摘 要:為明確40CrNi2MoE鋼在擠壓工藝下的動態(tài)再結(jié)晶狀態(tài)和高溫流變特征,研究對該材料實(shí)施高溫擠壓處理,并通過臺式場發(fā)射電鏡和電液伺服動態(tài)疲勞試驗(yàn)機(jī)對其應(yīng)變狀況和結(jié)晶狀態(tài)進(jìn)行觀測。在獲得40CrNi2MoE鋼應(yīng)力-應(yīng)變曲線的基礎(chǔ)上,基于Arrhenius函數(shù)建立該材料的熱變形方程,發(fā)現(xiàn)其熱變形激活能Q為343.887kJ/mol,當(dāng)應(yīng)變速率在0.1~10s-1之間且溫度達(dá)到1000℃以上時,才能夠?qū)崿F(xiàn)完全動態(tài)再結(jié)晶。40CrNi2MoE鋼的峰值應(yīng)變:εp與其Z參數(shù)之間的關(guān)系為:εp=0.028lnZ-0.35。以上數(shù)據(jù)對于40CrNi2MoE鋼在加工過程中的組織晶粒細(xì)化具有一定的借鑒意義。
關(guān)鍵詞:40CrNi2MoE鋼;高溫流變曲線;細(xì)晶組織;變形方程
中圖分類號:TG376
文獻(xiàn)標(biāo)志碼:A
Dynamic recrystallization kinetics model analysis of 40CrNi2MoE steel extrusion process
FENG Jinhui
(Nanjing Institute of Mechanical and Electrical Technology, Nanjing 211302, Jiangsu, China)
Abstract: In order to clarify the dynamic recrystallization state and high-temperature rheological characteristics of 40CrNi2MoE steel under the extrusion process, the high-temperature extrusion treatment of the material was studied and the strain and crystallization state were observed by benchtop field emission electron microscope and electro-hydraulic servo-dynamic fatigue testing machine. On the basis of obtaining the stress-strain curve of 40CrNi2MoE steel, the thermal deformation equation of the material is established based on the Arrhenius function, and it is found that the activation energy Q of thermal deformation is 343.887kJ/mol, and the complete dynamic recrystallization can be achieved when the strain rate is between 0.1~10s-1 and the temperature reaches more than 1000℃. The relationship between the peak strain εp and its Z parameter of 40CrNi2MoE steel is εp=0.028lnZ-0.35, and it is difficult for the material to undergo dynamic recrystallization under the condition of large Z parameters. The above data have certain reference significance for the micrograin refinement of 40CrNi2MoE steel in the processing process.
Key words: 40CrNi2MoE steel; high temperature rheological curve; fine grain structure; deformation equation
0 引 言
金屬材料的軋制、鍛造、擠壓等熱加工工藝一方面要避免出現(xiàn)設(shè)備過載、鍛件開裂等問題,另一方面也要使材料的微觀組織達(dá)到理想狀態(tài),這就需要深入分析金屬材料在熱變形狀態(tài)下的動態(tài)再結(jié)晶特征。蘇新生等[1]對40CrNi2MoE鋼進(jìn)行了高溫軸向單道次壓縮變形試驗(yàn),發(fā)現(xiàn)該材料的高溫流變應(yīng)力隨變形溫度的升高而減小,隨著應(yīng)變速率的提高而增大,且在溫度為1123~1423K,以及應(yīng)變速率為0.01~10s-1的情況下,40CrNi2MoE鋼的熱變形激活能為333.726kJ·mol-1徐文帥等[2]通過建立數(shù)學(xué)模型的方式分析了40CrNi2MoE鋼在加熱溫度為850~1200℃以及保溫時間為30~480min時的奧氏體晶粒長大規(guī)律,發(fā)現(xiàn)該材料的鋼奧氏體晶粒在加熱過程中會逐漸長大,當(dāng)加熱溫度超過1050℃且保溫時間超過120min時,試驗(yàn)鋼奧氏體晶粒開始粗化?,F(xiàn)有研究表明,準(zhǔn)確預(yù)測合金材料的微觀組織變化規(guī)律對于提升材料性能有著十分重要的作用。因此,本研究基于不同應(yīng)變速率和溫度環(huán)境,建立了用于描述動態(tài)再結(jié)晶特征的數(shù)學(xué)模型,為相應(yīng)的有限元分析工作提供必要的理論指導(dǎo)。
1 試驗(yàn)材料與方法
1.1 試驗(yàn)材料
研究以40CrNi2MoE高純度鋼為研究對象,該材料采用真空自耗重熔結(jié)合真空感應(yīng)工藝冶煉而成,其化學(xué)成分如表1所示。
1.2 試樣制備
研究通過線切割技術(shù)以φ10mm×15mm的規(guī)格在鋼棒料上切取圓柱試樣,快速加熱試樣至1200℃并靜置5min,再將試樣溫度冷卻至變形溫度并靜置1min,以預(yù)設(shè)的應(yīng)變速率壓縮試樣并實(shí)施水淬處理[3-4]。
1.3 試驗(yàn)方法
分別采用SUNS 890型電液伺服動態(tài)疲勞試驗(yàn)機(jī)(珠海市三思泰捷電氣設(shè)備有限公司)和Pharos G2型臺式場發(fā)射電鏡(上海復(fù)納科學(xué)儀器有限公司)對材料進(jìn)行力學(xué)性能測試和微觀形貌分析。
2 建立本構(gòu)方程
2.1 高溫流變曲線分析
40CrNi2MoE高純度鋼試樣在各變形溫度和各應(yīng)變速率下的高溫流變測試結(jié)果如圖1所示。根據(jù)圖1可知,在變形溫度高于850℃且應(yīng)變速率處于0.01~10s-1之間的情況下,各組試樣的應(yīng)力均存在峰值,說明各組試樣在熱壓縮過程中均出現(xiàn)了動態(tài)再結(jié)晶現(xiàn)象。其中圖1(a)~1(c)所示的3組試樣出現(xiàn)了完全動態(tài)再結(jié)晶,圖1(d)所示的試樣出現(xiàn)了不完全動態(tài)再結(jié)晶。由此可知,在逐漸增加應(yīng)變速率的過程中,引起試樣完全動態(tài)再結(jié)晶的溫度也隨之增加。然而,在加工硬化率過高的情況下,試樣在熱變形過程中即使出現(xiàn)了動態(tài)再結(jié)晶也難以在應(yīng)力-應(yīng)變曲線上表現(xiàn)出來,因此還需要對試樣進(jìn)行微觀形貌分析。
2.2 細(xì)晶組織分析
研究在應(yīng)變ε=0.9的狀態(tài)下對40CrNi2MoE鋼試樣在不同變形溫度T和應(yīng)變速率ε·下的微觀形貌進(jìn)行觀測,顯微標(biāo)尺為200μm,各組試樣
的微觀形貌如圖2所示。根據(jù)圖2可知,當(dāng)T=850℃時,試樣開始出現(xiàn)微觀層面的動態(tài)再結(jié)晶;當(dāng)T=950℃時,其微觀層面出現(xiàn)少量的等軸再結(jié)晶晶粒。說明40CrNi2MoE鋼在ε=0.9, T=950℃時開始出現(xiàn)完全動態(tài)再結(jié)晶。在ε·為0.1,1,10s-1時,試樣只有在T≥1000℃的情況下才會出現(xiàn)完全動態(tài)再結(jié)晶。除此之外,當(dāng)T固定不變時,完全動態(tài)再結(jié)晶晶粒尺寸與ε·成反比。在ε·固定不變時,完全動態(tài)再結(jié)晶晶粒尺寸與T成正比。
2.3 建立熱變形方程
在熱變形過程中,金屬材料的化學(xué)組成決定了其流變應(yīng)力σ,流變應(yīng)力σ同時又與應(yīng)變ε、應(yīng)變速率ε·和熱變形溫度T有關(guān),即σ=f(ε)×f(ε·)×f(t)。
研究基于Arrhenius函數(shù)建立本構(gòu)模型,具體形式如下[5-6]:
ε·=A[sinh(ασ)]nexp-QRT
(1)
在水平應(yīng)力較低(ασlt;0.8)時,式(1)可表示為ε·=A1σn′exp(-Q/RT);在水平應(yīng)力較高(ασgt;1.2)時,式(1)可表示為ε·=A2exp(βσ)exp(-Q/RT)。在式(1)中,A, A1, A2, n, n′, α, β均為材料常數(shù),α, β, n′滿足α=β/n′; Q為變形激活能,單位J·mol-1; R為理想氣體常數(shù),取8.314J·k-1·mol; σ取峰值應(yīng)力σp[7-9]。
分別對水平應(yīng)力較高和較低情況下的本構(gòu)模型兩邊進(jìn)行求導(dǎo),可得n′=lnε·/lnσ, β=lnε·/σ,在此基礎(chǔ)上可繪制出如圖3所示的σp-ε·關(guān)系曲線[10-11]。根據(jù)圖3可知,σp-lnε·和lnσp-lnε·兩條曲線均呈現(xiàn)出近似線性關(guān)系。
對式(1)兩邊取自然對數(shù)可得:
ln(sinh(ασp))=-1nlnA+1nlnε·+1nQRT
(2)
在T固定不變的情況下,于式(2)兩邊對ε·求偏導(dǎo),則有:
在ε·固定不變的情況下,于式(2)兩邊對1/T求偏導(dǎo),則有:
(4)
通過式(3)和(4),對圖1中的應(yīng)力-應(yīng)變曲線進(jìn)行處理,進(jìn)而計算出ε·與σp以及T與σp之間的關(guān)系曲線,所得結(jié)果如圖4所示。在此基礎(chǔ)上進(jìn)行線性擬合處理,能夠計算出Q=343.887kJ/mol, n=5.9159。
研究通過Z參數(shù)來表征40CrNi2MoE鋼熱變形過程與ε·和T之間的關(guān)系,Z參數(shù)具體形式為Z=ε·exp(Q/RT)[12-13],將Z參數(shù)代入式(1)中,則有Z=A[sinh(ασp)]n,對其兩端取ln值,則有l(wèi)nZ=lnA+nln[sinh(ασp)]。在此基礎(chǔ)上對ln[sinh(ασp)]與lnZ之間的線性關(guān)系進(jìn)行擬合計算[14-15],得到如圖5(a)所示的擬合結(jié)果,根據(jù)擬合結(jié)果可計算出n=5.8898, A=1.4684×1013。最終可以得出該材料的Z參數(shù)表達(dá)式為Z=1.4684×1013[sinh(ασp)]5.8898。根據(jù)圖5(b)可知,ln[sinh(ασp)]與lnZ之間呈線性關(guān)系,40CrNi2MoE鋼的σp隨Z值的增加而增加,相關(guān)系數(shù)高達(dá)0.997。
將上述結(jié)果代入式(1),可得出40CrNi2MoE鋼的熱變形方程為ε·=1.4684×1013[sinh(0.01047σ)]5.9159exp(-343887/RT)。經(jīng)研究發(fā)現(xiàn),在出現(xiàn)動態(tài)再結(jié)晶的情況下,40CrNi2MoE鋼的εp與Z參數(shù)之間存在較強(qiáng)的線性關(guān)系,且兩者之間呈正比,lnZ與εp之間的線性關(guān)系為εp=0.028lnZ-0.35。
3 結(jié) 語
40CrNi2MoE鋼的本構(gòu)方程為ε·=1.4684×1013[sinh(0.01047σ)]5.9159exp(-343887/RT),其熱變形激活能Q為343.887kJ/mol,該結(jié)論與蘇新生等[1]提出的結(jié)果相近。在熱變形過程中,40CrNi2MoE鋼的Z參數(shù)滿足Z=1.4684×1013[sinh(ασp)]5.8898。在該材料出現(xiàn)動態(tài)再結(jié)晶型熱變形的情況下,Z參數(shù)與峰值應(yīng)變εp之間的關(guān)系為εp=0.028lnZ-0.35。在應(yīng)變速率ε·為10s-1,應(yīng)變ε=0.9的情況下,只有當(dāng)變形溫度高于1000℃時才會發(fā)生完全動態(tài)再結(jié)晶。在特定的應(yīng)變速率下,晶粒尺寸與溫度成正比。
參考文獻(xiàn):
[1]蘇新生,徐文帥,黃順喆,等.40CrNi2MoE鋼的高溫塑性變形特征[J].機(jī)械工程材料,2015,39(06):90-94.
SU X S, XU W S, HUANG S Z, et al. High temperature plastic deformation characteristics of 40CrNi2MoE steel [J]. Mechanical Engineering Materials, 2015,39(06):90-94.
[2]徐文帥,王春旭,厲勇,等.40CrNi2MoE鋼奧氏體晶粒長大的數(shù)學(xué)模型[J].材料熱處理學(xué)報,2014,35(08):232-238.
XU W S, WANG C X, LI Y, et al. Mathematical model of austenite grain growth in 40CrNi2MoE steel [J]. Journal of Materials Heat Treatment, 2014,35(08):232-238.
[3]葉拓,邱颯蔚,劉杰,等.擠壓態(tài)6082-T6鋁合金的高溫拉伸力學(xué)性能及微觀組織[J].材料熱處理學(xué)報,2024,45(03):113-120.
YE T, QIU S W, LIU J, et al. High temperature tensile mechanical properties and microstructure of extruded 6082-T6 aluminum alloy [J]. Journal of Materials Heat Treatment, 2024,45(03):113-120.
[4]徐寧,王洪卓,潘巖,等.不同融融連接方式對軌道車輛鋁型材性能影響的研究[J].有色金屬加工,2024,53(02):21-24,30.
XU N, WANG H Z, PAN Y, et al. Study on the effect of different fusion connection methods on the performance of aluminum profile for rail vehicles [J]. Nonferrous Metal Processing, 2024,53(02):21-24,30.
[5]陳偉文.一種高強(qiáng)耐蝕鋁合金擠壓型材及其制備方法[J].有色金屬材料與工程,2024,45(02):88.
CHEN W W. A high-strength and corrosion-resistant aluminum alloy extruded profile and its preparation method [J]. Nonferrous Metals Materials and Engineering, 2024,45(02):88.
[6]李寶亮,拓雷鋒,李強(qiáng),等.TC4鈦合金Y型材熱擠壓成型工藝優(yōu)化及組織演變[J].塑性工程學(xué)報,2024,31(03):17-24.
LI B L, TUO L F, LI Q, et al. Optimization of hot extrusion forming process and microstructure evolution of TC4 titanium alloy Y profile [J]. Journal of Plastic Engineering, 2024,31(03):17-24.
[7]楊進(jìn),趙飛,陳朝軼.擠壓速度和焊合室高度對6061鋁合金圓管成型質(zhì)量的影響[J].塑性工程學(xué)報,2024,31(03):25-32.
YANG J, ZHAO F, CHEN C Y. The influence of extrusion speed and welding chamber height on the forming quality of 6061 aluminum alloy round tubes [J]. Journal of Plastic Engineering, 2024,31(03):25-32.
[8]石青松,徐紅玉,王曉強(qiáng),等.42CrMo鋼超聲滾擠壓力學(xué)性能研究及參數(shù)優(yōu)化[J].鍛壓技術(shù),2024,49(03):75-85.
SHI Q S, XU H Y, WANG X Q, et al. Study on the mechanical properties and parameter optimization of ultrasonic rolling extrusion of 42CrMo steel [J]. Forging Technology, 2024,49(03):75-85.
[9]唐貝,王海麗,付金龍,等.微量Ce對熱擠壓態(tài)Mg-2Zn-0.4Ca-0.2Mn合金微觀組織、力學(xué)性能及導(dǎo)熱性的影響[J].金屬熱處理,2024,49(03):222-229.
TANG B, WANG H L, FU J L, et al. The effect of trace Ce on the microstructure, mechanical properties, and thermal conductivity of hot extruded Mg-2Zn-0.4Ca-0.2Mn alloy [J]. Metal Heat Treatment, 2024,49(03):222-229.
[10]JAHANI A, AVAL J H, RAJABI M, et al.擠壓速度對攪拌摩擦反擠壓法制備Cu-5%Ti2SnC復(fù)合絲材性能的影響[J]. Transactions of Nonferrous Metals Society of China, 2024,34(03):935-951.
JAHANI A, AVAL J H, RAJABI M, et al. Effect of extrusion speed on the properties of Cu-5% Ti2SnC composite wire prepared by stir friction back extrusion method [J]. Transactions of Nonferrous Metals Society of China, 2024,34(03):935-951.
[11]LI H, WANG Z W, FU R, et al. The effect of aging treatment on the corrosion behavior of 2195 Al Li alloy extruded profiles [J]. Transactions of Nonferrous Metals Society of China, 2024,34(03):755-768.
[12]孫有政,曹善鵬,高鴿,等.擠壓變形對5083無縫管顯微組織與力學(xué)性能的影響[J].輕金屬,2024(03):33-38.
SUN Y Z, CAO S P, GAO G, et al. The effect of extrusion deformation on the microstructure and mechanical properties of 5083 seamless pipe [J]. Light Metal, 2024(03):33-38.
[13]吳宗鋼,韋皓博,陳潔儀,等.Sn影響鎂合金顯微組織和力學(xué)性能的研究現(xiàn)狀及進(jìn)展[J].特種鑄造及有色合金,2024,44(03):305-316.
WU Z G, WEI H B, CHEN J Y, et al. Research status and progress on the influence of Sn on the microstructure and mechanical properties of magnesium alloys [J]. Special Casting and Nonferrous Alloys, 2024,44(03):305-316.
[14]丁春艷.擠壓力及熱處理對體育器材用7A09鋁合金組織和性能的影響[J].上海金屬,2024,46(02):16-21.
DING C Y. Effect of extrusion pressure and heat treatment on the microstructure and properties of 7A09 aluminum alloy for sports equipment [J]. Shanghai Metal, 2024,46(02):16-21.
[15]周瑜,劉康偉,周寶.TC4鈦合金飛機(jī)結(jié)構(gòu)件開縫襯套冷擠壓技術(shù)的探索[J].成都航空職業(yè)技術(shù)學(xué)院學(xué)報,2024,40(01):51-55.
ZHOU Y, LIU K W, ZHOU B. Exploration of cold extrusion technology for TC4 titanium alloy aircraft structural parts with split bushing [J]. Journal of Chengdu Aviation Vocational and Technical College, 2024,40(01):51-55.