摘 要:【目的】研究海洋桿菌屬新菌種XAAS-72的植物促生功能,挖掘其潛在功能基因。
【方法】通過對菌株全基因組測序,分析相關(guān)功能基因組成,挖掘ACC脫氨酶合成相關(guān)的候選基因,并進行功能預測。
【結(jié)果】海洋桿菌屬新種Pontibacter kalidii XAAS-72菌懸液處理可顯著提高盆栽小麥麥苗生長,其基因組長度為5 054 860 bp,含1個環(huán)形質(zhì)粒,總GC含量為54.52%,注釋的基因數(shù)目為4 391個,編碼蛋白數(shù)4 261個,具有多種抗逆和促生相關(guān)基因。其與Pontibacter sp. BAB1700的ACC脫氨酶(1-aminoeyclopropane-1-earboxylate-deaminase)相似度最高為72.48%。該蛋白屬于不穩(wěn)定親水性蛋白,不具備跨膜結(jié)構(gòu),且無信號肽結(jié)構(gòu)。
【結(jié)論】海洋桿菌屬新種XAAS-72蘊藏著豐富的抗逆和植物促生相關(guān)基因。
關(guān)鍵詞:海洋桿菌屬;植物促生特性;ACC脫氨酶;結(jié)構(gòu)預測
中圖分類號:S188"" 文獻標志碼:A"" 文章編號:1001-4330(2024)07-1778-08
0 引 言
【研究意義】土壤鹽分是影響農(nóng)作物產(chǎn)量的主要非生物脅迫,能抑制植物的種子萌發(fā)且對植株生長發(fā)育有顯著影響[1]。治理和改良鹽堿地的方法包括物理法、化學法及生物法,其中,利用具有耐鹽、促生活性的菌劑,不僅能夠提高土壤肥力,提升植物鹽堿抗性及植物生長效率,部分產(chǎn)品還可降低作物病害指數(shù)[2],已成為了改善中低鹽堿土壤的重要方法之一。【前人研究進展】鹽生植物根際中蘊含著豐富鹽堿及干旱耐受性的菌株[3-4],如鹽單胞菌屬(Halomonas)、芽孢桿菌屬(Bacillus)、根瘤菌屬(Rhizobium)[5-6]。部分微生物能夠耐受10%的NaCl,可用作生物肥料,能改善鹽脅迫下的小麥產(chǎn)量,并降低病害及經(jīng)濟損害[7-8]。新型微生物輔助技術(shù)可以增強植物的耐鹽性,并在鹽脅迫條件下提高作物產(chǎn)量[9],表現(xiàn)出耐鹽促生菌株的重大應用前景。部分環(huán)境分離獲得的耐鹽促生菌株缺少評價[10-11]。因此,利用基因編輯、基因克隆等現(xiàn)代分子學手段,強化耐鹽促生菌株關(guān)鍵基因的挖掘和利用,已成為重要的生物安全風險規(guī)避的技術(shù)方法。1-氨基環(huán)丙烷-1-羧酸脫氨酶(1-aminoeyclopropane-1-earboxylate- deaminase,ACC脫氨酶,簡稱ACCD酶)在促進植物生長、保護植物抵御非生物和生物脅迫中起到重要作用[12]。ACC脫氨酶可分解ACC(乙烯的前體)為氨和α-丁酮酸,使植物體內(nèi)乙烯濃度降低,減少對植物造成的不良影響,從而保證植物正常生長[13]。植物根際促生菌能夠在鹽脅迫條件下通過提高ACC脫氨酶的利用率來維持小麥的生長,主要是通過表達acdS基因來促進植物的生長并提高耐鹽性[14-15]。如將該基因?qū)氲讲缓珹CC脫氨酶的菌株內(nèi),能通過提高植物抗性來促進植物生長;或?qū)氲礁鼍校栽鰪姼鼍那秩灸芰?,促進結(jié)瘤[16-18]?!颈狙芯壳腥朦c】從鹽爪爪(Kalidium foliatum)根際土壤分離出一株海洋桿菌屬菌株XAAS-72并命名為Pontibacter kalidii,其具有ACC脫氨酶活性,目前有關(guān)海洋桿菌屬菌株的促生作用鮮有報道。需研究海洋桿菌屬新菌種XAAS-72的植物促生功能?!緮M解決的關(guān)鍵問題】通過對菌株XAAS-72處理后的小麥盆栽試驗,驗證其促生效果,并從基因組中分析挖掘其潛在促生基因,對其ACC脫氨酶編碼基因分析,為進一步開發(fā)和利用菌株功能基因及構(gòu)建相關(guān)工程菌株奠定了基礎(chǔ)。
1 材料與方法
1.1 材 料
1.1.1 菌種來源
菌株P(guān)ontibacter kalidii XAAS-72T分離自鹽爪爪(Kalidium foliatum)根際土壤,并保存于中國普通微生物菌種保藏管理中心(CGMCC),菌保號CGMCC 16594。實驗室凍存的菌株接種于1/3 2216E(MA)瓊脂培養(yǎng)基上,置于28℃恒溫培養(yǎng)箱中培養(yǎng)3 d。
1.1.2 培養(yǎng)基
2216E培養(yǎng)基、TSB培養(yǎng)基、無機磷細菌培養(yǎng)基,均購自青島海博生物技術(shù)有限公司。DF培養(yǎng)基購自上海源葉生物科技有限公司。
1.1.3 主要儀器設(shè)備
紫外分紫外分光光度計,日本島津公司(shimadzu);高速冷凍離心機,德國Sigma公司;酶標儀,美國伯騰儀器有限公司;磁力攪拌器,上海梅穎浦儀器制造有限公司。
1.2 方 法
1.2.1 菌株促生特性的測定
菌株解磷能力:菌株接種于解磷(無機磷和有機磷)細菌培養(yǎng)基上,30℃,培養(yǎng)7 d,觀察透明圈的大小。
菌株產(chǎn)IAA能力:菌株接種于含L-色氨酸(100 mg/L)的2% NaCl的TSB培養(yǎng)基中,搖床培養(yǎng)(30℃,180 r/min)1 d后,取50 μL菌懸液滴于白色陶瓷板上,同時加入等體積的Salkowski比色液(50 mL 35% HClO4+1 mL 0.5 mol/L FeCl3),將白色陶瓷板于室溫避光放置30 min后,觀察顏色變紅的情況。以加入2% NaCl的TSB培養(yǎng)基為陰性對照。
菌株產(chǎn)ACC能力:菌株接種于含3 mM ACC的DF液體培養(yǎng)基,傳代3次后,觀察其在ACC為唯一氮源培養(yǎng)基上的生長情況,生長的菌株為產(chǎn)脫氨酶陽性菌株。
1.2.2 菌株XAAS-72對小麥促生作用
選擇顆粒飽滿且無明顯破損的小麥種子,0.1%的升汞消毒5 min,無菌水洗凈,晾干后,室溫浸于106 CFU/mL濃度菌液4 h。對照處理為蒸餾水浸種。將試驗組和對照組小麥種子分別點植于穴栽盆,每穴為4粒,深度約1.5 cm,置于人工氣候室中培養(yǎng)。培養(yǎng)條件20℃、無光照8 h;22℃、30%光照2 h;25℃、100%光照12 h;30%光照2 h。每日澆1次水,澆水量控制一致。待發(fā)芽后,每隔5 d澆灌1次(每穴約10 mL)。生長15 d后測量試驗組和對照組小麥植株的相關(guān)參數(shù),包括發(fā)芽率、鮮重和株高。
1.2.3 全基因組測序
采用十六烷基三甲基溴化銨法(CTAB)對樣本的基因組DNA進行提取,使用1%瓊脂糖凝膠電泳檢測DNA的純度和濃度,交由北京諾禾致源生物信息科技有限公司完成擴增測序。
菌株基因組在北京基因組研究所(中國深圳)使用Illumina NovaSeq PE150測序。配對端片段文庫根據(jù)Illumina NovaSeq PE150系統(tǒng)的流程進行測序。來自配對測序的低質(zhì)量原始讀段(連續(xù)堿基覆蓋少于5個讀段的原始讀段)被丟棄。測序后的讀段使用SMRT Link(版本5.0.1)進行組裝,使用Glimmer(版本3.0)對XAAS-72基因組組裝進行基因預測。使用blast對齊工具進行功能注釋。采用京都基因和基因組百科全書數(shù)據(jù)庫(KEGG)、同源蛋白簇數(shù)據(jù)庫(COG)、非冗余蛋白數(shù)據(jù)庫(NR)、Swiss-Prot數(shù)據(jù)庫、基因本體論數(shù)據(jù)庫(GO)、碳水化合物活性酶數(shù)據(jù)庫(CAZy)數(shù)據(jù)庫等6個數(shù)據(jù)庫進行一般功能注釋。采用基因組測序法測定DNA的G+C含量。除非另有說明,否則所有軟件都使用默認參數(shù)。
1.2.4 目標基因編碼蛋白
使用紐普生物平臺(https://www.novopro.cn/tools/)對蛋白質(zhì)親疏水性分析;使用ProtParam 在線軟件進行蛋白質(zhì)理化性質(zhì)分析;使用Signal-P4.1在線軟件(http://www.cbs.dtu.dk/services/SignalP-4.1/)進行信號肽預測;使用在線跨膜結(jié)構(gòu)預測程序 TMHMM2.0 Server 對蛋白質(zhì)氨基酸序列進行跨膜結(jié)構(gòu)分析;使用 SOPMA 在線軟件對蛋白質(zhì)進行二級結(jié)構(gòu)預測;使用 SWISS-MODEL 在線軟件(https://swissmodel.expasy.org/)對蛋白質(zhì)進行三維結(jié)構(gòu)預測;使用 MEGA 11.0 軟件建立系統(tǒng)發(fā)育樹。
2 結(jié)果與分析
2.1 菌株及菌株植物促生功能
2.1.1 菌株特征
研究表明,菌株分離自鹽爪爪根際土壤,由本課題組命名為Pontibacter kalidii XAAS-72并保存,保藏號為CGMCC 16594T=KCTC 72095T。菌株XAAS-72為革蘭氏陰性,需氧,運動,桿狀。在1/3 MA培養(yǎng)基上培養(yǎng)3 d,菌落呈圓形,凸狀,光滑,粉紅色。細胞大小為0.5~0.6 μm×1.0~1.8" μm,無鞭毛。菌株可在8%的NaCl下生長,具有解磷、產(chǎn)IAA和ACC特性。圖1
2.1.2 菌株促生效果的盆栽試驗驗證
研究表明,小麥種子經(jīng)XAAS-72菌懸液處理,盆栽生長15 d后,出現(xiàn)顯著的促生作用,與對照處理相比,處理組小麥株高顯著增加了45.1%,植株鮮重增加了46.3%,但菌懸液處理對小麥種子發(fā)芽率無顯著影響,發(fā)芽率提高了2.3%。圖2
2.2 菌株基因組基本信息
研究表明,菌株P(guān)ontibacter sp. XAAS-72含1個環(huán)形質(zhì)粒,全基因組大小為5 054 860 bp,GC含量為54.52%,注釋的基因數(shù)目為4 391,注釋得到的基因總長度為4 256 406 bp,基因平均長度為969 bp,注釋的蛋白質(zhì)數(shù)目為4 261。將菌株的全基因組測序數(shù)據(jù)提交至NCBI數(shù)據(jù)庫,登錄號為CP111079.1。經(jīng)KEGG數(shù)據(jù)庫比對,有3 953個基因得到注釋,占基因總數(shù)的90.03%,分別在細胞過程、環(huán)境信息處理、遺傳信息處理、人類疾病、新陳代謝和生物系統(tǒng)共6個功能,41個通路上得到注釋。其中有1 086個基因在代謝通路上得到注釋,全局和概述圖譜有417個基因,氨基酸代謝通路相關(guān)的基因有120個,占代謝通路的11.05%,與碳水化合物相關(guān)的基因有116個,占代謝通路基因總數(shù)的10.68%。圖3,圖4
2.3 菌株抗逆促生相關(guān)基因的挖掘
研究表明,從XAAS-72菌株基因組中初步篩選出植物促生、菌株抗逆和應激等功能基因33個,相關(guān)基因包括ACC 脫氨酶基因1個、耐鹽滲透調(diào)節(jié)基因4個、生物膜形成基因2個、促植物生長基因3個、固氮基因3個、磷酸鹽代謝基因5個、硫同化和代謝基因5個、根定植基因2個。該基因組中存在多種參與氧化應激和耐旱性的酶,DNA損傷修復基因。表1
2.4 菌株XAAS-72T的ACCD酶分析
2.4.1 氨基酸序列同源性
研究表明,菌株基因組中一個編碼ACC脫氨酶(EC:3.5.99.7)編碼基因,全長為906 bp,編碼301個氨基酸,其與Pontibacter sp. BAB1700的ACC脫氨酶編碼氨基酸(1-aminoeyclopropane-1-earboxylate-deaminase)相似度最高為72.48%,兩者在一個大分支上。圖5
2.4.2 蛋白質(zhì)理化性質(zhì)
研究表明,編碼ACCD酶的氨基酸數(shù)目為301,分子量約為33.6 kDa,理論等電點為6.27,其值小于7為酸性蛋白質(zhì)。帶負電荷的殘基總數(shù) (Asp + Glu)33,
帶正電荷的殘基總數(shù) (Arg + Lys)29,分子式C 1521 H 2358 N 406 O 434 S 11,原子總數(shù)4 730,不穩(wěn)定指數(shù)44.80,
脂肪族指數(shù)89.80,親水性總平均值-0.226。
不穩(wěn)定性指數(shù)預測值為44.80(不穩(wěn)定系數(shù)小于40時,預測蛋白質(zhì)穩(wěn)定,反之則不穩(wěn)定),該蛋白為不穩(wěn)定蛋白,ACCD蛋白親疏水分布中小于0的部分占比為65%,明顯高于50%,其中疏水性分數(shù)數(shù)值最高為4.5,最低為-4.5,此蛋白為酸性親水性不穩(wěn)定蛋白。圖6
2.4.3 信號肽
研究表明,信號肽切割位點C的最高值為0.118,位于第69位氨基酸;信號肽分數(shù)S值的最高值為0.114,位于第11位氨基酸;合并后切割位點Y值的最高值位于第69位氨基酸,為0.102;S平均值為0.086,C,S,Y值比較平緩。圖7
2.4.4 跨膜結(jié)構(gòu)
研究表明,蛋白質(zhì)無跨膜結(jié)構(gòu)。圖8
2.4.5 蛋白質(zhì)結(jié)構(gòu)預測
研究表明,ACCD結(jié)構(gòu)中α-螺旋和無規(guī)則卷曲所占百分比最多,分別為38.87%和36.21%。而另兩個結(jié)構(gòu)所占比例相對較小,β-轉(zhuǎn)角僅占比7.64%,蛋白質(zhì)三級結(jié)構(gòu)分析也與二級結(jié)果相互驗證,蛋白質(zhì)三級結(jié)構(gòu)中也以α-螺旋和無規(guī)則卷曲為主。圖9
3 討 論
3.1
海洋桿菌屬最初由Nedashkovskay等[19]提出的,歸屬于擬桿菌門中膜桿菌科。目前,對于海洋桿菌屬的研究主要集中在功能產(chǎn)物方面,包括產(chǎn)類胡蘿卜素、蝦青素、硝酸鹽還原活性、α-半乳糖苷酶的鹽適應性及轉(zhuǎn)糖基化活性[20-23]。研究采用的海洋桿菌屬新菌種Pontibacter kalidii XAAS-72T分離自鹽爪爪根際土壤中,并由團隊命名。該菌株可在8%的NaCl下生長,具有解磷、產(chǎn)IAA和ACC特性。該菌具有明顯的促生作用。
3.2
通過對菌株XAAS-72基因組測序注釋,發(fā)現(xiàn)該基因組中含有多個與植物促生相關(guān)的基因。查找的關(guān)鍵基因包括ACC 脫氨酶基因1個,耐鹽滲透調(diào)節(jié)基因4個,參與生物膜形成基因2個,植物生長促進基因3個,固氮基因3個,磷酸鹽代謝基因5個,硫同化和代謝基因5個,氧化還原酶基因2個,與根定植相關(guān)的基因2個,同時也預測到了與DNA修復和植物冷害等非生物脅迫的關(guān)鍵基因,菌株XAAS-72具有較強的抵抗逆境條件及促生長活性。其中,ACC脫氨酶可廣泛用于植物生長,Holguin等[24]將陰溝腸桿菌UW4的ACC脫氨酶基因 (acdS) 導入巴西固氮螺菌中在lac啟動子的控制下表達,結(jié)果顯著增加了IAA合成能力并提高了細菌生長速度,同時促進了番茄幼苗的生長。acdS基因的過表達也提高了矮牽牛對非生物脅迫的耐受性[25]。此外ACC脫氨酶還可作為植物防御和病原體毒力的調(diào)節(jié)劑[26]。
3.3
近期對于ACC脫氨酶的研究主要集中于編碼ACC脫氨酶的結(jié)構(gòu)基因acdS[27],其中以假單胞菌屬的報道最為廣泛,基因大小在1 014~1 017 bp,編碼338個氨基酸,預測亞單位重量為36.6 KDa[28],假單胞菌[12]和中根瘤菌[28]中的編碼蛋白等電點均小于7,不穩(wěn)定指數(shù)低于40,為酸性親水性不穩(wěn)定蛋白,且均沒有跨膜結(jié)構(gòu)和信號肽結(jié)構(gòu),蛋白質(zhì)二三級結(jié)構(gòu)均以α螺旋和無規(guī)則卷曲結(jié)構(gòu)為主。研究菌株基因組中發(fā)現(xiàn)的ACCD編碼基因大小為906 bp,編碼301個氨基酸,約為33.6 KDa,其與NCBI已知菌株P(guān)ontibacter sp. BAB1700的ACC脫氨酶(1-aminoeyclopropane-1-earboxylate-deaminase)相似度最高為72.48%,其為編碼ACC脫氨酶的候選基因。
4 結(jié) 論
海洋桿菌屬新種Pontibacter kalidii XAAS-72T具有明顯耐鹽、促生特性,其全基因組全長為5 054 860 bp,含1個環(huán)形質(zhì)粒,具有多種抗菌、抗逆和促生相關(guān)基因。其ACC脫氨酶與Pontibacter sp. BAB1700的相關(guān)酶蛋白序列相似度最高為72.48%。該蛋白屬于不穩(wěn)定親水性蛋白質(zhì),不具備跨膜結(jié)構(gòu),且無信號肽結(jié)構(gòu)。
參考文獻(References)
[1]
Liang W J, Cui W N, Ma X L, et al. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice [J]. Biochemical and Biophysical Research Communications, 2014, 450(1): 794-801.
[2] Zhang C Y, Wang W W, Hu Y H, et al. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum [J]. BMC Microbiology," 2022, 22(1):67-80.
[3] Salma M, Samia A, Aftab B, et al. Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes - Science Direct [J]. Microbiological Research," 2019,228:126307-126307.
[4] Zhang M, Yang L, Hao R Q, et al. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance [J]. Plant and Soil, 2020,(1/2):452,423-440.
[5] 張志東,顧美英,唐琦勇,等.鹽爪爪根際耐鹽促生菌的篩選及穴栽驗證 [J].中國農(nóng)業(yè)科技導報,2021,23(3):186-192.
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening and cavity planting of salt-tolerant probiotic bacteria in inter-rhizosphere of salt pawpaw [J]. Journal of Agricultural Science and Technology," 2021,23(3):186-192.
[6] Mohammad K H, John A M, Jarrod J, et al. Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains [J]. Plants, 2019, 8(5):120-134.
[7] Zhou Y Y, Hao L P, Ji C, et al. The Effect of Salt-Tolerant Antagonistic Bacteria CZ-6 on the Rhizosphere Microbial Community of Winter Jujube (Mill. “Dongzao”) in Saline-Alkali Land [J]. BioMed Research International,2021.
[8] Zahra S T, Tariq M, Abdullah M, et al. Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions [J]. PeerJ, 2023,11: e14621.
[9] Kumar A, Singh S, Gaurav A K, et al. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants [J]. Frontiers in microbiology," 2020,11:1216-1256.
[10] Farzad B A, Davoud F, Ali B, et al. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress [J]. BBA - Proteins and Proteomics, 2016,1864(9):1222-1236.
[11] Swapmil S, Lti G M, Sharad T. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa) [J]. Microbiological Research," 2018,206:25-32.
[12] Glick B R, Nascimento F X. Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions [J]. Microorganisms, 2021,9(12): 2467.
[13] 張典利,孟臻,亓文哲,等.植物根際促生菌的研究與應用現(xiàn)狀[J].世界農(nóng)藥,2018,40(6):37-43,50.
ZHANG Dianli, MENG Zhen, QI Wenzhe, et al. Research and application status of plant rhizosphere growth promoting bacteria [J]. World Pesticides, 2018,40(6):37-43,50.
[14] Muhammad S A, Amna, Sumaira, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes [J]. Plant Physiology and Biochemistry, 2019,139:569-577.
[15] Rubén P R, Jessica LCA, José L B, et al. Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts [J]." Symbiosis," 2017,73(3):179-189.
[16] Muhammad T, Lftikhar A, Muhammad S, et al. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains [J]. Ecotoxicology and Environmental Safety, 2019,178:33-42.
[17] Liu C H, Siew W Y, Hung Y T, et al.1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in Pseudomonas azotoformans Is Associated with the Amelioration of Salinity Stress in Tomato [J]. Journal of Agricultural and Food Chemistry, 2021,69(3):913-921.
[18] Tavares M J, Nascimento F X, Glick B R, et al. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean [J]. Letters in Applied Microbiology, 2018,66(3):252-259.
[19] Chhetri G, Yang D, Choi J, et al. Edaphorhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea [J]. AntonieVan Leeuwenhoek, 2018a,111(12):2385-2392.
[20] Chhetri G, Kim J, Kim H, et al. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field [J]. Antonie van Leeuwenhoek, 2019,112(11):1705-1713.
[21] Abirami P, Giji S, Mohan K, et al. Biomedical Potential of Astaxanthin from Novel Endophytic Pigment Producing Bacteria Pontibacter korlensis AG6 [J]. Waste and Biomass Valorization, 2020,12.2119-2129.
[22] Philippon T, Tian JH, Bureau C, et al. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter [J]. Bioelectrochemistry, 2021,140:107819.
[23] Zhou J P, Liu Y, Lu Q, et al. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity [J]. Journal of Agricultural and Food Chemistry, 2016,64(11):2315-24.
[24] Holguin G, Glick B R. Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from enterobacter cloacae UW4 fused to the Tet r gene promoter improves its fitness and plant growth promoting ability [J]. Microbial Ecology, 2003,46(1) 46(1):122-33.
[25] Naing A H, Jeong H Y, Jung S K, et al. Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase (acdS) Gene in Petunia hybrida Improves Tolerance to Abiotic Stresses [J]. Frontiers in Plant Science, 2021,12:737490.
[26] Tsolakidou M D, Pantelides L S, Tzima A K, et al. Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense [J]. Molecular Plant Microbe Interactions Mpmi,, 2019,32(6):639-653.
[27] 李,傅培龍,賈顏,等.含ACC脫氨酶的螃蟹腳內(nèi)生細菌篩選及其acdS基因克隆與分析[J].分子植物育種2021-12-27 17:19
LI Qian, FU Peilong, JIA Yan, et al. Screening of Endophytic Bacteria from Viscum liquidambaricolum Containing ACC Deaminase and Cloning and Analysis of acdS Gene [J]. Molecular Plant Breeding, 2021-12-27 17:19.
[28] Krishnendu P, Tithi S, Soumik M, et al. In silico structural and functional analysis of Mesorhizobium ACC deaminase [J]. Computational Biology and Chemistry, 2017,68:12-21.
Structure prediction of the ACC protein from
Pontibacter kalidii XAAS-72T with the plant
growth-promoting character
WANG Huinan1,2, ZHU Jing2, XIE Wenwen2,3, HE Zixuan2,3,
BAI Xiaoyu1," ZHU Yanlei1, ZHANG Zhidong1,2,3
(1." College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China; 2. Xinjiang Key Laboratory of Special Environmental Microbiology/Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 3. College of Life Sciences and Technology, Xinjiang University, Urumqi 830046, China)
Abstract:【Objective】 To explore the plant growth promotion function of a novel strain Pontibacter kalidii XAAS-72T, and investigate the potential functional genes.
【Methods】" The strain whole genome was sequenced, and the composition of function genes were analyzed. A candidate gene related to ACC deaminase synthesis was obtained, and the enzyme protein characteristics were predicted.
【Results】" The results showed that the growth of wheat seed treated with Pontibacter kalidii XAAS-72T was promoted significantly in pots.The genome length of strain XAAS-72 (accession no. CP111079) was 5,054,860 bp, containing one circular plasmid. A total GC content was 54.52%, and the number of annotated genes was 4,391, coding for 4,261 proteins. A variety of resistance and growth-promoting related genes was observed. It had the highest similarity of 72.48% to the ACC deaminase of Pontibacter sp. BAB1700. It an unstable hydrophilic protein, with none of transmembrane structure and signal peptide structure.
【Conclusion】" Pontibacter kalidii XAAS-72T harbors a lot of genes related to the stress resistance and the plant growth-promoting.
Key words:Pontibacter;plant growth-promoting character;ACC deaminase;structure prediction
Fund projects: \"Outstanding Youth Fund\" of Natural Science Foundation of Xinjiang (2022D01E19); Key Science and Technology Innovation Incubation Project of Xinjiang Academy of Agricultural Sciences(xjkcpy-2022004);Xinjiang Academy of Agricultural Sciences Scientific and technological innovation support(xjnkywdzc-2023005)
Correspondence author: ZHU Yanlei (1980-), female, from Jiangsu, associate professor, research direction: microbial ecology, (E-mail) zhuyanlei1226@163.com
ZHANG Zhidong (1977-), male, from Xinjiang, researcher, research direction: special environmental microorganisms and probiotic resources, (E-mail) zhangzheedong@sohu.com
收稿日期(Received):
2023-10-11
基金項目:
新疆維吾爾自治區(qū)自然科學基金項目“杰出青年基金”(2022D01E19); 新疆農(nóng)業(yè)科學院科技創(chuàng)新重點培育專項(xjkcpy-2022004);新疆農(nóng)業(yè)科學院農(nóng)業(yè)科技創(chuàng)新穩(wěn)定支持專項(xjnkywdzc-2023005)
作者簡介:
王慧楠(1999-),女,吉林長春人,碩士研究生,研究方向為微生物生態(tài),(E-mail)18946303350@163.com
通訊作者:
朱艷蕾(1980-),女,江蘇沛縣人,副教授,博士,研究方向為微生物生態(tài),(E-mail)zhuyanlei1226@163.com
張志東(1977-),男,新疆烏魯木齊人,研究員,博士,碩士生導師,研究方向為特殊環(huán)境微生物資源挖掘與利用,(E-mail)zhangzheedong@sohu.com