亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        tRNA衍生片段(tRFs)調(diào)節(jié)基因表達(dá)的機(jī)制及其在相關(guān)疾病中的研究進(jìn)展

        2024-11-30 00:00:00趙江華蔡衛(wèi)華陳琳居林玲

        [摘 " 要] " 轉(zhuǎn)運(yùn)RNA(transfer RNA, tRNA)衍生片段(tRNA-derived fragments, tRFs)是一類新的調(diào)節(jié)性非編碼RNA,在應(yīng)激誘導(dǎo)的疾病和癌癥中具有獨(dú)特的生物學(xué)功能。細(xì)胞必須合成新的蛋白質(zhì)來維持其壽命,而tRNAs是蛋白質(zhì)翻譯過程的重要組成部分。成熟tRNAs和前體tRNAs根據(jù)不同的酶切位點(diǎn)被裂解為兩種類型:tRNA半體(tiRNAs,長度為28~36 nt)和tRFs(長度為14~30 nt)。前者包含2個(gè)亞類:5′-tiRNAs和3′-tiRNAs,后者分為5個(gè)亞類:tRF-1、tRF-2、tRF-3、tRF-5和i-tRF。tRFs通過與其他類型的RNA或蛋白質(zhì)相互作用來調(diào)節(jié)基因的表達(dá),并在多種疾病中異常表達(dá),如在神經(jīng)退行性病變、病毒感染等多種疾病中發(fā)揮重要作用,且在胃癌、肝癌等多種癌癥中異常表達(dá)。本文就tRFs在人類疾病中的研究進(jìn)展進(jìn)行綜述。

        [關(guān)鍵詞] " tRNA衍生片段;轉(zhuǎn)運(yùn)RNA;疾病

        [中圖分類號(hào)] " Q522+.1 " " " " " " " [文獻(xiàn)標(biāo)志碼] " A " " " " " " " [文章編號(hào)] " 1674-7887(2024)01-0063-5

        Mechanisms by which tRNA-derived fragments(tRFs) regulate gene expression and

        the development of related diseases*

        ZHAO Jianghua1**, CAI Weihua1***, CHEN Lin2, JU Linling2 " " " "(1Department of Hepatobiliary Surgery, 2Institute of Liver Diseases, Nantong Third Hospital Affiliated to Nantong University, Jiangsu 226006)

        [Abstract] " Transfer RNA(tRNA) derived fragments(tRNA-derived fragments, tRFs) are a new class of regulatory non-coding RNAs with unique biological functions in stress-induced diseases and cancer. Cells must synthesize new proteins to maintain their lifespan, and tRNAs are important components of the protein translation process. Mature tRNAs and precursor tRNAs are cleaved into two types according to different enzymatic cleavage sites: tRNA halves(tiRNAs, 28-36 nt) and tRFs(14-30 nt). The former contains two subclasses: 5′-tiRNAs and 3′-tiRNAs, and the latter is divided into five subclasses: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. tRFs regulated gene expression by interacting with other types of RNAs or proteins, and are abnormally expressed in a variety of diseases, they play an important role in a lot of diseases, such as neurodegenerative diseases and viral infections, and they are abnormally expressed in many cancers, such as gastric and liver cancers, etc. This article provides a review of the progress of research on tRFs in human diseases.

        [Key words] " tRNA-derived fragments; transfer RNA; disease

        轉(zhuǎn)運(yùn)RNA(transfer RNA, tRNA)衍生片段(tRNA-derived fragments, tRFs)是一類新的調(diào)節(jié)性非編碼RNA,在應(yīng)激誘導(dǎo)的疾病中具有獨(dú)特的生物學(xué)功能[1]。具有多種調(diào)控功能的非編碼RNA(non-coding RNA, ncRNA)的發(fā)現(xiàn)徹底改變了人類對現(xiàn)代生物學(xué)和醫(yī)學(xué)的認(rèn)知。這些ncRNA包括小干擾RNA(small interfering RNA, siRNA)、微小RNA(microRNA, miRNA)和Piwi蛋白相作用的RNA(PIWI-interacting RNA, piRNA)以及tRFs等,它們具有明確的生物學(xué)功能,依賴于其序列與RNA靶標(biāo)的互補(bǔ)作用。

        tRNA的3個(gè)堿基反密碼子通過與mRNA密碼子堿基配對將mRNA上的核苷酸信息轉(zhuǎn)移到氨基酸序列上進(jìn)行轉(zhuǎn)錄與蛋白質(zhì)翻譯[2]。盡管tRNA片段?。?3~95 nt),但其結(jié)構(gòu)保守、轉(zhuǎn)錄后加工和修飾、對核酸酶的抗性,使tRNA有極高的穩(wěn)定性[3]。本文對tRFs的來源和功能,及在人類疾病中的潛在作用作一綜述。

        1 " tRFs的形成與分類

        借助高通量測序技術(shù),大量ncRNA已被證實(shí)在疾病的發(fā)生和發(fā)展中發(fā)揮重要作用[4-5],tRFs來源于前體tRNA或成熟tRNA,長度為14~30 nt。tRFs有很多不同的類別,并在轉(zhuǎn)錄和轉(zhuǎn)錄后水平上作為調(diào)節(jié)基因表達(dá)的關(guān)鍵參與者,它們不是tRNA隨機(jī)切割的副產(chǎn)品,而是參與生理和病理過程的小型非編碼RNA(small non-coding RNA, sncRNA)[6]。

        依據(jù)切口位點(diǎn)的不同,tRFs可分為5種類型:tRF-1、tRF-2、tRF-3、tRF-5和i-tRF。其中主要是tRF-3和tRF-5兩類。tRF-3從3′端開始(在3′端的三核苷酸“CCA”),并在成熟tRNA的T環(huán)處被Dicer和ANG切割,tRF-5從成熟tRNA的5′端開始,由Dicer在D環(huán)或D環(huán)與反密碼子環(huán)之間的莖位置切割。另外3種tRF中,tRF-1是從前tRNA的3′尾部(在3′末端包含“poly-U”序列)衍生的小片段,由RNase Z或ELAC2切割;tRF-2包括反密碼子環(huán)和莖序列,不包括5′末端和3′末端結(jié)構(gòu)[7];而i-tRF源自成熟tRNA的內(nèi)部,包括反密碼子環(huán)以及D環(huán)和T環(huán)的片段[8]。

        2 " tRFs的生物學(xué)功能和作用機(jī)制

        tRFs參與多種分子機(jī)制,如基因調(diào)控、RNA修飾、蛋白質(zhì)合成和各種基本細(xì)胞功能(如細(xì)胞增殖和應(yīng)激反應(yīng))。此外,在癌癥、病毒感染和神經(jīng)退行性病變等不同疾病中都發(fā)現(xiàn)了tRFs的異常表達(dá)[9]。tRFs還可以通過多種途徑來調(diào)控細(xì)胞周期、基因表達(dá)以及蛋白質(zhì)翻譯。

        2.1 " 調(diào)控細(xì)胞周期 " L.Y.SHEN等[10]采用高脂肪飲食誘導(dǎo)肥胖大鼠模型,并進(jìn)行tRFs轉(zhuǎn)錄組測序,發(fā)現(xiàn)tRFGluTTC通過增加細(xì)胞周期調(diào)節(jié)因子的表達(dá)來促進(jìn)前脂肪細(xì)胞增殖。此外,tRFGluTTC還通過降低三酰甘油含量和脂質(zhì)積累,以及通過減少與脂肪酸合成相關(guān)的基因的表達(dá)來抑制前脂肪細(xì)胞分化。Y.J.SHEN等[11]研究顯示tRF-33-P4R8YP9LON4VDP可誘導(dǎo)胃癌細(xì)胞凋亡,其表達(dá)上調(diào)導(dǎo)致G1期細(xì)胞增多,而轉(zhuǎn)染tRF-33-P4R8YP9LON4VDP抑制劑后,細(xì)胞被阻滯在G2/M期,這表明tRF-33-P4R8YP9LON4VDP具有抑制胃癌細(xì)胞表型的作用。在高滲環(huán)境刺激下,血管生成素誘導(dǎo)產(chǎn)生的tRFs會(huì)和線粒體釋放的細(xì)胞色素C形成復(fù)合體,抑制凋亡體的形成和活性[12]。

        2.2 " 調(diào)節(jié)基因的表達(dá) " tRFs與內(nèi)源性mRNA有足夠的序列互補(bǔ)性,因此其可能在轉(zhuǎn)錄后的調(diào)控中發(fā)揮潛在作用。tRFs在調(diào)節(jié)基因表達(dá)上發(fā)揮著類似miRNA的作用,B.Q.HUANG等[13]報(bào)道,來源于tRNA Leu和pre-miRNA的tRF/miR-1280通過與JAG2的3′非翻譯區(qū)的直接相互作用來抑制Notch/Gata和miR-200b信號(hào)傳導(dǎo),從而抑制結(jié)直腸癌的惡性進(jìn)展。越來越多的研究[14]發(fā)現(xiàn)不同的tRFs通過與不同的Ago亞型相結(jié)合來發(fā)揮作用。在人類HEK293細(xì)胞中,tRFs與Argonautes 1、3和4而不是Argonautes 2相關(guān)聯(lián),Argonautes是miRNA功能的主要效應(yīng)蛋白,表明tRFs可能在RNA沉默中起主要作用[15]。tRNA在植物中被特異性地切割成19 nt tRF-5s,并且這些片段具有類似miRNA的功能。當(dāng)轉(zhuǎn)座元件(transposable element, TE)被轉(zhuǎn)錄激活并產(chǎn)生mRNA時(shí),tRFs能夠指導(dǎo)這些TE mRNA的切割。研究[16]表明,tRFs是基因組保護(hù)機(jī)制的一部分,該機(jī)制通過TE mRNA的靶向和切割起作用。

        2.3 " 調(diào)控蛋白質(zhì)翻譯 " tRFs已知的作用之一是通過非規(guī)范機(jī)制來調(diào)節(jié)mRNA翻譯。盡管最近的一些研究[17]表明3′tRF的功能類似于miRNA,但H.K.KIM等[18]的實(shí)驗(yàn)未檢測到LeuCAG-3′tiRNA具有此類功能,他們發(fā)現(xiàn)LeuCAG-3′tiRNA的22 nt長度的tRF可通過促進(jìn)核糖體的生物發(fā)生來促進(jìn)翻譯過程。另一些tRFs還發(fā)揮著翻譯抑制的作用,應(yīng)激誘導(dǎo)的eIF2α磷酸化抑制整體蛋白質(zhì)合成,而在表達(dá)不可磷酸化的eIF2α突變體(S51A)的細(xì)胞中觀察到應(yīng)激誘導(dǎo)的翻譯停滯,這表明存在翻譯控制的替代途徑。NSun2介導(dǎo)的甲基化使tRNA免于被切割成非編碼5′tRNA片段,從而促進(jìn)蛋白質(zhì)的翻譯和分化,相反,壓力應(yīng)激刺激會(huì)抑制NSun2的活性,使tRNA與血管生成素的結(jié)合能力增強(qiáng),從而導(dǎo)致非編碼5′tRNA片段生成增多,從而抑制人體細(xì)胞中蛋白質(zhì)的合成[19]。N.GUZZI等[20]研究顯示在哺乳動(dòng)物細(xì)胞中,5′-tiRNAs通過取代mRNA中的真核起始因子eIF4A和eIF4G來抑制全局翻譯。應(yīng)激誘導(dǎo)的tiRNAs與轉(zhuǎn)化抑制因子Y-box結(jié)合蛋白1結(jié)合,取代mRNA的帽子結(jié)構(gòu)eIF4F,抑制翻譯起始,并且tRFs在應(yīng)激條件下通過選擇性地抑制某些蛋白質(zhì)的翻譯來減少細(xì)胞能量消耗[21]。

        3 " tRFs在疾病中的研究進(jìn)展

        3.1 " tRFs在癌癥中的研究進(jìn)展 " 腫瘤體積增大的速度遠(yuǎn)大于腫瘤內(nèi)血管生成的速度,因此在腫瘤內(nèi)缺血缺氧是普遍的情況。在缺氧的情況下tRNA可以產(chǎn)生tRFs,使細(xì)胞在應(yīng)激的條件下適應(yīng)環(huán)境的改變。近年來tRFs日益成為研究的熱點(diǎn),在患者的血清和尿液中均可檢測到tRFs,有望成為腫瘤診斷新的標(biāo)志物[22]。

        3.1.1 " 乳腺癌 " 乳腺癌是女性中最常見的惡性腫瘤,tRFs與乳腺癌的發(fā)生進(jìn)展有密切關(guān)系。ts-112和Runt相關(guān)轉(zhuǎn)錄因子1(Runt-related transcription factor 1, RUNX1)在正常乳腺上皮和乳腺癌細(xì)胞系中存在相關(guān)性,ts-112在乳腺癌細(xì)胞中表達(dá)顯著增強(qiáng),而RUNX1在乳腺癌細(xì)胞中表達(dá)降低,這與ts-112的腫瘤相關(guān)活性和RUNX1的腫瘤抑制活性一致。抑制ts-112可顯著降低乳腺癌細(xì)胞的增殖能力,而過表達(dá)ts-112可顯著增強(qiáng)正常乳腺上皮細(xì)胞的增殖能力,這些結(jié)果證實(shí)了ts-112的致癌潛力[23]。Z.X.ZHANG等[24]從成熟的tRNA-Ser-AGA中篩選出tRF-19-W4PU732S,并且發(fā)現(xiàn)tRF-19-W4PU732S在乳腺癌組織和細(xì)胞中高度表達(dá),抑制其表達(dá)可減弱MDA-MB-231細(xì)胞的增殖、遷移和侵襲,同時(shí)增強(qiáng)細(xì)胞凋亡,相反,過表達(dá)tRF-19-W4PU732S促進(jìn)了MCF-7細(xì)胞的增殖、遷移和侵襲,且誘導(dǎo)細(xì)胞凋亡。此外,tRF-19-W4PU732S能誘導(dǎo)BC細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)和癌癥干細(xì)胞樣細(xì)胞表型。因此,tRFs可作為乳腺癌治療的新診斷指標(biāo)和治療靶點(diǎn)。

        3.1.2 " 胃癌 " 胃癌是全球癌癥相關(guān)死亡的第三大原因,通常預(yù)后不良。Y.J.SHEN等[11]證實(shí)tRF-33-P4R-8YP9LON4VDP可抑制胃癌細(xì)胞系BGC-823和SGC-7901的增殖和遷移,促進(jìn)凋亡并改變細(xì)胞周期,在胃癌中發(fā)揮抑制作用。L.W.ZHU等[25]研究結(jié)果顯示,tRF-5026a在胃癌患者組織和血漿樣本中表達(dá)下調(diào),通過調(diào)節(jié)PTEN/PI3K/AKT信號(hào)通路抑制胃癌細(xì)胞的增殖、遷移和細(xì)胞周期進(jìn)展,上調(diào)tRF-5026a可有效抑制腫瘤的生長。W.G.XU等[26]在臨床胃癌樣品中觀察到tRF-Glu-TTC-027的表達(dá)顯著下調(diào),與組織學(xué)分級(jí)和腫瘤大小相關(guān),此外還發(fā)現(xiàn)tRF-Glu-TTC-027可通過抑制MAPK信號(hào)通路來抑制胃癌的進(jìn)展。

        3.1.3 " 肝癌 " 原發(fā)性肝癌是目前我國第4位常見惡性腫瘤及第2位腫瘤致死病因,嚴(yán)重威脅人民的生命和健康。研究[27]表明甘氨酸t(yī)RNA在乙醇喂養(yǎng)的小鼠和酒精性脂肪性肝病患者中均表達(dá)上調(diào),體內(nèi)Gly-tRFs的抑制可導(dǎo)致肝脂肪變性減少。Y.Q.ZHOU等[28]發(fā)現(xiàn)甘氨酸t(yī)RNA衍生片段(Glycine tRNA-derived fragments, Gly-tRFs)在肝癌細(xì)胞和組織中高表達(dá),Gly-tRFs可能通過靶向NDFIP2和激活A(yù)KT信號(hào)通路增強(qiáng)肝癌干細(xì)胞樣細(xì)胞特性并促進(jìn)細(xì)胞遷移和EMT。因此,Gly-tRFs被認(rèn)為是HCC中EMT的調(diào)節(jié)因子,將Gly-tRFs導(dǎo)入腫瘤細(xì)胞中可能是一種逆轉(zhuǎn)腫瘤進(jìn)展的新方法。

        3.1.4 " 其他癌癥 " Y.M.WU等[29]發(fā)現(xiàn)與健康對照組相比,大腸癌患者血漿中5′-tRF-GlyGCC顯著升高,健康對照組5′-tRF-GlyGCC的AUC為0.882,而癌胚抗原+CA199+5′-tRF-GlyGCC的組合將AUC提高到0.926,且在結(jié)直腸癌細(xì)胞和異種移植組織中也證實(shí)了5′-tRF-GlyGCC的表達(dá)水平明顯高于相應(yīng)對照組,因此血漿中的5′-tRF-GlyGCC可作為一個(gè)有潛力的大腸癌診斷生物標(biāo)志物。S.T.SHAN等[30]發(fā)現(xiàn)tRF-39-0VL8K87SIRMM12E2在甲狀腺乳頭狀癌中顯著上調(diào),富集分析顯示,tRF-39主要富集在“代謝途徑”中,說明tRF主要通過影響代謝途徑來發(fā)揮作用。

        3.2 " tRFs在其他疾病中的研究進(jìn)展 " 除了在多種癌癥的發(fā)生發(fā)展中發(fā)揮作用外,tRFs的表達(dá)異常還可能導(dǎo)致多種疾病。C.MA等[31]通過對糖尿病患者視網(wǎng)膜病變的研究發(fā)現(xiàn)tRF-1020通過靶向Wnt信號(hào)通路抑制內(nèi)皮血管生成和視網(wǎng)膜血管功能。呼吸道合胞病毒(respiratory syncytial virus, RSV)是危及生命的兒童下呼吸道感染的最常見原因,J.F.DENG等[32]發(fā)現(xiàn)RSV誘導(dǎo)的最主要的sncRNA是tRFs,并通過蛋白質(zhì)印跡和雙熒光素酶報(bào)告基因?qū)嶒?yàn)和生物信息學(xué)分析發(fā)現(xiàn)tRF5-GluCTC的3′非翻譯區(qū)能識(shí)別抗RSV蛋白受體并抑制其表達(dá)。W.X.WANG等[33]揭示了肺泡巨噬細(xì)胞來源的外泌體tRF-22-8BWS7K092在急性肺損傷小鼠的外泌體中顯著增加,并通過結(jié)合Wnt5B激活Hippo信號(hào)通路,誘導(dǎo)肺泡上皮細(xì)胞發(fā)生鐵死亡,從而促進(jìn)急性肺損傷的發(fā)病。

        4 " 展 " " "望

        tRFs在調(diào)控細(xì)胞周期、調(diào)節(jié)基因的表達(dá)以及調(diào)控蛋白質(zhì)翻譯等途徑中均發(fā)揮重要作用,但關(guān)于tRFs的具體生物學(xué)功能和來源仍不是特別清楚,明確tRNA中修飾堿基具體機(jī)制有利于更深入地研究tRFs。除了在癌癥中發(fā)揮重要作用之外,tRFs在其他諸如神經(jīng)退行性病變、代謝紊亂以及病毒感染等疾病中也扮演著重要角色,對tRFs的研究仍處于早期階段,還有許多問題需要解決。譬如,眾多的tRFs尚未被發(fā)現(xiàn),且目前對tRFs的分類是依據(jù)其切割位點(diǎn),這種簡便的分類方法不一定能很好地將tRFs按照不同的功能進(jìn)行區(qū)分。另外,在特定的酶對tRNA切割前,關(guān)于tRNA數(shù)量眾多的甲基化修飾也缺乏全面的認(rèn)識(shí)。隨著高通量測序技術(shù)和新一代測序技術(shù)的發(fā)展,tRFs將得到更深入的研究,有可能成為腫瘤分子診斷的特異性生物標(biāo)志物,為臨床診斷和篩查早期腫瘤提供一種無創(chuàng)、安全、可靠的治療手段。

        [參考文獻(xiàn)]

        [1] " WU S P, LI X, WANG G. tRNA-like structures and their functions[J]. FEBS J, 2022, 289(17):5089-5099.

        [2] " BERG M D, BRANDL C J. Transfer RNAs: diversity in form and function[J]. RNA Biol, 2021, 18(3):316-339.

        [3] " PEREIRA M, FRANCISCO S, VARANDA A S, et al. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease[J]. Int J Mol Sci, 2018, 19(12):3738.

        [4] " MLECZKO A M, CELICHOWSKI P, BKOWSKA-YW-ICKA K. Ex-translational function of tRNAs and their fragments in cancer[J]. Acta Biochim Pol, 2014, 61(2):211-216.

        [5] " ZHOU Y Q, HU J J, LIU L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2[J]. Cancer Cell Int, 2021, 21(1):502.

        [6] " SHEN Y J, YU X C, ZHU L W, et al. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases[J]. J Mol Med, 2018, 96(11):1167-1176.

        [7] " KUMAR P, KUSCU C, DUTTA A. Biogenesis and function of transfer RNA-related fragments(tRFs)[J]. Trends Biochem Sci, 2016, 41(8):679-689.

        [8] " KIM H K. Transfer RNA-derived small non-coding RNA: dual regulator of protein synthesis[J]. Mol Cells, 2019, 42(10):687-692.

        [9] " KIM H K, XU J P, CHU K, et al. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[J]. Cell Rep, 2019, 29(12):3816-3824.e4.

        [10] " SHEN L Y, TAN Z D, GAN M L, et al. tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating adipogenesis[J]. Biomolecules, 2019, 9(7):274.

        [11] " SHEN Y J, YU X C, RUAN Y, et al. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor[J]. Int J Med Sci, 2021, 18(7):1570-1579.

        [12] " SAIKIA M, JOBAVA R, PARISIEN M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014, 34(13):2450-2463.

        [13] " HUANG B Q, YANG H P, CHENG X X, et al. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer[J]. Cancer Res, 2017, 77(12):3194-3206.

        [14] " ZHANG S S, YU X C, XIE Y Y, et al. tRNA derived fragments: a novel player in gene regulation and applications in cancer[J]. Front Oncol, 2023, 13:1063930.

        [15] " KUMAR P, ANAYA J, MUDUNURI S B, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets[J]. BMC Biol, 2014, 12:78.

        [16] " MARTINEZ G, CHOUDURY S G, SLOTKIN R K. tRNA-derived small RNAs target transposable element transcripts[J]. Nucleic Acids Res, 2017, 45(9):5142-5152.

        [17] " WILSON B, DUTTA A. Function and therapeutic implications of tRNA derived small RNAs[J]. Front Mol Biosci, 2022, 9:888424.

        [18] " KIM H K, FUCHS G, WANG S C, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552(7683):57-62.

        [19] " BLANCO S, DIETMANN S, FLORES J V, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders[J]. EMBO J, 2014, 33(18):2020-2039.

        [20] " GUZZI N, CIELA M, NGOC P C T, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells[J]. Cell, 2018, 173(5):1204-1216.e26.

        [21] " IVANOV P, O′DAY E, EMARA M M, et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments[J]. Proc Natl Acad Sci USA, 2014, 111(51):18201-18206.

        [22] " MAGEE R G, TELONIS A G, LOHER P, et al. Profiles of miRNA isoforms and tRNA fragments in prostate cancer[J]. Sci Rep, 2018, 8(1):5314.

        [23] " FARINA N H, SCALIA S, ADAMS C E, et al. Identification of tRNA-derived small RNA(tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer[J]. J Cell Physiol, 2020, 235(6):5318-5327.

        [24] " ZHANG Z X, LIU Z P, ZHAO W D, et al. tRF-19-W4PU732S promotes breast cancer cell malignant activity by targeting inhibition of RPL27A(ribosomal protein-L27A)[J]. Bioengineered, 2022, 13(2):2087-2098.

        [25] " ZHU L W, LI Z, YU X C, et al. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2021, 12(1):418.

        [26] " XU W G, ZHOU B, WANG J, et al. tRNA-derived fragment tRF-glu-TTC-027 regulates the progression of gastric carcinoma via MAPK signaling pathway[J]. Front Oncol, 2021, 11:733763.

        [27] " ZHONG F D, HU Z G, JIANG K Q, et al. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis[J]. Cell Res, 2019, 29(7):548-561.

        [28] " ZHOU Y Q, HU J J, LIU L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2[J]. Cancer Cell Int, 2021, 21(1):502.

        [29] " WU Y M, YANG X L, JIANG G M, et al. 5′-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis[J]. Genome Med, 2021, 13(1):20.

        [30] " SHAN S T, WANG Y T, ZHU C F. A comprehensive expression profile of tRNA-derived fragments in papillary thyroid cancer[J]. J Clin Lab Anal, 2021, 35(3):e23664.

        [31] " MA C, DU J L, MA X. tRNA-derived fragment tRF-1020 ameliorates diabetes-induced retinal microvascular complications[J]. J Cell Mol Med, 2022, 26(20):5257-5266.

        [32] " DENG J F, PTASHKIN R N, CHEN Y, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism[J]. Mol Ther, 2015, 23(10):1622-1629.

        [33] " WANG W X, ZHU L, LI H T, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury[J]. Int Immunopharmacol, 2022,107:108690.

        [收稿日期] 2023-02-12

        欧美a级情欲片在线观看免费| 人妻少妇偷人精品一区二区三区| 成人国产精品一区二区八戒网| …日韩人妻无码精品一专区| 极品美女扒开粉嫩小泬| 欧美日韩综合在线视频免费看 | 国产精品麻豆成人AV电影艾秋| 国产精品麻豆成人av| 女人被躁到高潮嗷嗷叫免| aa片在线观看视频在线播放| 亚洲欧美精品伊人久久| 亚洲AV手机专区久久精品| 亚洲精品一区二区网站| 蜜臀av色欲a片无码精品一区| 亚洲av网一区二区三区| 午夜福利院电影| 亚洲AV伊人久久综合密臀性色 | 女人18毛片aa毛片免费| 特黄熟妇丰满人妻无码| 人人做人人妻人人精| 精品人妻免费看一区二区三区| 日本一区二区三区一级免费| 日本人妻免费一区二区三区| 久久亚洲私人国产精品va| 亚洲欧美日韩一区二区三区在线| 97se亚洲国产综合自在线图片| 亚洲韩国在线| 91久久大香伊蕉在人线国产| 亚洲成人av在线第一页| 亚洲国色天香卡2卡3卡4| 国产一区二区三区啪| 国产成人美涵人妖视频在线观看| 国产精品一区二区av麻豆| 欧洲熟妇色xxxx欧美老妇多毛| 另类一区二区三区| 国产精品亚洲精品专区| 国产精品久久久久久av| 亚洲av无码电影网| 亚洲av乱码国产精品色| 少妇高潮在线精品观看| 亚洲色欲色欲综合网站|