摘要:【目的】改善寧夏地區(qū)工程鹽漬土地基的凍脹和腐蝕問題?!痉椒ā坎捎盟唷⒎勖夯?、硅灰和硅錳渣作為鹽漬土的固化劑,設(shè)計(jì)四因素三水平正交試驗(yàn)方案,通過無側(cè)限抗壓強(qiáng)度試驗(yàn)和三軸試驗(yàn),探討不同固化劑摻量(質(zhì)量分?jǐn)?shù),下同)對(duì)鹽漬土抗壓強(qiáng)度和抗剪強(qiáng)度的影響;采用掃描電子顯微鏡(scanning electronic microscopy,SEM))和X射線衍射(X?ray diffraction,XRD)表征分析固化鹽漬土的強(qiáng)度提升機(jī)制。【結(jié)果】水泥和硅灰提升固化鹽漬土的早期強(qiáng)度作用較為顯著,隨摻量的增加,粉煤灰強(qiáng)度呈先增后減的趨勢,硅錳渣結(jié)構(gòu)較為穩(wěn)定,需要充足的堿性環(huán)境來激發(fā)膠凝能力;水泥、粉煤灰、硅灰和硅錳渣4種因素對(duì)固化鹽漬土抗壓強(qiáng)度的影響程度由高到低的順序?yàn)樗唷⒐杌?、粉煤灰、硅錳渣;水泥、粉煤灰、硅灰和硅錳渣摻量分別為3%、5%、5%和3%時(shí)固化效果最佳,為最佳配合比;固化鹽漬土生成棒狀的鈣礬石(aluminate ferro-copper-calcium sulfate,AFt)和網(wǎng)狀的水化鋁酸鈣(calcium aluminate hydrate,C-A-H)等水化產(chǎn)物相互聯(lián)結(jié),微觀結(jié)構(gòu)變得致密。協(xié)同作用提升了固化鹽漬土的強(qiáng)度。【結(jié)論】采用水泥、粉煤灰、硅灰和硅錳渣最佳配合比能夠使鹽漬土地基固化,改善地基的凍脹和腐蝕問題。
關(guān)鍵詞:固化鹽漬土;無側(cè)限抗壓強(qiáng)度試驗(yàn);三軸試驗(yàn);微觀分析
中圖分類號(hào):TB4;TQ324.8文獻(xiàn)標(biāo)志碼:A
引用格式:
王紫,周志堯,張喆,等.多元固廢基膠凝體系固化鹽漬土的力學(xué)性能[J].中國粉體技術(shù),2024,30(5):57-69.
WANG Zi,ZHOU Zhiyao,ZHANG Zhe,et al.Mechanical properties and mechanism of cement?basedmulti?component solid waste solidified saline soil[J].China Powder Science and Technology,2024,30(5):57?69.
我國約有面積為9.915×107 km2的鹽堿地,約占世界鹽堿地面積的10%,其中50%以上的鹽堿地主要集中在我國的西北地區(qū)[1]。寧夏回族自治區(qū)鹽堿地的面積約為1.7×105 km2,約占灌區(qū)總面積的26.19%,鹽堿化現(xiàn)象極其嚴(yán)重[2]。鹽漬土地基引發(fā)的渠道混凝土襯砌的腐蝕及凍脹病害會(huì)對(duì)水工構(gòu)筑物產(chǎn)生破壞,極大地降低構(gòu)筑物的使用壽命和渠道水利用系數(shù),因此,開展固化鹽漬土相關(guān)的研究變得尤為重要。
近年來,學(xué)者采用多種材料復(fù)合摻加的方法對(duì)固化鹽漬土的力學(xué)特性和微觀機(jī)制展開了深入研究。陳康亮等[3]認(rèn)為生石灰和粉煤灰的固化效果與鹽漬土的含鹽率有關(guān),固化鹽漬土的強(qiáng)度隨土含鹽率的升高呈先增后減的趨勢。周純秀等[4]研究認(rèn)為石灰和粉煤灰不僅能改善碳酸鹽漬土的塑性、擊實(shí)特性和固化鹽漬土的抗剪強(qiáng)度,還能有效改善其壓縮變形。李宏波等[5]認(rèn)為硅灰和石灰可以有效抑制鹽漬土鹽分的析出,降低鹽漬土對(duì)混凝土基礎(chǔ)的鹽腐蝕病害。胡其志等[6]在黃土中摻加纖維和生物誘導(dǎo)碳酸鈣沉淀(microbially induced calcium carbonate precipitation,MICP)能有效地改善黃土的水穩(wěn)定性,并通過探究生成的碳酸鈣質(zhì)量和抗壓強(qiáng)度之間的關(guān)系確立了纖維和MICP的最佳配比。郭東悅等[7]將微生物和活性氧化鎂用于鹽漬土的固化,結(jié)果表明固化鹽漬土的強(qiáng)度和水穩(wěn)定性得到了有效提升,微生物能夠有效促進(jìn)活性氧化鎂的反應(yīng)速率,減小前期的固化時(shí)間。王亮等[8]探究了電石渣、堿激發(fā)材料和粉煤灰的力學(xué)性能,并利用X射線衍射(X?ray diffraction,XRD)分析了膠凝物質(zhì)的成分大多數(shù)為水化硅酸鈣凝膠和鈣礬石。丁永發(fā)等[9]和謝宇軒等[10]利用掃描電子顯微鏡(scanning electronic microscopy,SEM)觀察到固化劑反應(yīng)生成的產(chǎn)物相互膠結(jié),有效降低了土體的孔隙率,加強(qiáng)了土粒和鹽分之間的黏結(jié),驗(yàn)證了固化土宏觀強(qiáng)度的提升。宮經(jīng)偉等[11]通過微觀表征手段分析認(rèn)為,相比于粉煤灰和電石渣,增加礦渣的摻量(質(zhì)量分?jǐn)?shù),下同)更有助于增加水化產(chǎn)物的生成量,減少鹽漬土孔隙的體積。張衛(wèi)兵等[12]證明了混摻氯化鈣和粉煤灰的條件下,固化土中膠凝產(chǎn)物的衍射峰明顯多于單獨(dú)摻固化劑土中產(chǎn)生的衍射峰。李舒潔等[13]通過SEM和XRD分析對(duì)比了濕摻和干摻2種條件下建筑固廢再生微粉(recycled fine powder,RFP)固化土內(nèi)部的結(jié)構(gòu)和化學(xué)反應(yīng),結(jié)果表明RFP摻量相同的條件下,濕摻法能有效提高水化產(chǎn)物生長的速率,更好地將土顆粒黏聚在一起,提升土的抗壓強(qiáng)度。單龍等[14]采用SEM和XRD分析表明固化鹽漬土的抗剪強(qiáng)度來源以水化硅酸鈣為主。唐少容等[15]通過SEM分析表明摻加石蠟基的粉砂土結(jié)構(gòu)更加致密,從而有效抑制粉砂土的凍融變形。
上述研究表明,目前針對(duì)固化鹽漬土的研究多數(shù)聚焦在使用1種或2種固化劑,采用復(fù)合固化劑固化鹽漬土及分析固化劑交互作用的研究較少。寧夏回族自治區(qū)每年因工業(yè)產(chǎn)生的大量固廢例如粉煤灰、硅灰,硅錳渣等具有較好的火山灰活性,在堿激發(fā)材料的作用下具有良好的固化效果[16-18]。本研究中采用水泥、硅灰、粉煤灰和硅錳渣作為固化劑,開展無側(cè)限抗壓強(qiáng)度試驗(yàn)和三軸試驗(yàn)測試固化土的力學(xué)性能。表征分析采用SEM和XRD探究固化劑的水化過程及強(qiáng)度形成機(jī)制。旨在為寧夏地區(qū)有效利用工業(yè)固廢固化鹽漬土方面的研究提供理論依據(jù)和技術(shù)支撐。
1試驗(yàn)方案設(shè)計(jì)
1.1材料和儀器設(shè)備
材料:鹽漬土(寧夏回族自治區(qū)平羅縣);水泥(P?O 42.5,寧夏賽馬水泥有限公司);硅灰(寧夏科通新材料有限公司);粉煤灰(寧夏回族自治區(qū)銀川市西夏區(qū)熱電廠);硅錳渣(寧夏寶利源特種合金公司)。鹽漬土的物理指標(biāo)和離子組成見表1。固化劑的化學(xué)成分及含量見表2。固化劑的XRD圖譜如圖1所示。固化劑粒徑分布曲線如圖2所示。
儀器設(shè)備:YAW-300 kN型微機(jī)控制電子壓力試驗(yàn)機(jī)(寧夏宏宇試驗(yàn)儀器有限公司);TSZ30-2.0型型應(yīng)變控制式三軸儀(南京土壤儀器廠有限公司);EVO 18型掃描電子顯微鏡(德國蔡司公司);Dmax2200/PC型X射線粉末衍射儀(日本理學(xué)公司)
1.2試驗(yàn)方案設(shè)計(jì)
研究表明,當(dāng)水泥的摻量大于3%時(shí),固化土體干縮明顯增加[17],基于此試驗(yàn)采用水泥最大摻量為3%,粉煤灰較優(yōu)摻量為15%以內(nèi)[19]。為了研究水泥、粉煤灰、硅灰和硅錳渣的混合摻加對(duì)固化鹽漬土強(qiáng)度特性的影響,選用四因素三水平的正交試驗(yàn)。試驗(yàn)方案如表3所示。A、B、C、D分別代表水泥、粉煤灰、硅灰和硅錳渣。粉煤灰摻量較多,固化鹽漬土的最大干密度和最佳含水率主要影響因素為粉煤灰,因此只對(duì)不同摻量的粉煤灰和鹽漬土進(jìn)行擊實(shí)試驗(yàn)。按照《土工試驗(yàn)方法標(biāo)準(zhǔn)》(GB/T 50123—2019)規(guī)定的要求進(jìn)行輕型擊實(shí)[20],固化鹽漬土擊實(shí)試驗(yàn)結(jié)果如表4所示。
1.3試件制備與試驗(yàn)方法
試驗(yàn)均按照《土工試驗(yàn)方法標(biāo)準(zhǔn)》(GB/T 50123—2019)規(guī)定的要求進(jìn)行。力學(xué)性能測試的試樣為9組試驗(yàn)組,每組有3個(gè)平行試樣,取平均值為最終結(jié)果。
1.3.1無側(cè)限抗壓強(qiáng)度試驗(yàn)
試件設(shè)計(jì)壓實(shí)系數(shù)為0.9。將各種固化劑和鹽漬土按試驗(yàn)配比混合后放入凈漿機(jī)攪拌,將稱量后的水放入噴壺中邊噴灑邊攪拌均勻。試樣拌好后按照規(guī)范規(guī)定分3層裝入直徑、高度分別為39.1、80.0 mm的圓柱體模具,脫模后放入溫度為20℃、相對(duì)濕度為95%的養(yǎng)護(hù)箱中分別養(yǎng)護(hù)7、28 d。
1.3.2三軸壓縮試驗(yàn)
三軸壓縮試件制備與無側(cè)限抗壓強(qiáng)度試驗(yàn)一致,試驗(yàn)剪切速率為0.4 mm/min,試驗(yàn)圍壓設(shè)置分別為100、200、300、400 kPa。
1.3.3掃描電鏡(SEM)試驗(yàn)
采用SEM觀察固化鹽漬土內(nèi)部的微觀結(jié)構(gòu)和形貌分析其強(qiáng)度提升機(jī)制。取無側(cè)限抗壓強(qiáng)度試驗(yàn)后試件的中心樣置于觀察臺(tái)并使用膠水固定,放入溫度為60℃的環(huán)境中烘干30 min,使用鍍膜機(jī)將樣品噴金鍍膜處理,處理后的樣品放入電子顯微鏡中進(jìn)行SEM表征分析。
1.3.4 X射線衍射
通過對(duì)試樣進(jìn)行XRD分析,獲取材料內(nèi)部的化學(xué)成分及相對(duì)含量。取無側(cè)限抗壓強(qiáng)度試驗(yàn)后試件的中心樣研磨至粉末狀,倒入樣品臺(tái)的凹槽中后使用載玻片輕輕旋轉(zhuǎn)按壓,使試樣表面均勻分布且與框架平面一致,并將多余的不在凹槽內(nèi)的粉末刮去,處理后的樣品放入XRD試驗(yàn)儀器中進(jìn)行成分組成分析。
2無側(cè)限抗壓強(qiáng)度試驗(yàn)分析
無側(cè)限抗壓強(qiáng)度試驗(yàn)結(jié)果如表5所示。試驗(yàn)采用極差法分析,極差是指總體各單位的標(biāo)志值中最大標(biāo)志值與最小標(biāo)志值之差。極差值越大,證明該因素對(duì)實(shí)驗(yàn)結(jié)果的影響程度越高,因素極差圖如圖3所示。
養(yǎng)護(hù)齡期為7 d時(shí),水泥、粉煤灰、硅灰和硅錳渣的無側(cè)限抗壓強(qiáng)度的極差分別為0.58、0.14、0.18、0.08 MPa,各因素對(duì)抗壓強(qiáng)度的影響程度從高到低分別為水泥、硅灰、粉煤灰、硅錳渣。養(yǎng)護(hù)齡期為28 d時(shí),水泥、粉煤灰、硅灰、硅錳渣的極差大小分別為0.77、0.26、0.27、0.13 MPa,各因素影響程度從大到小分別為水泥、硅灰、粉煤灰、硅錳渣。
7 d齡期抗壓強(qiáng)度最高的配比是A3B1C3D2,強(qiáng)度為1.15 MPa。28 d齡期時(shí)水泥、粉煤灰、硅灰和硅錳渣的摻量分別為3%、10%、5%和5%時(shí)固化鹽漬土強(qiáng)度最高,抗壓強(qiáng)度最高的配比為A3B2C3D3。與7 d齡期相比,28 d齡期各因素影響水平顯著提高,水泥摻量從1%增加至3%時(shí),抗壓強(qiáng)度從0.39 MPa增加至1.17 MPa。因?yàn)樗嗨粌H可以產(chǎn)生膠凝物質(zhì)增強(qiáng)固化土的強(qiáng)度,其水化產(chǎn)生的Ca(OH)2還可以為硅灰,粉煤灰和硅錳渣營造良好的堿性環(huán)境,促使它們發(fā)生火山灰反應(yīng),生成更多膠凝產(chǎn)物。
相較于粉煤灰和硅錳渣,硅灰中含有更多的SiO2,活性相對(duì)較高[21],因此硅灰摻量從1%增加至5%時(shí),抗壓強(qiáng)度分別增長9.1%和37.5%,抗壓強(qiáng)度隨著硅灰摻量的增加而增加。粉煤灰摻量從5%增加至15%時(shí),抗壓強(qiáng)度呈現(xiàn)先增后減的趨勢。粉煤灰粒徑小且表面較為光滑,過多的填充在土顆粒的縫隙中會(huì)形成滾軸效應(yīng),導(dǎo)致固化土強(qiáng)度的降低[22-24]。硅錳渣摻量從1%增加至5%時(shí),抗壓強(qiáng)度先增加后趨于平緩,說明大摻量的硅錳渣對(duì)強(qiáng)度的貢獻(xiàn)率較低,需要更強(qiáng)的堿性環(huán)境使得其中含有的玻璃體解聚,生成膠凝物質(zhì)以提升抗壓強(qiáng)度[18]。
3三軸試驗(yàn)分析
3.1應(yīng)力-應(yīng)變曲線
試驗(yàn)選取鹽漬土和無側(cè)限抗壓強(qiáng)度試驗(yàn)結(jié)果較好的3組固化鹽漬土(A2B2C1D3、A3B1C3D2和A3B2C1D3),28 d齡期固化鹽漬土應(yīng)力-應(yīng)變曲線如圖4所示。由圖可知,曲線大致分為3個(gè)階段,即線彈性階段、彈塑性階段和應(yīng)變軟化(硬化)階段[25]。鹽漬土的應(yīng)力-應(yīng)變曲線的塑形較好,強(qiáng)度較低且沒有明顯的峰值點(diǎn),屬于應(yīng)變硬化型。第1階段為線彈性階段,應(yīng)力-應(yīng)變曲線在此階段增長較快且近似呈直線狀態(tài),此階段變化符合胡克定律;第2階段為彈塑性階段,隨著應(yīng)變的持續(xù)增加,應(yīng)力增長較為緩慢,應(yīng)力-應(yīng)變曲線呈現(xiàn)非線性關(guān)系;第3階段為應(yīng)變軟化階段,曲線到達(dá)應(yīng)力峰值點(diǎn)后,試件發(fā)生剪切破壞,應(yīng)力隨應(yīng)變的增加迅速減小。最后隨著應(yīng)變的增加應(yīng)力不再發(fā)生明顯變化,曲線趨于平穩(wěn)。固化土的應(yīng)力應(yīng)變曲線強(qiáng)度較高,有明顯的峰值點(diǎn),屬于應(yīng)變軟化型。
3.2峰值應(yīng)力
28 d齡期固化鹽漬土的峰值應(yīng)力如圖5所示。由圖可知,固化后的鹽漬土峰值應(yīng)力增長顯著。以壓力為200 kPa為例,3組固化土的峰值應(yīng)力分別為1.22、1.76、1.42 MPa,是鹽漬土峰值應(yīng)力的4.24、6.24、5.52倍。鹽漬土顆粒表面帶有大量的陰離子,會(huì)吸附土顆粒表面的陽離子,水泥水化產(chǎn)生的Ca2+與鹽漬土顆粒表面發(fā)生離子交換作用,將鹽漬土中的K+和Na+置換出來,形成鈣土[26]。這種在堿性介質(zhì)中的離子交換反應(yīng),有效減小鹽漬土表面水膜厚度,增加土團(tuán)粒之間的分子引力,使得鹽漬土的抗剪強(qiáng)度得到了明顯的提高[9]。
3.3抗剪強(qiáng)度指標(biāo)分析
7、28 d齡期時(shí)黏聚力和內(nèi)摩擦角的變化如圖6所示。由圖可知,養(yǎng)護(hù)齡期7 d時(shí),A3B1C3D2的內(nèi)摩擦角和黏聚力最大,分別為31°和260 kPa。相較于鹽漬土分別提升了2.21、3.67倍,因?yàn)樗嗍炝纤俣群芸?,生成的硅酸鹽可以有效提升土顆粒之間的膠結(jié)作用。硅灰中含有大量的SiO2,可以與水泥水化產(chǎn)生的Ca(OH)2發(fā)生火山灰反應(yīng)生成C-S-H等膠凝物質(zhì)提升黏聚力[9],因此水泥和硅灰是固化土早期抗剪強(qiáng)度的主要影響因素。A3B1C3D2中水泥摻量為3%,硅灰摻量為5%,均為因素?fù)搅孔畲笾?,因? d齡期時(shí)A3B1C3D2黏聚力最大。粉煤灰和硅錳渣顆粒較細(xì)且內(nèi)部結(jié)構(gòu)較為穩(wěn)定,早期通過填充孔隙增大固化土的內(nèi)摩擦角。
28 d齡期時(shí)黏聚力和內(nèi)摩擦角均優(yōu)于7d齡期。養(yǎng)護(hù)齡期的延長使得水化反應(yīng)更加充分,更好的提升了黏聚力和內(nèi)摩擦角。A3B2C1D3黏聚力相漲幅最大,與7 d齡期相比,28 d齡期時(shí)固化鹽漬土的黏聚力和內(nèi)摩擦角分別增大30.21%和24.19%。硅錳渣和粉煤灰中含有較多Al2O3,在充足的堿性環(huán)境下會(huì)發(fā)生火山灰反應(yīng)生成水化鋁酸鈣等膠凝物質(zhì),使土顆粒之間的黏聚力增大。粉煤灰除了火山灰反應(yīng)外,其中含有的CaO也可以通過碳酸化反應(yīng)生成CaCO3,提升土顆粒間的摩擦力,以此增大固化鹽漬土的內(nèi)摩擦角[26]。
4微觀分析
4.1 SEM試驗(yàn)結(jié)果分析
A3B1C3D2和A3B2C1D3配比的7、28 d齡期固化鹽漬土如圖7所示。由圖可知,7 d齡期時(shí)固化鹽漬土結(jié)構(gòu)之間仍分散著較多的孔隙和裂縫,顆粒單元體之間多以點(diǎn)-點(diǎn)、點(diǎn)-面的疊聚體方式排列。固化鹽漬土中未水化完全的粉煤灰球體鑲嵌在土顆粒之間起孔隙填充的作用,附著有部分新生成的膠凝物質(zhì)。各種反應(yīng)生成的膠凝物質(zhì)如網(wǎng)狀的C-S-H、片狀的C-A-S-H和棒狀的AFt彼此相互交織,穿插在鹽漬土的孔隙和裂縫中,初步形成空間網(wǎng)狀結(jié)構(gòu)以提升固化鹽漬土早期強(qiáng)度,但空間網(wǎng)狀結(jié)構(gòu)未發(fā)育到封閉孔隙的程度,膠凝物質(zhì)的數(shù)量相對(duì)較少,分布不均勻且黏結(jié)性能較差。這與宏觀力學(xué)試驗(yàn)得到的7 d齡期抗壓強(qiáng)度結(jié)果相對(duì)較低一致。
28 d齡期時(shí)固化土產(chǎn)生更多網(wǎng)狀和團(tuán)簇狀的C-S-H、花瓣?duì)畹腃-A-S-H、棒狀的AFt,Ca(OH)2呈薄片狀且數(shù)量較少,因?yàn)镾iO2和Ca(OH)2發(fā)生火山灰反應(yīng)二次生成C-S-H。網(wǎng)狀的C-S-H凝膠憑借其較大的比表面積和多孔結(jié)構(gòu)吸附Ca2+,同時(shí)抑制了Ca(OH)2向大晶體轉(zhuǎn)化,促使水泥水化產(chǎn)生更多的OH-維持堿性環(huán)境,穩(wěn)定C-S-H和C-A-H的生長。與7 d齡期相比,28 d齡期時(shí)大量的C-S-H、C-A-H和AFt密實(shí)度有顯著提高,它們相互聯(lián)結(jié)成空間網(wǎng)絡(luò)結(jié)構(gòu)覆蓋在孔隙上,使得固化土的微觀體系結(jié)構(gòu)更加密實(shí),有效提升土體的強(qiáng)度[27]。
4.2 XRD試驗(yàn)結(jié)果分析
對(duì)抗壓強(qiáng)度和抗剪強(qiáng)度較優(yōu)的2組配比A3B1C3D2和A3B2C1D3的XRD分析結(jié)果如圖8所示。由圖可知,7 d齡期時(shí)晶體衍射峰集中在2θ為20.85°~42.21°,各齡期的水化產(chǎn)物以水化硅酸鈣(2θ=37.82°)、AFt(2θ=40.22°)和Ca(OH)2(2θ=22.35°)為主,說明7 d齡期時(shí)已經(jīng)有部分膠凝物質(zhì)生成。同時(shí)能看到改良劑中含有較多的SiO2(2θ=26.32°)和Al2O3(2θ=50.32°)。相比于28 d齡期,7 d齡期時(shí)SiO2晶體衍射峰較高,C-S-H和AFt等膠凝物質(zhì)衍射強(qiáng)度較低,因?yàn)辇g期較短,固化鹽漬土中部分SiO2未參與火山灰反應(yīng)二次生成C-S-H,膠凝物質(zhì)主要由水泥水化產(chǎn)生。
28 d齡期時(shí),水化產(chǎn)物的種類并未發(fā)生明顯改變,但衍射峰高度和寬度發(fā)生了明顯變化。Ca(OH)2的衍射強(qiáng)度明顯降低,因?yàn)樗嗨a(chǎn)生的Ca(OH)2逐漸與SiO2反應(yīng)產(chǎn)生更多的C-S-H。同時(shí),OH-創(chuàng)造的堿性環(huán)境使得粉煤灰中含有的玻璃體結(jié)構(gòu)被解離,其中含有的Ca2+、Al3+、AlO4(5)-和SiO4(4)-等離子為膠凝物質(zhì)提供了大量的物質(zhì)基礎(chǔ),加之粉煤灰中含有大量的Al2O3,在堿性條件以及硫酸鹽的參與下可以生成大量的AFt,使得AFt的衍射峰強(qiáng)度明顯增高[28]。
5結(jié)論
1)7、28 d齡期時(shí)各因素對(duì)抗壓強(qiáng)度的影響程度從高到低分別為水泥gt;硅灰gt;粉煤灰gt;硅錳渣。隨著養(yǎng)護(hù)齡期的延長,抗壓強(qiáng)度均得到了有效的提升。28 d齡期時(shí)固化鹽漬土抗壓強(qiáng)度最高的是水泥、粉煤灰、硅灰,硅錳渣的最優(yōu)摻量分別為3%、5%、5%和3%。
2)固化劑水化產(chǎn)生的膠凝物質(zhì)對(duì)固化鹽漬土抗剪強(qiáng)度的提高主要體現(xiàn)在2個(gè)方面:通過自身膠結(jié)作用提升土顆粒之間的黏結(jié)作用,進(jìn)而提高固化鹽漬土的黏聚力;膠凝物質(zhì)填充在鹽漬土的孔隙和裂縫中,提高了土結(jié)構(gòu)的整體性。
3)鹽漬土顆粒表面和孔隙之間填充著大量的團(tuán)簇狀和網(wǎng)狀水化產(chǎn)物,水化產(chǎn)物之間緊密排布,使得鹽漬土顆粒之間相互聯(lián)結(jié),有效降低了鹽漬土的孔隙率,提升了鹽漬土的密實(shí)度和強(qiáng)度。
4)通過分析固化劑和水化產(chǎn)物的XRD衍射峰的強(qiáng)度驗(yàn)證固化鹽漬土中內(nèi)部的反應(yīng)機(jī)制。固化鹽漬土的強(qiáng)度主要來自于水化產(chǎn)物C-S-H,C-A-H和AFt。相較于7 d齡期,28 d齡期更有助于膠凝物質(zhì)的生長,提高固化鹽漬土的強(qiáng)度。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
王紫和周志堯參與了論文的撰寫,張喆、蘭永軍和李宏波參與了方案設(shè)計(jì)和論文的修改。所有作者均閱讀并同意了最終稿件的提交。
WANG Zi and ZHOU Zhi Yao participated in the writing of the paper,and ZHANG Zhe,LAN Yong Jun and LI Hong Bo participated in the design of the scheme and the revision of the paper.All authors read and agreed to the submission of the final manuscript.
參考文獻(xiàn)(References)
[1]徐鵬程,冷翔鵬,劉更森,等.鹽堿土改良利用研究進(jìn)展[J].江蘇農(nóng)業(yè)科學(xué),2014,42(5):293-298.
XU P C,LENG X P,LIU G S,et al.Research progress on improvement and utilization of saline-alkali soil[J].Jiangsu Agricultural Sciences,2014,42(5):293-298.
[2]李芳,李斌,陳建.中國公路鹽漬土的分區(qū)方案[J].長安大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,26(6):12-14,89.
LI F,LI B,CHEN J.Highway-related dividing scheme of salty soil[J].Journal of Chang,an University(Natural Science Edition),2006,26(6):12-14,89.
[3]陳康亮,劉長武,楊偉峰,等.基于生石灰和粉煤灰改良硫酸鹽漬土的強(qiáng)度特性[J].科學(xué)技術(shù)與工程,2020,20(26):10888-10893.
CHEN K L,LIU C W,YANG W F,et al.Strength characteristics of sulphate saline soil modified by lime and fly ash[J].Science Technology and Engineering,2020,20(26):10888-10893.
[4]周純秀,崔洪海,張中麗,等.改良碳酸鹽漬土路基填料的力學(xué)性質(zhì)[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2022,54(9):93-100.
ZHOU C X,CUI H H,ZHANG Z L,et al.Mechanical properties of improved carbonate soil roadbed filler[J].Journal of Harbin Institute of Technology,2022,54(9):93-100.
[5]李宏波,田軍倉,邊興.摻加硅灰和石灰條件下的超鹽漬土抗剪特征研究[J].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,41(4):1145-1152.
LI H B,TIAN J C,BIAN X.Investigation on shear characteristics of hypersaline soil improved by lime and silica fume[J].Journal of Guangxi University(Natural Science Edition),2016,41(4):1145-1152.
[6]胡其志,霍偉嚴(yán),馬強(qiáng),等.MICP聯(lián)合纖維加筋黃土的力學(xué)性能及水穩(wěn)性研究[J].人民長江,2023,54(8):227-232,248.
HU Q Z,HUO W Y,MA Q,et al.Research on mechanics and water stability of fiber reinforced loess combined with MICP[J].Yangtze River,2023,54(8):227-232,248.
[7]郭東悅,邱明喜,楊慶港,等.微生物-活性氧化鎂固化鹽漬土強(qiáng)度變化規(guī)律研究[J].工程勘察,2023,51(8):11-17,66.
GUO D Y,QIU M X,YANG Q G,et al.Study on strength characteristics of microbial-reactive magnesia oxide solidified saline soil[J].Geotechnical Investigationamp;Surveying,2023,51(8):11-17,66.
[8]王亮,慈軍,楊志豪,等.電石渣-火山灰質(zhì)膠凝材料固化鹽漬土試驗(yàn)研究[J].新型建筑材料,2020,47(5):46-49,67.
WANG L,CI J,YANG Z H,et al.Experimental study on solidified saline soil with calcium carbide slag and volcanic ash cementitious materials[J].New Building Materials,2020,47(5):46-49,67.
[9]丁永發(fā),李宏波,張軒碩,等.工業(yè)廢渣協(xié)同水泥固化渠道地基鹽漬土強(qiáng)度及微觀機(jī)理研究[J].灌溉排水學(xué)報(bào),2022,41(6):113-120.
DING Y F,LI H B,ZHANG X S,et al.Using mixture of industrial waste residues and cement to reinforce channel founda-tion in salinizedsoils[J].Journal of Irrigation and Drainage,2022,41(6):113-120.
[10]謝宇軒,朱連勇,王立成.工業(yè)及建筑廢棄物固化鹽漬土的力學(xué)性能和路用性能影響[J].科學(xué)技術(shù)與工程,2023,23(19):8393-8401.
XIE Y X,ZHU L Y,WANG L C.Experimental study on the influence of road performance of saline soil solidified by indu-strial and construction waste materials[J].Science Technology and Engineering,2023,23(19):8393-8401.
[11]宮經(jīng)偉,林浩然,王亮,等.基于正交試驗(yàn)的全固廢復(fù)合膠凝材料固化鹽漬土的力學(xué)性能[J].科學(xué)技術(shù)與工程,2021,21(7):2865-2872.
GONG J W,LIN H R,WANG L,et al.Mechanicalpropertiesof solidified saline soil of all solid waste composite cementi-tious material based on orthogonal test[J].Science Technology and Engineering,2021,21(7):2865-2872.
[12]張衛(wèi)兵,雷過,周瑞璞,等.凍融作用下固化鹽漬土的強(qiáng)度劣化及微觀機(jī)理研究[J].科學(xué)技術(shù)與工程,2022,22(20):8869-8876.
ZHANG W B,LEI G,ZHOU R P,et al.Strength deterioration of consolidated saline soils under freeze-thaw action and micromechanics[J].Science Technology and Engineering,2022,22(20):8869-8876.
[13]李舒潔,常立君.再生微粉固化黃土狀鹽漬土的力學(xué)特性和微觀機(jī)理[J].中國粉體技術(shù),2022,28(5):30-39.
LI S J,CHANG L J.Mechanical properties and microscopic mechanism of loess-like saline soil solidified by regenerated micronized powder[J].China Powder Science and Technology,2022,28(5):30-39.
[14]單龍,李宏波,程銀銀,等.水泥-鎂渣固化鹽漬土力學(xué)性能實(shí)驗(yàn)[J].中國粉體技術(shù),2023,29(5):8-16.
SHAN L,LI H B,CHENG Y Y,et al.Mechanical properties test of solidified saline soil with cement-magnesium slag[J].China Powder Science and Technology,2023,29(5):8-16.
[15]唐少容,杜鵬,李昊天,等.由石蠟基相變材料和煤渣改良的粉砂土的凍融性能[J].中國粉體技術(shù),2024,30(1):123-131.
TANG S R,DU P,LI H T,et al.Freeze-thaw properties of silty sand modified by paraffin-based phase change materialsand cinder[J].China Powder Science and Technology,2024,30(1):123-131.
[16]聶軼苗,劉淑賢,牛福生,等.粉煤灰研究進(jìn)展及展望[J].混凝土,2010(4):62-65.
NIE Y M,LIU S X,NIU F S,et al.Research progress and developing prospect of fly ash[J].Concrete,2010(4):62-65.[
17]李宏波,田軍倉,南紅兵,等.幾種固化劑對(duì)渠道鹽漬土地基力學(xué)性能影響的試驗(yàn)研究[J].灌溉排水學(xué)報(bào),2018,37(12):94-99.
LI H B,TIAN J C,NAN H B,et al.Efficacy of four consolidation agents in improving mechanical properties of salinized foundation soil of channels[J].Journal of Irrigation and Drainage,2018,37(12):94-99.
[18]黃太忠.硅錳渣在建筑材料中的利用研究[D].重慶:重慶大學(xué),2012.
HUANG T Z.Study on the utilization of SiMn slag in construction materials[D].Chongqing:Chongqing University,2012.
[19]楊曉松,劉井強(qiáng),黨進(jìn)謙.粉煤灰改良氯鹽漬土工程特性試驗(yàn)研究[J].長江科學(xué)院院報(bào),2012,29(11):82-86.
YANG X S,LIU J Q,DANG J Q.Experimental research on the engineering property of chlorine saline soil improved by fly ash[J].Journal of Yangtze River Scientific Research Institute,2012,29(11):82-86.
[20]中華人民共和國住房和城鄉(xiāng)建設(shè)部.土工試驗(yàn)方法標(biāo)準(zhǔn):GB/T 50123—2019[S].北京:中國計(jì)劃出版社,2019.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Standard for geotechnical testing method:GB/T 50123—2019[S].Beijing:China Planning Press,2019.
[21]王澤平.硅灰對(duì)水泥加固土工程性質(zhì)影響的試驗(yàn)研究[D].長春:吉林大學(xué),2020.
WANG Z P.Experimental study on the influence of silica fume on the engineering properties of cement reinforced soil[D].Changchun:Jilin University,2020.
[22]張虎彪.水泥粉煤灰穩(wěn)定磚-砼再生碎石的路用性能研究[D].銀川:寧夏大學(xué),2022.
ZHANG H B.Study on the performance of cement fly ash stabilized brick-concrete recycled gravel road[D].Yinchuan:Ningxia University,2022.
[23]丑亞玲,楊雙雙.鹽漬土工程性質(zhì)的改良研究進(jìn)展[J].材料導(dǎo)報(bào),2023,37(增刊1):244-250.
CHOU Y L,YANG S S.Research progress on the improvement of saline soil engineering properties[J].Materials Reports,2023,37(S1):244-250.
[24]楊西鋒,尤哲敏,牛富俊,等.固化劑對(duì)鹽漬土物理力學(xué)性質(zhì)的固化效果研究進(jìn)展[J].冰川凍土,2014,36(2):376-385.
YANG X F,YOU Z M,NIU F J,et al.Research progress in stabilizers and their effects in improving physical and mecha-nical properties of saline soil[J].Journal of Glaciology and Geocryology,2014,36(2):376-385.
[25]王沛,王曉燕,柴壽喜.濱海鹽漬土的固化方法及固化土的偏應(yīng)力-應(yīng)變[J].巖土力學(xué),2010,31(12):3939-3944.
WANG P,WANG X Y,CHAI S X.Solidifying methods for inshore saline soil and its deviator stress-strain[J].Rock and Soil Mechanics,2010,31(12):3939-3944.
[26]李宏波,田軍倉,陳文兵,等.水泥硅灰固化超鹽漬土的抗剪強(qiáng)度試驗(yàn)[J].桂林理工大學(xué)學(xué)報(bào),2015,35(3):508-513.
LI H B,TIAN J C,CHEN W B,et al.Shear strength of solidified hypersaline soil with cement and silica fume[J].Journal of Guilin University of Technology,2015,35(3):508-513.
[27]張潔雅,楊帆,曹家瑋,等.三元工業(yè)廢渣協(xié)同水泥固化土的基本特性和機(jī)理分析[J/OL].長江科學(xué)院院報(bào),2023:1-8.(2023-10-25).https://kns.cnki.net/kcms/detail/42.1171.TV.20231024.1721.010.html.
ZHANG J Y,YANG F,CAO J W,et al.Basic characteristics and mechanism analysis of ternary industrial waste cooper-ated cement solidified soil[J/OL].Journal of Yangtze River Scientific Research Institute,2023:1-8.(2023-10-25).https://kns.cnki.net/kcms/detail/42.1171.TV.20231024.1721.010.html.
[28]LIU Y W,WANG Q,LIU S W,et al.Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling[J].Cold Regions Science and Technology,2019,161:32-42.
Mechanical properties and mechanism of cement?based multi?component solid waste solidified saline soil
WANG Zi1a,1b,ZHOU Zhiyao1a,1b,ZHANG Zhe1a,1b,LAN Yongjun1a,1b,MENG Songsong2,LI Hongbo1
1a.College of Civil and Hydraulic Engineering,1b.Ningxia Water?saving Irrigation and Water Resources Regulation Engineering,1c.Ningxia Civil Engineering Earthquake Prevention and Disaster Mitigation Engineering Technology Research Center,Ningxia University,Yinchuan 750021,China;2.Department of Civil and Structural Engineering,University of Sheffield,South Yorkshire S10 2TN,UK
Abstract
Objective To address the frost heave and corrosion issues in engineering saline soil foundation in Ningxia,and to improve the comprehensive utilization of solid waste in the Ningxia Hui Autonomous Region,this study focuses on the analysis of the interac?tion of a composite curing agent used to solidify saline soil.
Methods Every year,industrial areas in Ningxia Hui Autonomous Region produce a significant amount of solid waste,including fly ash,silica fume,and silicon manganese slag.This waste exhibits good pozzolanic activity and can be effectively cured using alkali-activated materials.To this end,this paper employs cement,fly ash,silica fume,and silicomanganese slag as curing agents for saline soil.To comprehensively study the influence of mixed cement,fly ash,silica fume,and silicon manganese slag on the strength characteristics of solidified saline soil,we used an orthogonal test to design a four-factor three-level orthogonal test scheme.This method selects a representative experimental scheme from many experimental conditions,effectively solving the problem of many factors and a large number of tests.The experiment is discussed from two perspectives:macro mechanics and micro mechanism.The mechanical properties of solidified saline soil are verified using the unconfined compressive strength test and triaxial test.The influence of different curing agent content on the compressive strength and shear strength of saline soil is discussed.The strength improvement mechanism inside the solidified saline soil is characterized and analyzed using scanning electronic microscopy(SEM)and X-ray diffraction(XRD).The microstructure of cementitious materials,including particle size,shape,distribution,and surface characteristics,can be observed using the high-resolution ability of SEM.XRD is a pow?erful tool for identifying various crystal phases in cementitious materials and analyzing their crystal structure and phase composi?tion.The microstructure,composition,and crystal structure information of the material can be analyzed more effectively by com?bining SEM and XRD.This allows for a better determination of the main components of the cementitious material and the reac?tion mechanism between the curing agents.
Results and Discussion Compared to the 7-day age,the compressive and shear strength of the solidified saline soil significantly improved after 28 days.The compressive strength of the solidified saline soil is influenced by cement,silica fume,fly ash,and silicon manganese slag in that order of importance.The optimal mix ratio for cement,fly ash,silica fume,and silicon manga?nese slag is achieved when theirrespective contents are 3%,5%,5%,and 3%.This ratio results in the best curing effect.The hydration reaction time of cement is brief,creating an alkaline environment for silica fume,fly ash,and silicon manganese slag.This reaction produces cementitious materials that effectively enhance the strength of solidified saline soil.Silica fume contains a significant amount of SiO2,which reacts with Ca(OH)2 produced by cement hydration to form cementitious materials such as C-S-H,thereby improving strength.Cement and silica fume have a significant effect on improving the early strength of solidified saline soil.The strength of fly ash increases initially with an increase in dosage,but then decreases due to the′ball effect′.The structure of silicon-manganese slag is relatively stable,but it requires a sufficient alkaline environment to stimulate its cementi?tiousability.The cementing material produced by the curing agent improves the mechanical properties of solidified saline soil in two ways:firstly,by enhancing the bonding effect between soil particles through its own cementation,and secondly,by filling the pores and cracks of the saline soil,thereby improving the integrity of the soil structure.The solidified saline soil produces hydration products,such as rod-shaped ettringite(AFt)and reticular calcium silicate hydrate(C-A-H),which are interlinked.This results in a denser microstructure and improved strength of the solidified saline soil due to the synergistic effect.Compared to the 7-day age,the reactions between the curing agents at 28 days,such as hydration,ion exchange,and pozzolanic reac?tions,are more sufficient,leading to the formation of more cementitious substances.As a result,the compressive and shear strength of the solidified soil are higher at 28 days.
Conclusion To solidify saline soil foundation in the channel,it is recommended to use a mix ratio of 3%cement,5%fly ash,5%silica fume,and 3%silicon manganese slag.These ratios were determined based on research results and provide a theoreti?cal reference for the synergistic solidification of cement and multiple solid wastes in channel saline soil foundation.
Keywords:solidified saline soil;unconfined compressive strength test;triaxial test;microscopic analysis
(責(zé)任編輯:武秀娟)