resistant clostridium perfringens [J]. BMC Microbiology, 2023, 23(1):79-93.

        [17]RAJA A, ASHOKKUMAR S, PAVITHRA MARTHANDAM R, et al. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity [J]. Journal of Photochemistry and Photobiology B:Biology, 2018, 181: 53-58.

        [18]FAN Y, LIU J, FAN M. Nursing effect of zinc oxide nanoantibacterial materials after adrenalectomy [J]. Journal of Nanomaterials, 2022, 9051927.

        [19]PHAN T N, BUCKNER T, SHENG J, et al. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms [J]. Oral Microbiology and Immunology, 2004, 19(1): 31-38.

        [20]PATI R, MEHTA R K, MOHANTY S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages [J]. Nanomedicine: Nanotechnology Biology and Medicine, 2014, 10(6): 1195-1208.

        [21]BHUYAN T, KHANUJA M, SHARMA R, et al. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action [J]. Journal of Nanoparticle Research, 2015, 17(7): 288-298.

        [22]SUN X, LUO C, LUO F. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength [J]. European Polymer Journal, 2020, 124: 109465.

        [23]LV A, LV X, TIAN S, et al. Tough, self-healing, and antimicrobial hydrogel sensors based on hydrogen-bonded, cross-linked chitosan and MWCNTs [J]. ACS Applied Polymer Materials, 2023, 5(8): 6452-6462.

        [24]SINGHAL U, KHANUJA M, PRASAD R, et al. Impact of synergistic association of ZnO-nanorods and symbiotic fungus piriformospora indica DSM 11827 on brassica oleracea var. botrytis (Broccoli) [J]. Frontiers in Microbiology, 2017, 8: 01909.

        [25]KAYANI Z N, IQBAL M, RIAZ S, et al. Fabrication and properties of zinc oxide thin film prepared by sol-gel dip coating method [J]. Materials Science-Poland, 2015, 33(3): 515-520.

        [26]SERAFIN A, CULEBRAS RUBIO M, CARSI M, et al. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair [J]. Biomaterials Research, 2022, 26(1):63-84.

        [27]DE OLIVEIRA S A, DA SILVA B C, RIEGEL VIDOTTI I C, et al. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb [J]. International Journal of Biological Macromolecules, 2017, 97: 642-653.

        [28]HAN Y, GUO Y, SHEN M, et al. Preparation and electrochemical performances of hexacyanoferrate-doped poly (3, 4-ethylenedioxythiophene) hydrogel [J]. High Performance Polymers, 2014, 26(5): 499-506.

        [29]ZHOU H, YAO W, LI G, et al. Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity [J]. Carbon, 2013, 59: 495-502.

        [30]LIU X. Simulation of the conductive process of nano ZnO varistors based on animation plane form [J]. Journal of Chemistry, 2020, 9:9726173.

        [31]HAN L, CUI S, YU H Y, et al. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems [J]. ACS Applied Materials Interfaces, 2019, 11(47): 44642-4465.

        Preparation and sensing and antimicrobial properties of poly(vinyl alcohol)/hyaluronic acid composite conductive hydrogels

        WANG Yanmin, DING Xinbo, LIU Tao, QIU Qiaohua, HASAN Md Kamrul, ZHU Lingqi, ZHOU Jiabao

        (College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China)

        Abstract: In recent years, people are paying more and more attention to body health detection, and flexible smart wearable sensors have also been developed rapidly. Among them, hydrogel wearable sensors have attracted much attention because of their excellent performance. The hydrogel sensor can be closely applied to the surface of human skin. When the human body moves, it can quickly and accurately output the resistance change caused by the movement in the form of an electrical signal, which is beneficial to our real-time monitoring of human movement.

        In this paper, poly(vinyl alcohol) (PVA) and hyaluronic acid (HA) were used as the substrates, and poly(3,4-ethylenedioxythiophene) conductive polymer and zinc oxide nanoparticles were used as the functional materials for the preparation of composite conductive hydrogels. Firstly, the zinc oxide/poly(3,4-ethylenedioxythiophene)/hyaluronic acid/poly(vinyl alcohol) composite conductive hydrogels (ZnO/PEDOT/PVA/HA) with strain sensing response and antimicrobial properties were prepared by in situ polymerization and cyclic freeze-thawing method by adding 3,4-ethylenedioxythiophene (EDOT) monomer to ZnO/hyaluronic acid/poly(vinyl alcohol) (ZnO/PVA/HA) hydrogel solution after adding zinc oxide (ZnO) nano-polymer prepared by the mechanically assisted thermal method to poly(vinyl alcohol)/hyaluronic acid (PVA/HA) hydrogel solution with different ratios. The morphology and chemical composition of the ZnO nanoparticles and the conductive hydrogel were characterized by using field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffractometer, respectively. The mechanical, sensing and antimicrobial properties of the hydrogels were also tested and analyzed, and the optimal parameter ratio of the composite hydrogels was determined as m(ZnO/EDOT/PVA/HA)=(0.03∶0.1∶(1∶9)). The results showed that the addition of ZnO further improved the conductivity of the hydrogel, and the conductivity of the ZnO/PEDOT/PVA/HA (ZP) conductive hydrogel could reach 2.91 S/m, which was about 1.48 times higher compared with that of the PVA/HA/PEDOT (ZP0) conductive hydrogel without the addition of ZnO. The strain sensing effect of the hydrogel was tested and analyzed on this basis. It is found that the hydrogel has good tensile strain performance (≥100%) and can give good velocity feedback at different tensile velocities, with sensitive response speed (lt;142 ms) and long-lasting stability (gt;1000 times). It is capable of monitoring and recognizing the motion signals of different parts of the human body. In addition, the ZP0.3 conductive hydrogel has good antibacterial properties against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli).

        The demand for flexible smart wearable sensors with sensing and antimicrobial properties is gradually increasing. The composite hydrogel sensor with sensing and antimicrobial properties prepared in this study can be used for human motion signal detection. The good sensing and antimicrobial properties confirm that the conductive hydrogel has good application prospects in flexible wearable strain sensors and medical health monitoring.

        Keywords: conductive hydrogel; sensing properties; flexible wearable sensors; antimicrobial activity

        三级日韩视频在线观看| 91久久青青草原线免费| 婷婷激情六月| 国产三级精品三级在线| 亚洲高清在线天堂精品| 色avav色av爱avav亚洲色拍| 国产自精品| 免费人成黄页网站在线观看国产 | 国产成人亚洲综合色婷婷| 亚洲成人电影在线观看精品国产| 精品一区二区三区中文字幕在线| 粉嫩的极品女神尤物在线| 男人和女人做爽爽免费视频| 狠狠色噜噜狠狠狠狠888奇禾 | 一区二区视频资源在线观看| 国产精品内射久久一级二| 男女爽爽无遮挡午夜视频| 亚洲VA中文字幕无码毛片春药| 日本精品啪啪一区二区| 精品卡一卡二乱码新区| 日本成本人三级在线观看| 香蕉国产人午夜视频在线观看| 免费看黄片视频在线观看| 精品av熟女一区二区偷窥海滩| 亚洲丁香五月激情综合| 日韩av在线不卡一区二区三区| 日本中文一区二区在线| 成人国内精品久久久久一区| 国产精品久久1024| 国产女主播福利一区二区| 人人鲁人人莫人人爱精品| 亚洲日韩欧美国产高清αv| 国内色精品视频在线网址| 亚洲高清在线天堂精品| 成人性做爰aaa片免费看| 午夜亚洲国产精品福利| 2021年国产精品每日更新| 国产精品高清一区二区三区人妖 | 亚洲韩日av中文字幕| 丰满的人妻hd高清日本| 国产AV无码专区久久精品网站|