一元二次方程是初中數(shù)學(xué)的重點(diǎn)內(nèi)容,涵蓋了豐富的知識(shí)點(diǎn)和多樣的解題技巧。在解決這類問題時(shí),有些同學(xué)在審題、求解方法的選擇、根的判別式和根與系數(shù)關(guān)系的應(yīng)用中由于不理解背后的原理,導(dǎo)致求解錯(cuò)誤。本文列舉部分易錯(cuò)知識(shí)點(diǎn),幫助同學(xué)們識(shí)別并改正。
解法不當(dāng)
例1 方程(x-1)2=2(x-1)的根是( )。
A.x=3 B.x=1
C.x1=3,x2=1 D.x1=1,x2=-3
【錯(cuò)解】A。
【錯(cuò)因】等式的基本性質(zhì)是:等式兩邊同時(shí)乘(或除以)同一個(gè)數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。錯(cuò)解未正確使用等式的基本性質(zhì),未考慮到x-1=0的情況,導(dǎo)致漏掉了x=1這個(gè)根。
【正解】C。
【評(píng)析】使用直接開平方法解一元二次方程時(shí),左邊是一個(gè)平方式,右邊是常數(shù)項(xiàng)。當(dāng)常數(shù)項(xiàng)為正數(shù)時(shí),方程通常有兩個(gè)不相等的實(shí)數(shù)根(在這里,部分同學(xué)會(huì)出現(xiàn)漏根的情況,要提高警惕);當(dāng)常數(shù)項(xiàng)為0時(shí),正確的表達(dá)方式為x1=x2=a,而部分同學(xué)會(huì)寫成x=a(這是錯(cuò)誤的表達(dá));使用公式法解一元二次方程時(shí),應(yīng)先將方程化為一般式,在確定a、b、c的值后,再分步代入求根公式計(jì)算,注意最后的結(jié)果一定要化成最簡(jiǎn)形式。
審題不清、不全
例2 關(guān)于x的一元二次方程ax2-2(a-1)x+a=0有實(shí)數(shù)根,則a的取值范圍是 。
【錯(cuò)解】a<[12]且a≠0,a≤[12]等。
【錯(cuò)因】(1)在看到一元二次方程有實(shí)數(shù)根時(shí),誤認(rèn)為只要b2-4ac>0就行,這屬于性質(zhì)理解不清;(2)忽視一元二次方程二次項(xiàng)系數(shù)a≠0,這屬于審題不全。
【正解】a≤[12]且a≠0。
【評(píng)析】根的判別式是一元二次方程的重要考點(diǎn)。解題時(shí)要仔細(xì)審題,正確地使用不等號(hào)來表達(dá)根的判別式的范圍。二次項(xiàng)系數(shù)不為0是這類題中的一個(gè)隱含條件,容易被忽視,造成錯(cuò)解。本題如果去掉“一元二次”的限制,a的范圍又該是什么?請(qǐng)同學(xué)們想一想。
忽視根的存在性
例3 已知關(guān)于x的一元二次方程x2-
4x+m=0,若方程的兩個(gè)實(shí)數(shù)根為x1、x2,且(x1-m)(x2-m)=10,則m的值為 。
【錯(cuò)解】根據(jù)根與系數(shù)的關(guān)系,得x1+x2=4,x1x2=m?!撸▁1-m)(x2-m)=10,即x1x2-(x1+x2)m+m2=10,∴m-4m+m2=10。解得m=-2或m=5。
【錯(cuò)因】可以使用根與系數(shù)的關(guān)系的前提是該方程有實(shí)數(shù)根。因此,當(dāng)我們利用根與系數(shù)關(guān)系求出字母的值后,一定要代入原方程檢驗(yàn)一元二次方程根的情況,對(duì)求出的字母值進(jìn)行取舍。
【正解】根據(jù)根與系數(shù)的關(guān)系,得x1+x2=4,x1x2=m。
∵(x1-m)(x2-m)=10,即x1x2-(x1+x2)m
+m2=10,∴m-4m+m2=10。
解得m=-2或m=5。
當(dāng)m=-2時(shí),原方程為x2-4x-2=0。b2-4ac=16+8=24>0,∴m=-2符合題意。
當(dāng)m=5時(shí),原方程為x2-4x+5=0。b2-4ac=16-20=-4<0,∴m=5不符合題意,舍去。故答案為-2。
忽視隱含條件
例4 已知y2-x=0,x2-3y2+x-3=0,則x的值為 。
【錯(cuò)解】3或-1。
【錯(cuò)因】本題忽視了y2-x=0這個(gè)條件中所隱含的x的取值范圍。
【正解】∵y2-x=0,∴y2=x≥0?!選2-3y2+x-3=0,∴x2-3x+x-3=0,即x2-2x-3=0。解得x1=3,x2=-1(舍去)。所以x的值為3。
【評(píng)析】在處理涉及多個(gè)變量的數(shù)學(xué)問題時(shí),代入消元法是常用的解題策略。本題中已知x、y之間的數(shù)量關(guān)系,利用代入消元法化二元為一元,從而求得x的值。但由于本題中y2=x的數(shù)量關(guān)系隱含了x的取值范圍,容易被忽視,從而會(huì)出現(xiàn)多寫一個(gè)錯(cuò)誤答案的現(xiàn)象。因此,同學(xué)們?cè)谧鲞@類題時(shí),一定要全面考慮所有條件,特別是隱含條件的限制,確保解的準(zhǔn)確性。
(作者單位:南京師范大學(xué)附屬中學(xué)宿遷分校學(xué)院路校區(qū))