摘要:畜禽養(yǎng)殖集約化生產(chǎn)過程中排放的廢棄物會(huì)對(duì)當(dāng)?shù)厣鷳B(tài)環(huán)境造成巨大壓力。通過硫還原地桿菌(Geobacter sulfurreducens)小分子酸代謝、奧奈達(dá)希瓦氏菌(Shewanella oneidensis)有氧無氧代謝、導(dǎo)電菌毛(electrically conductive pili)直接接觸和電子穿梭物質(zhì)介導(dǎo)的胞外電子傳遞等呼吸代謝的理論研究,明確了電活性模式微生物的中心碳代謝途徑、胞外電子傳遞過程及主要調(diào)控機(jī)制。基于對(duì)電活性菌呼吸代謝過程的理解,已開發(fā)并優(yōu)化了以微生物燃料電池、微生物電解池和電場(chǎng)輔助好氧堆肥為主的多種微生物電化學(xué)系統(tǒng)。在降低化學(xué)需氧量、溫室氣體排放、抗生素和耐藥基因等有害物質(zhì)含量的同時(shí),提高發(fā)電效率、陰極高附加值產(chǎn)物和有機(jī)肥腐殖質(zhì)含量。綜述了微生物電化學(xué)理論的研究進(jìn)展并系統(tǒng)介紹了微生物電化學(xué)技術(shù)在畜禽廢棄物資源化方面的應(yīng)用研究,以期為畜禽廢棄物資源化利用工藝的多元化發(fā)展提供參考和理論支撐。
關(guān)鍵詞:電活性模式微生物;胞外電子傳遞;微生物燃料電池;微生物電解池;電場(chǎng)輔助好氧堆肥
doi:10.13304/j.nykjdb.2022.1053
中圖分類號(hào):S19;X713 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1008?0864(2024)07?0210?13
電活性微生物是一類能與胞外環(huán)境交換電子的細(xì)菌,具有獨(dú)特的胞外電子傳遞鏈[1]。由于硫還原地桿菌 (Geobacter sulfurreducens)和奧奈達(dá)希瓦氏菌 (Shewanella oneidensis)的胞外電子傳遞過程具有明顯的特征,故研究人員將其作為電活性模式微生物并開展了大量研究[2]。硫還原地桿菌是一種革蘭氏陰性的嚴(yán)格厭氧菌,最早從淡水沉積物中被分離培養(yǎng)[3],可利用發(fā)酵后的小分子產(chǎn)物為底物,以金屬氧化物、硝酸鹽和腐殖酸類等物質(zhì)作為電子受體進(jìn)行代謝[4?5]。奧奈達(dá)希瓦氏菌是一種革蘭氏陰性的兼性厭氧細(xì)菌,對(duì)乳酸有強(qiáng)烈偏好,能夠利用包括氧氣在內(nèi)的多種電子受體進(jìn)行生命活動(dòng)[6]。電活性微生物的呼吸代謝在自然環(huán)境下的多種元素循環(huán)過程中發(fā)揮著重要作用,在緩解能源短缺和治理環(huán)境污染等方面擁有巨大應(yīng)用潛力[1]。
微生物電化學(xué)技術(shù) (microbial electrochemicaltechnology,MET)是將電活性微生物與電極相耦合產(chǎn)生電化學(xué)反應(yīng)的技術(shù),被廣泛用于重金屬、染料和抗生素等眾多復(fù)雜污染物的治理方面[7]。研究者們從電活性微生物代謝過程中電子傳遞的角度設(shè)計(jì)了微生物燃料電池 (microbial fuel cell, MFC)和微生物電解池 (microbial electrolytic cell, MEC)。MFC可通過附著在陽極上的產(chǎn)電微生物,將多種可降解有機(jī)物中的化學(xué)能直接轉(zhuǎn)化為電能[8],避免了傳統(tǒng)沼氣發(fā)電在能量轉(zhuǎn)換過程中產(chǎn)生的熱能損耗。MEC在MFC的基礎(chǔ)上連接外置電源并向兩側(cè)電極施加適當(dāng)電壓,利用陰極上的嗜電微生物產(chǎn)氫,是一種新興的有機(jī)物制氫技術(shù),產(chǎn)氫率大于水解制氫[9]。本文闡述了電活性模式微生物的碳代謝途徑和胞外電子傳遞過程,綜述了微生物燃料電池、微生物電解池和電場(chǎng)輔助好氧堆肥等微生物電化學(xué)技術(shù)處理畜禽廢棄物的研究進(jìn)展;同時(shí)還分析了微生物電化學(xué)技術(shù)應(yīng)用于畜禽廢棄物資源化方面需要解決的問題,展望了未來的應(yīng)用前景,以期為畜禽廢棄物資源化利用的研究和應(yīng)用提供參考。
1 電活性模式微生物的呼吸代謝
電活性微生物的呼吸代謝過程是決定微生物電化學(xué)反應(yīng)器性能的根本原因。與自然界中大部分生物的氧化還原過程相比,電活性微生物具有獨(dú)特的胞外電子傳遞鏈,能夠通過其特殊的膜結(jié)構(gòu)直接與胞外環(huán)境交換電子[10]。以下將從硫還原地桿菌和奧奈達(dá)希瓦氏菌的遺傳學(xué)、碳代謝途徑和呼吸電子傳遞鏈的角度,詳細(xì)分析電子在電活性微生物的生命活動(dòng)中從供體到受體的轉(zhuǎn)移途徑,以更好地了解電活性微生物在微生物電化學(xué)反應(yīng)中的主導(dǎo)過程。
1.1 電活性模式微生物的碳代謝
1.1.1 硫還原地桿菌的乙酸鹽和乳酸的厭氧代謝
硫還原地桿菌是一類嚴(yán)格的厭氧菌,中心碳代謝途徑如圖1所示。硫還原地桿菌可通過琥珀酰-CoA:乙酰-CoA轉(zhuǎn)移酶或乙酸激酶耦合磷酸轉(zhuǎn)乙酰化酶將乙酸活化為乙酰-CoA進(jìn)入三羧酸循環(huán)(tricarboxylic acid cycle,TCA循環(huán))[11]。對(duì)硫還原地桿菌初級(jí)代謝途徑的冗余建模和試驗(yàn)結(jié)果表明,乙酸鹽進(jìn)入TCA循環(huán)前必須要經(jīng)過上述2種活化途徑[12]。HgtR作為一種轉(zhuǎn)錄調(diào)控因子,會(huì)阻遏硫還原地桿菌中琥珀酰-CoA合成酶編碼基因gltA 的表達(dá)[13]。此外,丙酮酸鐵氧還蛋白氧化還原酶是丙酮酸轉(zhuǎn)化為乙酰-CoA唯一的活性酶[12]。Fe(Ⅲ)與延胡索酸鹽同時(shí)作為底物時(shí), 硫還原地桿菌延胡索酸還原酶的mRNA (FrdCAB)表達(dá)會(huì)下調(diào)20倍并優(yōu)先利用Fe(Ⅲ)作為電子受體,延胡索酸鹽則被用作電子供體并為硫還原地桿菌的生命活動(dòng)提供能量[14]。硫還原地桿菌對(duì)延胡索酸鹽的這種利用模式可能與其在地下環(huán)境的生存策略有關(guān)。
此外,硫還原地桿菌還擁有完全氧化乳酸的能力,且利用乳酸的產(chǎn)電效率比奧奈達(dá)希瓦氏菌高出10倍以上[15]。硫還原地桿菌乳酸代謝的第1步是由乳酸脫氫酶催化的脫氫反應(yīng),所生成的丙酮酸可進(jìn)一步被氧化或同化。研究報(bào)道,GSU1623 和GSU1624 編碼D- 型乳酸脫氫酶,GSU1620 編碼L-型乳酸脫氫酶,GSU1621 可能編碼L-型乳酸脫氫酶的組件[16]。在長期以乳酸為底物的培養(yǎng)條件下,野生型硫還原地桿菌可通過轉(zhuǎn)錄因子IclR的單堿基突變,上調(diào)susCD(編碼琥珀酰-CoA合成酶α和β亞基)表達(dá)量,產(chǎn)生對(duì)乳酸代謝的適應(yīng)性進(jìn)化[17]。乳酸相較于乙酸鹽是次要電子供體。在自然厭氧環(huán)境沉積物的降解過程中,硫還原地桿菌可有效消耗發(fā)酵產(chǎn)物(小分子有機(jī)酸),促進(jìn)土壤有機(jī)物礦化,修復(fù)重金屬污染,在地球生物化學(xué)過程中擔(dān)任重要角色。
1.1.2 奧奈達(dá)希瓦氏菌的有氧和無氧代謝
電活性微生物在厭氧呼吸條件下利用有機(jī)物生長的過程中伴隨著胞外電子受體的異化還原現(xiàn)象稱為胞外電子傳遞 (extracellular electrontransfer,EET),傳遞長度從微米到厘米 (電纜菌,Desulfobulbaceae)不等[28?29]。EET 主要分為4 步:①產(chǎn)電菌對(duì)小分子有機(jī)物的不可逆的分解代謝過程;②將有機(jī)物代謝產(chǎn)生的電子從內(nèi)膜的醌池轉(zhuǎn)移到外膜的胞外氧化還原輔因子 (extracellularredox cofactors,ERCs)上;③電子被細(xì)胞膜釋放的ERCs轉(zhuǎn)移到電子受體處;④ERCs和電子受體發(fā)生氧化還原反應(yīng)[30?31]。硫還原地桿菌和奧奈達(dá)希瓦氏菌的第2步EET過程基本相同,均使用多血紅素細(xì)胞色素將內(nèi)膜上醌池中的電子跨膜傳遞到外膜表面[32?33]。硫還原地桿菌電子的跨膜傳遞按細(xì)胞膜由內(nèi)到外的結(jié)構(gòu)順序分為內(nèi)膜細(xì)胞色素傳遞 (Cbc復(fù)合體、ImcH、MacA)、周質(zhì)細(xì)胞色素傳遞(PpcA 同系物、PccH)、外膜細(xì)胞色素傳遞 (Pcc 復(fù)合體、OmcS、OmcZ);奧奈達(dá)希瓦氏菌參與電子跨膜傳遞的細(xì)胞色素單位主要為內(nèi)膜 (CymA)、周質(zhì)(STC)、外膜 (MtrAB 復(fù)合體、MtrC、OmcA),對(duì)以上細(xì)胞色素電子跨膜傳遞機(jī)制已有研究[34-37]。
1.2.1 基于導(dǎo)電菌毛結(jié)構(gòu)的直接胞外電子傳遞
奧奈達(dá)希瓦氏菌在有氧條件下通過標(biāo)準(zhǔn)的TCA循環(huán)進(jìn)行代謝,優(yōu)先利用小分子碳源,以乳酸代謝為主,其碳源和電子受體種類、金屬氧化物和氮硫化合物還原等已得到了詳細(xì)闡述[18?19]。
如圖2所示,在奧奈達(dá)希瓦氏菌乳酸代謝過程中,TCA循環(huán)是主要的碳代謝通路,磷酸戊糖途徑 (hexose monophosphate pathway,HMP)和2-酮-3-脫氧-6-磷酸葡糖酸 (keto-3-deoxyphosphogluconicacid,KDPG)裂解途徑主要用于合成生物質(zhì)[20]。SO_1518~1522是編碼乳酸滲透酶和乳酸脫氫酶的保守基因簇,其中l(wèi)ldEFG (SO_1518~1520)和dld-Ⅱ (SO_1521)分別編碼L型乳酸脫氫酶和黃素腺嘌呤二核苷酸(flavine adenine dinucleotide,F(xiàn)AD)依賴性D 型乳酸脫氫酶[21],llpR (SO_3460)編碼lldEFG 表達(dá)的正向調(diào)控因子[22]。有氧條件下,丙酮酸可通過丙酮酸甲酸裂解酶或丙酮酸脫氫酶系催化生成乙酰-CoA和甲酸或乙酰-CoA和CO2,產(chǎn)生的甲酸經(jīng)甲酸脫氫酶系氧化生成CO2,乙酰-CoA通過TCA循環(huán)完全氧化成CO2;缺氧條件下,丙酮酸脫氫酶系不再參與代謝,丙酮酸可作為電子受體,通過ldhA 編碼的D型-乳酸脫氫酶催化的產(chǎn)乳酸反應(yīng)與甲酸氧化反應(yīng)耦合,TCA循環(huán)通量降低,乙酸產(chǎn)量增加[20, 23?24]。此外,N-乙酰氨基葡萄糖也可以通過KDPG裂解途徑產(chǎn)生丙酮酸,添加甲酸鹽可顯著提高奧奈達(dá)希瓦氏菌MR-1的生長速率[25?26]。相比于硫還原地桿菌,奧奈達(dá)希瓦氏菌的代謝路徑更加靈活、生態(tài)位更廣泛,使得奧奈達(dá)希瓦氏菌易于培養(yǎng)和馴化。在厭氧條件下,硫還原地桿菌可與奧奈達(dá)希瓦氏菌等共同組成具有電活性的互營菌群[27]。
1.2 電活性模式微生物的胞外電子傳遞過程
導(dǎo)電菌毛 (electrically conductive pili,e-pili)是硫還原地桿菌與胞外環(huán)境通過直接接觸交換電子的基礎(chǔ)結(jié)構(gòu),主要由PilA蛋白組成,硫還原地桿菌通過該結(jié)構(gòu)可向不溶性電子受體 (如金屬表面)和其他電活性菌傳遞電子[1, 5, 38]。一些硫還原地桿菌的外膜表面存在由OmcS組成的蛋白納米線,OmcS與e-pili在遠(yuǎn)端EET發(fā)揮的主導(dǎo)作用目前存在爭議[39]。Thirumurthy 等[40]證實(shí)了OmcZ 通過瞬時(shí)結(jié)合核黃素,進(jìn)而將電子從外膜表面?zhèn)鬟f到胞外基質(zhì)。缺乏PilA-N-C二聚體會(huì)抑制OmcZ納米線的分泌,在合成納米線的過程中,PilA-N與PilA-C可在硫還原地桿菌的細(xì)胞周質(zhì)形成PilA-N-C 二聚體[41]。硫還原地桿菌的鞭毛不僅可以參與驅(qū)化運(yùn)動(dòng),還能促進(jìn)陽極導(dǎo)電生物膜的形成,并作為生物膜的支架以容納更多的胞外細(xì)胞色素,提高生物膜導(dǎo)電性[42?43]。此外,硫還原地桿菌可分泌包裹著大量細(xì)胞色素C 的外膜囊泡,既能促進(jìn)自身EET過程,也能讓其他非電活性的厭氧菌獲得產(chǎn)電能力[44]。可見光照射可引起硫還原地桿菌細(xì)胞色素C上電子的能級(jí)躍遷,使電子從基態(tài)轉(zhuǎn)變到激發(fā)態(tài),加快EET 速率[45]。地桿菌屬的個(gè)別種(Geobacter uraniireducens)可分泌核黃素作為電子穿梭物質(zhì)促進(jìn)Fe(Ⅲ)還原,也可作為細(xì)胞色素的輔因子增強(qiáng)電流的產(chǎn)生量[46]。此外,胞外多糖可維持生物膜對(duì)胞外細(xì)胞色素C的粘性,在早期硫還原地桿菌生物膜形成過程中為e-pili的EET發(fā)揮代償作用[47]。硫還原地桿菌通過在不溶性電子受體表面形成一層電活性生物膜,以“導(dǎo)線連接”的方式高效傳遞電子。
1.2.2 電子穿梭物質(zhì)介導(dǎo)的胞外電子傳遞
雖然在奧奈達(dá)希瓦氏菌的外膜表面也發(fā)現(xiàn)了Ⅳ型菌毛結(jié)構(gòu)[48?49],但奧奈達(dá)希瓦氏菌更依賴于分泌胞外細(xì)胞色素或黃素等電子穿梭物質(zhì)傳遞電子[50-52]。黃素是核黃素、黃素腺嘌呤二核苷酸(FAD)和黃素單核苷酸 (flavin mononucleotide,F(xiàn)MN)的總稱,它的前體是GTP和5-磷酸核酮糖,經(jīng)過一系列酶促反應(yīng)生成FAD[53-55]。黃素由奧奈達(dá)希瓦氏菌內(nèi)膜上一種多藥毒素外排轉(zhuǎn)運(yùn)蛋白Bfe釋放到細(xì)胞周質(zhì)[52],再由5’-核苷酸酶(UshA)水解為FMN和AMP分泌至胞外[54]。還原態(tài)黃素通過擴(kuò)散作用將電子從外膜細(xì)胞色素C處攜帶至不溶電子受體表面,氧化態(tài)黃素會(huì)擴(kuò)散到外膜處重新被細(xì)胞色素C還原,加速了奧奈達(dá)希瓦氏菌對(duì)胞外不溶性電子受體的呼吸過程[55]。cAMP-CRP復(fù)合物可以上調(diào)細(xì)胞色素C和黃素合成途徑基因的表達(dá)水平,有效增強(qiáng)奧奈達(dá)希瓦氏菌雙向EET的過程[56]。而低水平核黃素可作為群體感應(yīng)因子,上調(diào)奧奈達(dá)希瓦氏菌鳥氨酸脫羧酶基因speC 的表達(dá),進(jìn)一步誘導(dǎo)電極生物膜的形成[57]。厭氧條件下,內(nèi)源性FAD可作為輔因子提高終端電子受體還原酶FccA的活性,進(jìn)而增強(qiáng)奧奈達(dá)希瓦氏菌跨膜電子傳遞效果[58]。此外,Sun等[59]發(fā)現(xiàn)過量分泌終端電子受體還原酶 (FccA、NapB和TsdB)會(huì)對(duì)奧奈達(dá)希瓦氏菌的EET過程產(chǎn)生負(fù)面影響。Zhang等[60]在微生物電化學(xué)系統(tǒng)中觀察到EET過程的速率不受奧奈達(dá)希瓦氏菌MR-1浮游細(xì)胞生物量的影響,且生物膜厚度增加不會(huì)提高電流產(chǎn)生量。奧奈達(dá)希瓦氏菌可分泌多種電子穿梭物質(zhì)完成EET過程,在電子傳遞效果上很大程度取決于這些電子穿梭物質(zhì)的含量和傳遞距離。
2 基于畜禽廢棄物資源化的微生物電化學(xué)技術(shù)
現(xiàn)代養(yǎng)殖行業(yè)向規(guī)?;?、集約化發(fā)展的同時(shí),集中產(chǎn)生的畜禽糞污會(huì)對(duì)當(dāng)?shù)厣鷳B(tài)環(huán)境造成巨大的風(fēng)險(xiǎn)[61]。畜禽糞污的成分相當(dāng)復(fù)雜,例如豬場(chǎng)廢水主要是糞便、尿液和洗滌液的混合物,化學(xué)需氧量(chemical oxygen demand,COD)一般為10 000~50 000 mg·L-1、總氮為3 000~5 200 mg·L-1、氨態(tài)氮為1 820~3 330 mg·L-1、磷為660~920 mg·L-1,其中的揮發(fā)性脂肪酸、硫化氫、氨氣等會(huì)對(duì)空氣造成污染[62?63]。
2.1 微生物燃料電池產(chǎn)電效果與影響因素
21世紀(jì)以來,研究人員不斷改進(jìn)以畜禽糞污為底物的MFCs 的發(fā)電效率。Yokoyama 等[64]認(rèn)為,牛糞經(jīng)MFC發(fā)電后的廢液可作為液體肥料使用。Min 等[65]證明了MFC 處理豬場(chǎng)廢水的可行性,運(yùn)用單室MFC結(jié)構(gòu)和超聲波高壓滅菌預(yù)處理可有效提高功率密度,且發(fā)電時(shí)對(duì)COD和NH+4-N的去除率達(dá)80%以上。此外,600 W的超聲預(yù)處理對(duì)以牛糞為底物的MFC的電流密度和COD去除率優(yōu)化效果最佳[66]。Molognoni等[67]采用最大功率點(diǎn)跟蹤控制技術(shù)對(duì)處理豬糞的MFC外阻和有機(jī)負(fù)載率進(jìn)行多參數(shù)控制,提高了MFC生物膜的產(chǎn)電活性。啟動(dòng)前向以牛糞為底物的MFC中加入活性污泥可提高COD去除率和產(chǎn)電功率,增加微生物多樣性(如發(fā)酵菌和固氮菌),加速陽極生物膜的形成[68]。
以上幾種MFCs處理畜禽糞污的各項(xiàng)參數(shù)如表1所示,閉路電壓與MFCs的生物質(zhì)含量呈顯著正相關(guān)[71]。當(dāng)內(nèi)阻和外阻相等時(shí),MFCs會(huì)達(dá)到最大功率點(diǎn),此時(shí)的電流為最大功率電流[72]。庫倫效率是衡量產(chǎn)電菌與其他雜菌對(duì)基質(zhì)中可代謝的有機(jī)質(zhì)競爭水平的直接指標(biāo)[73]。底物含量與庫倫效率呈負(fù)相關(guān)[65]。與生物質(zhì)焚燒發(fā)電相比,MFCs具有反應(yīng)器體積小、能量轉(zhuǎn)化效率高等優(yōu)點(diǎn),屬于綠色發(fā)電技術(shù),在處理畜禽有機(jī)污染物方面擁有廣闊的應(yīng)用前景。在畜禽廢棄物處理的實(shí)際場(chǎng)景中,MFC的應(yīng)用仍受限于啟動(dòng)時(shí)間長、發(fā)電量低、壽命周期短、維護(hù)費(fèi)用高、穩(wěn)定性較差等問題。這些問題主要體現(xiàn)在:①質(zhì)子膜和陰極在長期運(yùn)行中易受污垢(胞外聚合物和無機(jī)鹽沉淀)附著導(dǎo)致堵塞;②MFC產(chǎn)電過程受底物氧化還原反應(yīng)動(dòng)力學(xué)限制;③陽極產(chǎn)電菌代謝底物多為小分子有機(jī)物,對(duì)大規(guī)模高強(qiáng)度廢水的產(chǎn)電效果不佳;④陽極電活性生物膜EET 效率低下導(dǎo)致內(nèi)阻較高等。目前相關(guān)研究報(bào)道的優(yōu)化方案包括:①開發(fā)具有空氣陰極原位磁體清潔功能的單室MFC,開發(fā)具有高滲透率和低污垢產(chǎn)生率特點(diǎn)的質(zhì)子膜材料(如以聚苯胺、聚吡咯涂層為主的高分子碳納米管電解質(zhì)膜材料); ②向MFC介質(zhì)加入電催化劑 (如多孔石墨、氧化石墨烯為載體的鐵基催化劑等)以提高底物氧化還原反應(yīng)效率;③設(shè)置熱解或產(chǎn)酸預(yù)處理,構(gòu)建電活性菌群微共營生態(tài)體系,增加MFC腔室容積和水力停留時(shí)間;④提高陽極比表面積、電子轉(zhuǎn)移能力、電催化活性、化學(xué)穩(wěn)定性和生物相容性 (如利用石墨烯和碳納米管對(duì)陽極進(jìn)行結(jié)構(gòu)改性以及開發(fā)納米磁鐵礦碳基復(fù)合材料等)[74-77]。
此外,畜禽糞污中還含有各種類型的抗生素[78]。Chen等[79]在畜禽污水中檢測(cè)到144種抗生素耐藥基因(antibiotic resistance genes,ARGs)和8種可移動(dòng)遺傳因子,并運(yùn)用MFC大幅降低了四環(huán)素耐藥基因、大環(huán)內(nèi)酯耐藥基因、氨基糖苷耐藥基因、多重耐藥基因和可移動(dòng)遺傳因子的豐度,證實(shí)MFC是減少ARGs水平轉(zhuǎn)移風(fēng)險(xiǎn)的有效方法。MFCs的生物膜對(duì)諾氟沙星具有高耐受性,在諾氟沙星含量最高時(shí)產(chǎn)生了最大電功率密度且處理后mdtk、 mdtm 和 pmra 耐藥基因的相對(duì)豐度均有所下降[80]。但四環(huán)素類抗生素會(huì)極大地削弱陽極生物膜的附著量和活性,對(duì)產(chǎn)電性能抑制的強(qiáng)度依次為氯四環(huán)素gt;氧四環(huán)素gt;四環(huán)素[81]。利用MFCFenton體系可快速高效地去除四環(huán)素類抗生素[82]。MFCs在去除抗生素和ARGs的同時(shí)還能產(chǎn)生電能,在含有抗生素和耐藥基因的畜禽廢棄物處理中擁有巨大的應(yīng)用潛力。
2.2 利用微生物電解池提高消化產(chǎn)物的經(jīng)濟(jì)價(jià)值
MEC是一種電介導(dǎo)的微生物電化學(xué)技術(shù),可克服熱力學(xué)限制,在相對(duì)溫和的條件下廣泛利用有機(jī)物實(shí)現(xiàn)高效析氫,產(chǎn)甲酸、乙酸、甲烷、乙醇等高附加值產(chǎn)物[83]。Yu 等[84] 在以豬糞為底物的MEC-厭氧發(fā)酵中成功提高了CH4產(chǎn)量,在該反應(yīng)裝置中觀察到優(yōu)勢(shì)產(chǎn)甲烷菌從乙酰產(chǎn)甲烷菌轉(zhuǎn)變?yōu)闅錉I養(yǎng)產(chǎn)甲烷菌,提高了傳統(tǒng)厭氧發(fā)酵的效果。Cerrillo 等[85]設(shè)計(jì)了三室MEC,從豬糞中回收銨(陽極室)和磷酸鹽(陰極室)并優(yōu)化了運(yùn)行參數(shù),得到了富含營養(yǎng)的鳥糞石,但磷酸鹽在豬糞中的溶解度影響了鳥糞石回收效果,需要進(jìn)一步研究與MEC 兼容的磷酸鹽增溶技術(shù)以提高回收效率。適當(dāng)?shù)碾妷合?,MEC-厭氧發(fā)酵可加強(qiáng)豬糞中有機(jī)質(zhì)的降解。在通過質(zhì)子膜的正電荷遷移過程中,NH+4 是維持陰極室和陽極室電中性的主要陽離子[86?87]。該團(tuán)隊(duì)進(jìn)一步研究并評(píng)估了雙室夾層型MEC 和H 型三室MEC 的聚四氟乙烯(polytetrafluorethylene, PTFE)疏水膜對(duì)豬糞中銨回收和有機(jī)物的去除效果,H 型三室MEC 的PTFE疏水膜銨通量要高于雙室夾層型MEC,與厭氧消化中直接使用疏水膜回收銨相比,該結(jié)構(gòu)的MEC避免了加堿或曝氣[88]。San-Martín 等[89]構(gòu)建總體積為16 L的雙室MEC,結(jié)果顯示,在以豬糞為底物連續(xù)運(yùn)行100 d后MEC產(chǎn)氫性能無明顯降低,且陽極各區(qū)域微生物組成無明顯變化;此外離子交換膜微生物附著區(qū)域離子交換能力和熱穩(wěn)定性顯著下降。San-Martín等[90]進(jìn)一步研究了MEC外電壓、陰極液和反應(yīng)器尺寸對(duì)豬糞和沼渣中銨回收率的影響,結(jié)果表明,與NaCl溶液相比磷酸鹽緩沖液是較好的陰極液,反應(yīng)器尺寸從500 mL增大到1 000 mL時(shí),銨回收率會(huì)降低。Shen等[91]利用豬糞水熱液化后的廢水通過MEC反應(yīng)器回收H2,在不同流速、外電壓和有機(jī)負(fù)載的運(yùn)行條件下,該反應(yīng)器仍擁有良好的有機(jī)物和氮去除效果,產(chǎn)氫率和氫產(chǎn)量最高可達(dá)(168.01±7.01) mL·L-1·d-1和(5.14±0.22) mmol·kg-1。以上幾種MECs 處理畜禽糞污的各項(xiàng)參數(shù)如表2 所示。此外,Yilmazel等[92] 向MEC 中接種嗜熱纖維素分解菌(Caldicullosiruptor bescii),以牛糞作為碳源,柳枝稷和廢水生物固體混合發(fā)酵,實(shí)現(xiàn)了高效產(chǎn)氫。Ding等[93]研究電化學(xué)上流式厭氧污泥床集成反應(yīng)器對(duì)液態(tài)體牛糞的處理效果,通過該裝置處理后可得到含磷豐富的沼渣和H2S含量較低的沼氣,提高了產(chǎn)物的經(jīng)濟(jì)價(jià)值;但長期運(yùn)行會(huì)在電極附近形成沉積物,影響磷回收、脫硫、COD去除的效果,因此需要開發(fā)自動(dòng)沉淀剝離裝置以延長電極使用壽命。將MECs應(yīng)用于動(dòng)物生產(chǎn)中有望降低畜禽廢棄物的處理成本并提高產(chǎn)物的經(jīng)濟(jì)價(jià)值。
2.3 電場(chǎng)對(duì)好氧堆肥過程的優(yōu)化作用
Tang 等[94] 首次提出電場(chǎng)輔助好氧堆肥(electric-field-assisted aerobic composting,EAC),采用2V電壓對(duì)堆體供電,并進(jìn)行24 h交替曝氣;對(duì)自然電位、溫度、可溶性有機(jī)物、種子發(fā)芽指數(shù)(germination index,GI)、腐殖質(zhì)(humic matter,HM)、溫室氣體產(chǎn)量、菌群結(jié)構(gòu)進(jìn)行了檢測(cè)分析,結(jié)果表明,電場(chǎng)可增強(qiáng)氧的利用率、提高電活性細(xì)菌的相對(duì)豐度、加速堆肥的腐熟、抑制溫室氣體的產(chǎn)生,是一種有效環(huán)境。此外,EAC 在增加腐熟基質(zhì)HM含量的同時(shí),會(huì)促進(jìn)重金屬和腐殖酸結(jié)合成穩(wěn)定的金屬-腐殖質(zhì)配合物,有利于重金屬的固定[95]。Tang等[96]對(duì)EAC影響N2O的排放機(jī)制的研究表明,穩(wěn)壓電場(chǎng)可減弱好氧堆肥基質(zhì)中NH+4-N的氧化反應(yīng),同時(shí)降低硝化反硝化功能基因豐度,進(jìn)而抑制硝化反硝化作用,減少N2O的排放。向EAC中加入生物炭可加強(qiáng)基質(zhì)的導(dǎo)電性,促進(jìn)電子轉(zhuǎn)移,增加基質(zhì)電子接受能力,顯著提高GI、HM含量、電流密度、電活性菌豐度和氧氣利用率,縮短堆肥成熟時(shí)間[97]。添加酸性電解質(zhì)可提高氨氧化細(xì)菌的豐度和代謝活性,顯著降低電場(chǎng)好氧堆肥NH3的產(chǎn)生量;但同時(shí)延遲了亞硝酸鹽氧化細(xì)菌的生長,進(jìn)一步延遲了硝化反應(yīng),導(dǎo)致亞硝酸鹽過度積累,在反硝化過程形成了較多的中間產(chǎn)物N2O[98]。
對(duì)直流EAC 反應(yīng)器不同位置所產(chǎn)生的堆肥效果研究發(fā)現(xiàn),堆體中的水分會(huì)向陰極遷移,在陽極到陰極的不同橫截面處呈由低到高的梯度分布,且菌群活性、腐殖化程度、GI也表現(xiàn)出相同的規(guī)律[99]。交流電的應(yīng)用可以避免直流電在EAC反應(yīng)器中產(chǎn)生的腐殖化不均一的情況,促進(jìn)水分的均勻分布,在不接種高溫嗜熱菌的條件下通過微生物自身的新陳代謝進(jìn)一步提高堆心溫度(最高90 ℃提高至超高溫堆肥水平)[100]。對(duì)好氧堆肥垂直方向施加的電場(chǎng)可將堆體底部陽極板處的H2O原位電解成O2供微生物代謝活動(dòng),與傳統(tǒng)機(jī)械曝氣相比,通過電解產(chǎn)生的O2氣泡尺寸更小,提高了O2的利用率;且較低的氣體流速可大大降低堆體熱量損失和有害氣體揮發(fā)量,堆肥產(chǎn)物的各項(xiàng)指標(biāo)均優(yōu)于傳統(tǒng)堆肥[101]。以上幾種電場(chǎng)輔助對(duì)畜禽糞污好氧堆肥溫室氣體排放與堆體腐熟度的處理效果如表3所示。
綜上所述,微生物降解有機(jī)物的本質(zhì)是氧化還原反應(yīng),物質(zhì)之間的轉(zhuǎn)化伴隨著電子的得失。通過向好氧堆肥體系中施加一種電場(chǎng)環(huán)境,從而激發(fā)電活性微生物的代謝活性,使菌群結(jié)構(gòu)發(fā)生變化,功能基因的表達(dá)得到改變,進(jìn)而加強(qiáng)有機(jī)物腐殖化程度,EAC作為一種新型好氧堆肥改良技術(shù),擁有廣闊的發(fā)展前景。底物的復(fù)雜性、電子傳遞方式、中間代謝產(chǎn)物、電子供受體類型均是影響反應(yīng)過程的關(guān)鍵因素,其運(yùn)作機(jī)理需要進(jìn)一步研究。在生產(chǎn)應(yīng)用方面可將各種好氧堆肥的改良方式與電場(chǎng)堆肥結(jié)合,多方面評(píng)估堆肥效果以獲得最優(yōu)組合。
3 展望
微生物電化學(xué)技術(shù)在利用畜禽糞污進(jìn)行發(fā)電、合成附加值產(chǎn)物、提高堆肥腐殖化程度和減緩好氧堆肥溫室氣體排放方面表現(xiàn)出巨大的應(yīng)用潛力。但這些試驗(yàn)主要是以實(shí)驗(yàn)室規(guī)模進(jìn)行的,且微生物電化學(xué)系統(tǒng)的性能易受反應(yīng)器結(jié)構(gòu)、反應(yīng)基質(zhì)組成、抗生素類型、有效生物膜面積、菌群結(jié)構(gòu)和代謝活性、電極材料、質(zhì)子膜材料、運(yùn)行參數(shù)等多種因素的影響。此外,在該技術(shù)的實(shí)際運(yùn)行中仍存在許多技術(shù)和成本問題,如電流密度低、生物膜馴化速度慢、材料(電活性菌劑、電極材料、質(zhì)子膜材料等)成本高 。反應(yīng)器運(yùn)行的穩(wěn)定性和壽命也是實(shí)際應(yīng)用需要考慮的重要因素,例如質(zhì)子膜需要經(jīng)常清洗和更換,否則會(huì)在表面形成雜質(zhì)和菌膜污染從而影響質(zhì)子交換效果。在運(yùn)用微生物電化學(xué)技術(shù)大規(guī)模處理畜禽廢棄物之前,需從培育以電活性菌為主的高效抗逆互營菌群、建立反應(yīng)器最優(yōu)運(yùn)行參數(shù)模型、加強(qiáng)電極材料的比表面積和導(dǎo)電性、開發(fā)多反應(yīng)器耦合系統(tǒng)等方面重點(diǎn)優(yōu)化,以提高畜禽廢棄物資源化利用效能。
參 考 文 獻(xiàn)
[1] LOVLEY D R, HOLMES D E. Electromicrobiology: theecophysiology of phylogenetically diverse electroactivemicroorganisms [J]. Nat. Rev. Microbiol., 2022, 20(1): 5-19.
[2] KOCH C, HARNISCH F. Is there a specific ecological nichefor electroactive microorganisms? [J]. Chem. Electron. Chem.,2016, 3(9): 1282-1295.
[3] LOVLEY D R, PHILLIPS E J. Novel mode of microbial energymetabolism: organic carbon oxidation coupled to dissimilatoryreduction of iron or manganese [J]. Appl. Environ. Microbiol.,1988, 54(6): 1472-1480.
[4] LOVLEY D R, GIOVANNONI S J, WHITE D C, et al ..Geobacter metallireducens gen. nov. sp. nov., a microorganismcapable of coupling the complete oxidation of organiccompounds to the reduction of iron and other metals [J]. Arch.Microbiol., 1993, 159(4): 336-344.
[5] LOVLEY D R, UEKI T, ZHANG T, et al .. Geobacter: themicrobe electric’s physiology, ecology, and practical applications[J]. Adv. Microb. Physiol., 2011, 59: 1-100.
[6] LEMAIRE O N, MEJEAN V, IOBBI-NIVOL C. The shewanellagenus: ubiquitous organisms sustaining and preserving aquaticecosystems [J]. FEMS Microbiol. Rev., 2020, 44(2): 155-170.
[7] SCHR?DER U, HARNISCH F, ANGENENT L T. Microbialelectrochemistry and technology: terminology and classification [J].Energ. Environ. Sci., 2015, 8(2): 513-519.
[8] CAO B C, ZHAO Z P, PENG L L, et al .. Silver nanoparticlesboost charge-extraction efficiency in shewanella microbial fuelcells [J]. Science, 2021, 373(6561): 1336-1340.
[9] LOGAN B E, CALL D, CHENG S, et al .. Microbial electrolysiscells for high yield hydrogen gas production from organicmatter [J]. Environ. Sci. Technol., 2008, 42(23): 8630-8640.
[10] KORTH B, HARNISCH F. Spotlight on the energy harvest ofelectroactive microorganisms: the impact of the applied anodepotential [J/OL]. Front. Microbiol., 2019, 10: 1352 [2022-11-03]. https://doi.org/10.3389/fmicb.2019.01352.
[11] MOLLAEI M, TIMMERS P H A, SUAREZ-DIEZ M, et al ..Comparative proteomics of geobacter sulfurreducens PCA(T) inresponse to acetate, formate and/or hydrogen as electron donor[J]. Environ. Microbiol., 2021, 23(1): 299-315.
[12] SEGURA D, MAHADEVAN R, JUAREZ K, et al.. Computationaland experimental analysis of redundancy in the centralmetabolism of geobacter sulfurreducens [J/OL]. PLoS Comput.Biol., 2008, 4(2): e36[2022-11-03]. https://doi. org/10.1371/journal.pcbi.0040036.
[13] UEKI T, LOVLEY D R. Genome-wide gene regulation ofbiosynthesis and energy generation by a novel transcriptionalrepressor in geobacter species [J]. Nucl. Acids Res., 2010, 38(3):810-821.
[14] ESTEVE-NUNEZ A, NUNEZ C, LOVLEY D R. Preferentialreduction of FeIII over fumarate by geobacter sulfurreducens [J].J. Bacteriol., 2004, 186(9): 2897-2899.
[15] CALL D F, LOGAN B E. Lactate oxidation coupled to iron orelectrode reduction by geobacter sulfurreducens PCA [J]. Appl.Environ. Microbiol., 2011, 77(24): 8791-8794.
[16] UEKI T. Key enzymes for anaerobic lactate metabolism ingeobacter sulfurreducens [J/OL]. Appl. Environ. Microbiol.,2021, 87(2):e01968-20 [2022-11-03]. https://doi.org/10.1128/AEM.01968-20.
[17] SUMMERS Z M, UEKI T, ISMAIL W, et al .. Laboratoryevolution of geobacter sulfurreducens for enhanced growth onlactate via a single-base-pair substitution in a transcriptionalregulator [J]. ISME J., 2012, 6(5): 975-983.
[18] NEALSON K H, SCOTT J. Ecophysiology of the GenusShewanella [M]. German: Springer, 2006: 1133-1151.
[19] SERRES M H, RILEY M. Genomic analysis of carbon sourcemetabolism of shewanella oneidensis MR-1: predictions versusexperiments [J]. J. Bacteriol., 2006, 188(13): 4601-4609.
[20] TANG Y J, HWANG J S, WEMMER D E, et al .. Shewanellaoneidensis MR-1 fluxome under various oxygen conditions [J].Appl. Environ. Microbiol., 2007, 73(3): 718-729.
[21] PINCHUK G E, RODIONOV D A, YANG C, et al .. Genomicreconstruction of shewanella oneidensis MR-1 metabolismreveals a previously uncharacterized machinery for lactateutilization [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(8): 2874-2879.
[22] BRUTINEL E D, GRALNICK J A. Preferential utilization of Dlactateby shewanella oneidensis [J]. Appl. Environ. Microbiol.,2012, 78(23): 8474-8476.
[23] PINCHUK G E, GEYDEBREKHT O V, HILL E A, et al ..Pyruvate and lactate metabolism by shewanella oneidensis MR-1under fermentation, oxygen limitation, and fumarate respirationconditions [J]. Appl. Environ. Microbiol., 2011, 77(23): 8234-8240.
[24] HUNT K A, FLYNN J M, NARANJO B, et al .. Substrate-levelphosphorylation is the primary source of energy conservationduring anaerobic respiration of shewanella oneidensis strainMR-1 [J]. J. Bacteriol., 2010, 192(13): 3345-3351.
[25] KANE A L, BRUTINEL E D, JOO H, et al .. Formatemetabolism in shewanella oneidensis generates proton motiveforce and prevents growth without an electron acceptor [J]. J.Bacteriol., 2016, 198(8): 1337-1346.
[26] KOUZUMA A, KASAI T, HIROSE A, et al .. Catabolic andregulatory systems in shewanella oneidensis MR-1 involved inelectricity generation in microbial fuel cells [J/OL]. Front.Microbiol., 2015, 6: 609 [2022-11-03]. https://doi.org/10.3389/fmicb.2015.00609.
[27] KANE A L, SZABO R E, GRALNICK J A. Engineeringcooperation in an anaerobic coculture [J/OL]. Appl. Environ.Microbiol., 2021, 87(11): e02852-20 [2022-11-03]. https://doi.org/10.1128/AEM.02852-20.
[28] RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatoryreduction of extracellular electron acceptors in anaerobicrespiration [J]. Appl. Environ. Microbiol., 2012, 78(4): 913-921.
[29] TROJAN D, SCHREIBER L, BJERG J T, et al .. A taxonomicframework for cable bacteria and proposal of the candidategenera electrothrix and electronema [J]. Syst. Appl. Microbiol.,2016, 39(5): 297-306.
[30] STRYCHARZ-GLAVEN S M, TENDER L M. Study of themechanism of catalytic activity of G. sulfurreducens biofilmanodes during biofilm growth [J]. ChemSusChem, 2012, 5(6):1106-1118.
[31] BONANNI P S, SCHROTT G D, ROBUSCHI L, et al .. Chargeaccumulation and electron transfer kinetics in geobactersulfurreducens biofilms [J]. Energ. Environ. Sci., 2012, 5(3):6188-6195.
[32] SHI L, RICHARDSON D J, WANG Z, et al .. The roles of outermembrane cytochromes of shewanella and geobacter inextracellular electron transfer [J]. Environ. Microbiol. Rep.,2009, 1(4): 220-227.
[33] XU S, JANGIR Y, EL-NAGGAR M Y. Disentangling the rolesof free and cytochrome-bound flavins in extracellular electrontransport from shewanella oneidensis MR-1 [J]. ElectrochimicaActa, 2016, 198: 49-55.
[34] UEKI T. Cytochromes in extracellular electron transfer in geobacter[J/OL]. Appl. Environ. Microb., 2021, 87(10).e03109-20 [2022-11-03]. https://doi.org/10.1128/AEM.03109-20.
[35] SHI L, DONG H L, REGUERA G, et al .. Extracellular electrontransfer mechanisms between microorganisms and minerals [J].Nat. Rev. Mircobiol., 2016, 14(10): 651-662.
[36] KRACKE F, VASSILEV I, KROMER J O. Microbial electrontransport and energy conservation-the foundation for optimizingbioelectrochemical systems [J/OL]. Front. Microbiol., 2015, 6:575 [2022-11-03]. https://doi.org/10.3389/fmicb.2015.00575.
[37] EDWARDS M J, WHITE G F, BUTT J N, et al .. The crystalstructure of a biological insulated transmembrane molecularwire [J]. Cell, 2020, 181(3): 665-673.
[38] LOVLEY D R. Electrically conductive pili: biological functionand potential applications in electronics [J]. Curr. Opin.Electrochem., 2017, 4(1): 190-198.
[39] LOVLEY D R, WALKER D J F. Geobacter protein nanowires[J/OL]. Front. Microbiol., 2019, 10: 2078 [2022-11-03]. https://doi.org/10.3389/fmicb.2019.02078.
[40] THIRUMURTHY M A, JONES A K. Geobacter cytochromeomcZs binds riboflavin: implications for extracellular electrontransfer [J/OL]. Nanotechnology, 2020, 31(12): 124001 [2022-11-03]. https://doi.org/10.1088/1361-6528/ab5de6.
[41] GU Y Q, SRIKANTH V, SALAZAR-MORALES A I, et al ..Structure of geobacter pili reveals secretory rather thannanowire behaviour [J]. Nature, 2021, 597(7876): 430-434.
[42] UEKI T, LEANG C, INOUE K, et al .. Identification ofmulticomponent histidine-aspartate phosphorelay systemcontrolling flagellar and motility gene expression in geobacterspecies [J]. J. Biol. Chem., 2012, 287(14): 10958-10966.
[43] LIU X, ZHUO S Y, JING X Y, et al .. Flagella act as geobacterbiofilm scaffolds to stabilize biofilm and facilitate extracellularelectron transfer [J/OL]. Biosens. Bioelectron., 2019, 146: 111748[2022-11-03]. https://doi.org/10.1016/j.bios.2019.111748.
[44] LIU X, JING X Y, YE Y, et al .. Bacterial vesicles mediateextracellular electron transfer [J]. Environ. Sci. Technol. Lett.,2020, 7(1): 27-34.
[45] ZHANG B, CHENG H Y, WANG A J. Extracellular electrontransfer through visible light induced excited-state outer membraneC-type cytochromes of Geobacter sulfurreducens [J/OL].Bioelectrochemistry, 2021, 138: 107683 [2022-11-03]. https://doi.org/10.1016/j.bioelechem.2020.107683.
[46] HUANG L, TANG J, CHEN M, et al .. Two modes of riboflavinmediatedextracellular electron transfer in geobacter uraniireducens[J/OL]. Front. Microbiol., 2018, 9: 2886 [2022-11-03]. https://doi.org/10.3389/fmicb.2018.02886.
[47] ZHUANG Z, YANG G, ZHUANG L. Exopolysaccharidesmatrix affects the process of extracellular electron transfer inelectroactive biofilm [J/OL]. Sci. Total Environ., 2022, 806(Pt3): 150713 [2022-11-03]. https://doi. org/10.1016/j. scitotenv.2021.150713.
[48] GORBY Y A, YANINA S, MCLEAN J S, et al .. Electricallyconductive bacterial nanowires produced by shewanellaoneidensis strain MR-1 and other microorganisms [J]. Proc.Natl. Acad. Sci. USA, 2006, 103(30): 11358-11363.
[49] GORGEL M, ULSTRUP J J, BOGGILD A, et al .. Highresolutionstructure of a type IV pilin from the metal-reducingbacterium shewanella oneidensis [J/OL]. BMC Struct. Biol.,2015, 15(1): 4 [2022-11-03]. https://doi. org/10.1186/s12900-015-0031-7.
[50] MARSILI E, BARON D B, SHIKHARE I D, et al .. Shewanellasecretes flavins that mediate extracellular electron transfer [J].Proc. Natl. Acad. Sci. USA, 2008, 105(10): 3968-3973.
[51] COURSOLLE D, BARON D B, BOND D R, et al .. The mtrrespiratory pathway is essential for reducing flavins andelectrodes in shewanella oneidensis [J]. J. Bacteriol., 2010, 192(2):467-474.
[52] KOTLOSKI N J, GRALNICK J A. Flavin electron shuttlesdominate extracellular electron transfer by shewanellaoneidensis [J/OL]. MBio, 2013, 4(1): e00553-12 [2022-11-03].https://doi.org/10.1128/mBio.00553-12.
[53] VON CANSTEIN H, OGAWA J, SHIMIZU S, et al .. Secretionof flavins by shewanella species and their role in extracellularelectron transfer [J]. Appl. Environ. Mircob., 2008, 74(3):615-623.
[54] COVINGTON E D, GELBMANN C B, KOTLOSKI N J, et al ..An essential role for ushA in processing of extracellular flavinelectron shuttles by shewanella oneidensis [J]. Mol. Microbiol.,2010, 78(2): 519-532.
[55] YANG Y, DING Y, HU Y, et al .. Enhancing bidirectionalelectron transfer of shewanella oneidensis by a synthetic flavinpathway [J]. ACS Synth. Biol., 2015, 4(7): 815-823.
[56] CHENG Z H, XIONG J R, MIN D, et al .. Promotingbidirectional extracellular electron transfer of shewanellaoneidensis MR-1 for hexavalent chromium reduction viaelevating intracellular cAMP level [J]. Biotechnol. Bioeng.,2020, 117(5): 1294-1303.
[57] EDEL M, STURM G, STURM-RICHTER K, et al ..Extracellular riboflavin induces anaerobic biofilm formation inshewanella oneidensis [J/OL]. Biotechnol. Biofuels., 2021, 14(1):130 [2022-11-03]. https://doi.org/10.1186/s13068-021-01981-3.
[58] KEES E D, PENDLETON A R, PAQUETE C M, et al ..Secreted flavin cofactors for anaerobic respiration of fumarateand urocanate by shewanella oneidensis: cost and role [J/OL].Appl. Environ. Microbiol., 2019, 85(16): e00852-19 [2022-11-03]. https://doi.org/10.1128/AEM.00852-19.
[59] SUN W N, LIN Z F, YU Q Z, et al .. Promoting extracellularelectron transfer of shewanella oneidensis MR-1 by optimizingthe periplasmic cytochrome c network [J/OL]. Front. Microbiol.,2021, 12: 727709 [2022-11-03]. https://doi.org/10.3389/fmicb.2021.727709.
[60] ZHANG Y T, ZHANG Y, PENG L. Electrochemicalfluorescence microscopy reveals insignificant long-rangeextracellular electron transfer in shewanella oneidensis anodicprocesses [J/OL]. Electrochim. Acta, 2021, 398:139305 [2022-11-03]. https://doi.org/10.1016/j.electacta.2021.139305.
[61] JIANG D, JIANG K, LI R, et al .. Influence of differentinoculation densities of black soldier fly larvae (hermetiaillucens) on heavy metal immobilization in swine manure [J].Environ. Sci. Pollut. Res., 2022, 29(36): 54378-54390.
[62] GIRARD M, NIKIEMA J, BRZEZINSKI R, et al .. A review ofthe environmental pollution originating from the piggeryindustry and of the available mitigation technologies: towardsthe simultaneous biofiltration of swine slurry and methane [J].Can. J. Civil. Eng., 2009, 36(12): 1946-1957.
[63] POACH M E, HUNT P G, REDDY G B, et al .. Swinewastewater treatment by marsh-pond-marsh constructed wetlandsunder varying nitrogen loads [J]. Ecol. Eng., 2004, 23(3):165-175.
[64] YOKOYAMA H, OHMORI H, ISHIDA M, et al .. Treatment ofcow-waste slurry by a microbial fuel cell and the properties ofthe treated slurry as a liquid manure [J]. Anim. Sci. J., 2006,77(6): 634-638.
[65] MIN B, KIM J, OH S, et al .. Electricity generation from swinewastewater using microbial fuel cells [J]. Water Res., 2005,39(20): 4961-4968.
[66] SHEN J G, WANG C X, LIU Y P, et al .. Effect of ultrasonicpretreatment of the dairy manure on the electricity generationof microbial fuel cell [J]. Biochem. Eng. J., 2018, 129: 44-49.
[67] MOLOGNONI D, PUIG S, BALAGUER M D, et al ..Multiparametric control for enhanced biofilm selection inmicrobial fuel cells [J]. J. Chem. Techonl. Biot, 2016, 91(6):1720-1727.
[68] XIE B, GONG W, DING A, et al .. Microbial communitycomposition and electricity generation in cattle manure slurrytreatment using microbial fuel cells: effects of inoculumaddition [J]. Environ. Sci. Pollut. Res., 2017, 24(29): 23226-23235.
[69] WU J Y, LAY C H, CHIA S R, et al .. Economic potential ofbioremediation using immobilized microalgae-based microbial fuel cells [J]. Clean Technol. Environ., 2021, 23(8): 2251-2264.
[70] VILAJELIU-PONS A, PUIG S, POUS N, et al .. Microbiomecharacterization of MFCs used for the treatment of swinemanure [J]. J. Hazard. Mater., 2015, 288: 60-68.
[71] WU X Y, SONG T S, ZHU X J, et al .. Construction andoperation of microbial fuel cell with chlorella vulgarisbiocathode for electricity generation [J]. Appl. Biochem.Biotechnol., 2013, 171(8): 2082-2092.
[72] PREMIER G C, KIM J R, MICHIE I, et al .. Automatic controlof load increases power and efficiency in a microbial fuel cell [J].J. Power Sources, 2011, 196(4): 2013-2019.
[73] SLEUTELS T H, DARUS L, HAMELERS H V, et al .. Effectof operational parameters on coulombic efficiency inbioelectrochemical systems [J]. Bioresour. Technol., 2011,102(24): 11172-11176.
[74] SRIVASTAVA R K, BODDULA R, POTHU R. Microbial fuelcells: technologically advanced devices and approach forsustainable/renewable energy development [J/OL]. EnergyConvers. Manage., 2022, 13:100160 [2022-11-03]. https://doi.org/10.1016/j.ecmx.2021.100160.
[75] SHRIVASTAVA A, SHARMA R K. Lignocellulosic biomassbased microbial fuel cells: performance and applications [J/OL].J. Clean. Prod., 2022, 361: 132269 [2022-11-03]. https://doi.org/10.1016/j.jclepro.2022.132269.
[76] PARVIN Y, MONEM K M, BIRIA D. Application of amembrane-less air cathode microbial fuel cell to treatmunicipal waste composting leachate [J/OL]. J. Environ.Manage., 2023, 325: 116538 [2022-11-03]. https://doi.org/10.1016/j.jenvman.2022.116538.
[77] MA J C, ZHANG J, ZHANG Y Z, et al .. Progress on anodicmodification materials and future development directions inmicrobial fuel cells [J/OL]. J. Power Sources, 2023, 556:232486 [2022-11-03]. https://doi.org/10.1016/j.jpowsour.2022.232486.
[78] JECHALKE S, HEUER H, SIEMENS J, et al .. Fate and effectsof veterinary antibiotics in soil [J]. Trends Microbiol., 2014,22(9): 536-545.
[79] CHEN J, WANG T T, ZHANG K, et al .. The fate of antibioticresistance genes (ARGs) and mobile genetic elements (MGEs)from livestock wastewater (dominated by quinolone antibiotics)treated by microbial fuel cell (MFC) [J/OL]. Ecotoxicol.Environ. Saf., 2021, 218: 112267 [2022-11-03]. https://doi.org/10.1016/j.ecoenv.2021.112267.
[80] ONDON B S, LI S, ZHOU Q, et al .. Simultaneous removal andhigh tolerance of norfloxacin with electricity generation inmicrobial fuel cell and its antibiotic resistance genesquantification [J/OL]. Bioresour. Technol., 2020, 304: 122984[2022-11-03]. https://doi.org/10.1016/j.biortech.2020.122984.
[81] TOPCU S, TASKAN E. Effect of the tetracycline antibiotics onperformance and microbial community of microbial fuel cell [J].Bioproc. Biosyst. Eng., 2021, 44(3): 595-605.
[82] LONG S, ZHAO L, CHEN J C, et al .. Tetracycline inhibitionand transformation in microbial fuel cell systems: performance,transformation intermediates, and microbial community structure[J/OL]. Bioresour. Technol., 2021, 322: 124534 [2022-11-03].https://doi.org/10.1016/j.biortech.2020.124534.
[83] ZHANG Y F, ANGELIDAKI I. Microbial electrolysis cellsturning to be versatile technology: recent advances and futurechallenges [J]. Water Res., 2014, 56: 11-25.
[84] YU J, KIM S, KWON O S. Effect of applied voltage andtemperature on methane production and microbial community inmicrobial electrochemical anaerobic digestion systems treatingswine manure [J]. J. Microbiol. Biotechn., 2019, 46(7): 911-923.
[85] CERRILLO M, BURGOS L, NOGUEROL J, et al .. Ammoniumand phosphate recovery in a three chambered microbialelectrolysis cell: towards obtaining struvite from livestockmanure [J/OL]. Processes, 2021, 9(11): 1916 [2022-11-03] .https://doi.org/10.3390/pr9111916.
[86] ZOU L, WANG C, ZHAO X, et al .. Enhanced anaerobicdigestion of swine manure via a coupled microbial electrolysiscell [J/OL]. Bioresour. Technol., 2021, 340: 125619 [2022-11-03]. https://doi.org/10.1016/j.biortech.2021.125619.
[87] CERRILLO M, OLIVERAS J, VINAS M, et al .. Comparativeassessment of raw and digested pig slurry treatment inbioelectrochemical systems [J]. Bioelectrochemistry, 2016,110: 69-78.
[88] CERRILLO M, BURGOS L, SERRANO-FINETTI E, et al ..Hydrophobic membranes for ammonia recovery from digestatesin microbial electrolysis cells: assessment of differentconfigurations [J/OL]. J. Environ. Chem. Eng., 2021, 9(4):105289[2022-11-03]. https://doi.org/10.1016/j.jece.2021.105289.
[89] SAN-MARTíN M I, SOTRES A, ALONSO R M, et al ..Assessing anodic microbial populations and membrane ageingin a pilot microbial electrolysis cell [J]. Int. J. Hydrogen.Energ., 2019, 44(32): 17304-17315.
[90] SAN-MARTíN M I, MATEOS R, ESCAPA A, et al ..Understanding nitrogen recovery from wastewater with a highnitrogen concentration using microbial electrolysis cells [J]. J.Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.,2019, 54(5): 472-477.
[91] SHEN R X, JIANG Y, GE Z, et al .. Microbial electrolysistreatment of post-hydrothermal liquefaction wastewater withhydrogen generation [J]. Appl. Energ., 2018, 212: 509-515.
[92] YILMAZEL Y D, DURAN M. Biohydrogen production fromcattle manure and its mixtures with renewable feedstock byhyperthermophilic caldicellulosiruptor bescii [J/OL]. J. Clean.Prod., 2021, 292:125969 [2022-11-03]. https://doi.org/10.1016/j.jclepro.2021.125969.
[93] DING L K, LIN H J, ZAMALLOA C, et al .. Simultaneousphosphorus recovery, sulfide removal, and biogas productionimprovement in electrochemically assisted anaerobic digestionof dairy manure [J/OL]. Sci. Total Environ., 2021, 777:146226[2022-11-03]. https://doi.org/10.1016/j.scitotenv.2021.146226.
[94] TANG J, LI X, ZHAO W, et al .. Electric field induces electronflow to simultaneously enhance the maturity of aerobiccomposting and mitigate greenhouse gas emissions [J].Bioresour. Technol., 2019, 279: 234-242.
[95] CAO Y B, WANG X, ZHANG X Y, et al .. An electric fieldimmobilizes heavy metals through promoting combination withhumic substances during composting [J/OL]. Bioresour.Technol., 2021, 330: 124996 [2022-11-03]. https://doi.org/10.1016/j.biortech.2021.124996.
[96] TANG J H, LI X, CUI P, et al .. Nitrification plays a key role inN2O emission in electric-field assisted aerobic composting[J/OL]. Bioresource Technol., 2020, 297:122470 [2022-11-03].https://doi.org/10.1016/j.biortech.2019.122470.
[97] FU T, SHANGGUAN H Y, WU J X, et al .. Insight into thesynergistic effects of conductive biochar for acceleratingmaturation during electric field-assisted aerobic composting[J/OL]. Bioresour. Technol., 2021, 337:125359 [2022-11-03].https://doi.org/10.1016/j.biortech.2021.125359.
[98] CAO Y, WANG X, ZHANG X Y, et al .. The effects of electricfield assisted composting on ammonia and nitrous oxideemissions varied with different electrolytes [J/OL]. Bioresour.Technol., 2022, 344: 126194 [2022-11-03]. https://doi.org/10.1016/j.biortech.2021.126194.
[99] FU T, SHANGGUAN H, SHEN C, et al .. Moisture migrationdriven by the electric field causes the directionaldifferentiation of compost maturity [J/OL]. Sci. Total Environ.,2022, 811: 152415 [2022-11-03]. https://doi.org/10.1016/j.scitotenv.2021.152415.
[100] FU T, TANG J, WU J, et al .. Alternating electric field enableshyperthermophilic composting of organic solid wastes [J/OL].Sci. Total Environ., 2022, 828: 154439 [2022-11-03]. https://doi.org/10.1016/j.scitotenv.2022.154439.
[101] FU T, SHANGGUAN H Y, WEI J R, et al .. In-situelectrolytic oxygen is a feasible replacement for conventionalaeration during aerobic composting [J/OL]. J. Hazard. Mater.,2022, 426: 127846 [2022-11-03]. https://doi.org/10.1016/j.jhazmat.2021.127846.
基金項(xiàng)目:國家肉羊產(chǎn)業(yè)技術(shù)體系項(xiàng)目(cxtd2019-14,2060302);四川省“十四五”畜禽育種攻關(guān)項(xiàng)目(2021YFYZ0003);成都市科技局重點(diǎn)研發(fā)支撐計(jì)劃項(xiàng)目(2022-YF05-00426-SN)。