亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        碳基單原子催化劑的合成策略及電催化應(yīng)用進(jìn)展

        2024-09-29 00:00:00劉熙俊陳明英馬俊杰梁璟琦李春勝陳叢瑾何會(huì)兵
        中國粉體技術(shù) 2024年5期

        摘要:【目的】單原子催化劑(single atom catalysts,SACs)由于超高電催化效率而備受關(guān)注,特別是以碳為基礎(chǔ)的碳基SACs,由于結(jié)構(gòu)可調(diào)、孔道排列有序、原子利用率高、導(dǎo)電性好、孔隙率高、比表面積大和穩(wěn)定性好等特點(diǎn),被認(rèn)為是一類極具發(fā)展?jié)摿Φ男滦碗姶呋牧??!狙芯楷F(xiàn)狀】綜述近年來碳基SACs的合成工藝,包括熱解法、濕化學(xué)法、電化學(xué)還原法、原位合成法和球磨法;這些方法具有不同的優(yōu)缺點(diǎn),可根據(jù)不同反應(yīng)條件和需求選擇合適的合成方法;總結(jié)碳基SACs在氧還原反應(yīng)、析氧反應(yīng)、析氫反應(yīng)、氮還原反應(yīng)、二氧化碳還原反應(yīng)中的應(yīng)用。【展望】碳基SACs的合成工藝和性能有望得到進(jìn)一步優(yōu)化和提升;碳基SACs將在能源催化及環(huán)保等領(lǐng)域發(fā)揮更大的作用。

        關(guān)鍵詞:碳基;單原子催化劑;合成;電化學(xué)應(yīng)用

        中圖分類號:TB4文獻(xiàn)標(biāo)志碼:A

        引用格式:

        劉熙俊,陳明英,馬俊杰,等.碳基單原子催化劑的合成策略及電催化應(yīng)用進(jìn)展[J].中國粉體技術(shù),2024,30(5):35-46.

        LIU Xijun CHEN Mingying,MA Junjie,et al.Advances in the synthesis strategies of carbon?basedsingle?atom catalysts and their electrochemical applications[J].China Powder Science and Technology,2024,30(5):35?46.

        近年來,隨著工業(yè)的快速發(fā)展,造成的能源危機(jī)和環(huán)境污染等問題,對人類的生存發(fā)展造成了嚴(yán)重的影響,因此開發(fā)更高效的電催化劑并將可再生能源轉(zhuǎn)化為高附加值燃料迫在眉睫[1-7]。在眾多的催化劑材料中,單原子催化劑(single atomic catalysts,SACs)因超高的電催化活性而備受關(guān)注[8-11]。通常,SACs將單一金屬原子作為催化活性中心,而該單一金屬原子是高度分散的,可以通過與相鄰原子配位或離子相互作用而被固定在多種載體上[12-14]。SACs由于獨(dú)特的結(jié)構(gòu)而具有極高的原子利用效率(理論上可達(dá)100%)、優(yōu)異的催化活性和選擇性[15-17]。在各種類型SACs的載體中,碳基材料具有極好的化學(xué)穩(wěn)定性和機(jī)械延展性、可調(diào)節(jié)的孔隙率和表面修飾、優(yōu)異的導(dǎo)電性和導(dǎo)熱性、高比表面積、可變的結(jié)構(gòu)和形態(tài)組合、易于處理和低成本等優(yōu)點(diǎn),因而在各種電催化反應(yīng)中出類拔萃[18]。通過改變中心金屬原子、相鄰配位元素和配位數(shù),可以有效地調(diào)節(jié)碳基SACs的電荷分布及催化活性。碳基SACs的活性中心(金屬-配體-碳載體)相對容易確定和控制[19-20],使其成為有效增強(qiáng)電催化效率的理想材料??傊?,在未來的綠色催化中,碳基SACs具有廣闊的應(yīng)用前景,對這種催化劑進(jìn)行深入研究,不僅有助于緩解目前面臨的能源危機(jī)和環(huán)境問題,而且還可以推動(dòng)綠色化學(xué)的可持續(xù)發(fā)展。

        本文中綜述碳基SACs的合成方法,主要包括熱解法、濕化學(xué)法、電化學(xué)沉積法、原位合成法以及球磨法;也重點(diǎn)討論碳基SACs在氧還原反應(yīng)(oxygen reduction reaction,ORR)、析氫反應(yīng)(hydrogen evolution reaction,HER)、析氧反應(yīng)(oxygen evolution reaction,OER)、氮還原反應(yīng)(nitrogen reduction reaction,NRR)、CO2還原反應(yīng)(carbon dioxide reduction reaction,CO2RR)等電催化領(lǐng)域中的前沿應(yīng)用。本綜述中涉及的主題摘要圖如圖1所示。特別是在ORR和HER中,碳基SACs表現(xiàn)出優(yōu)異的電催化性能,為綠色化學(xué)的可持續(xù)發(fā)展提供了一種新的解決思路與方案。

        1碳基SACs的合成方法

        在碳基SACs的合成研究中,碳基SACs的制備通常與碳基載體的合成并行或交錯(cuò)進(jìn)行。目前,碳基SACs的合成主要采用熱解法、濕化學(xué)法、電化學(xué)沉積法、原位合成法以及球磨法等合成方法。這些合成方法給研究者提供了有利的借鑒,有助于研究者探索和合成更高效的碳基SACs[21-22]。

        1.1熱解法

        熱解法是指在將金屬前驅(qū)體和載體在高溫氣氛(如Ar、N2和NH3)下進(jìn)行熱解處理的方法,使前驅(qū)體中的金屬原子以配位結(jié)合的方式固定到載體的表面上而形成SACs的一種方法[10,23]。高溫處理能使金屬原子和載體間形成共價(jià)鍵,從而顯著地加速金屬原子在載體表面的固化,單原子分散度和穩(wěn)定性也得到改善。該方法具有易于操作、廉價(jià)且易于獲得原材料的特點(diǎn),但由于SACs易形成金屬納米粒子和納米簇,因此不容易實(shí)現(xiàn)SACs的高負(fù)載量[24]。

        Xie等[25]以具有三維孔道結(jié)構(gòu)和超高比表面積的金屬有機(jī)框架為前驅(qū)體,采用熱解法設(shè)計(jì)合成了金屬有機(jī)框架衍生的碳基Fe-SACs。在作為質(zhì)子交換膜燃料電池陰極催化劑時(shí),壓強(qiáng)為0.2 MPa,所組裝的燃料電池的能量密度可達(dá)0.84 W/cm2。Han等[26]通過熱解聚合物制備了鎳負(fù)載量高達(dá)5.92%的SACs,并研究了對CO2-CO電催化性能的影響。該研究為設(shè)計(jì)合成具有高活性、高選擇性和優(yōu)異耐久性的SACs提供了重要的參考。Zhao等[27]也提出了一種用于合成Fe-SACs的創(chuàng)新熱解策略,首先將鐵卟啉(DFTPP)FeCl3(DFTPP=2,6-二氟四苯基卟啉)與咪唑配位組裝在咪唑化聚乙烯醇涂層的炭黑上,然后對炭黑進(jìn)行熱處理得到催化劑C@PVI-(DFTPP)Fe-8005,鐵原子被嵌入到氮、氟摻雜的多孔碳納米材料中,形成Fe-N共活性位點(diǎn)。將Fe引入碳載體后,該催化劑的ORR性能顯著提高,碳載體中摻雜的氟原子還可以調(diào)節(jié)ORR活性。該方法為在分子水平上制備具有Fe-N活性位點(diǎn)的電催化劑開辟了一條新的途徑[28]。

        1.2濕化學(xué)法

        濕化學(xué)法是目前研究中最為廣泛的合成碳基SACs的方法,包括浸漬法和共沉淀法[29]。由于單個(gè)金屬原子具有高表面能,因此在制備期間,活性金屬原子傾向于形成具有低金屬負(fù)載的納米簇,以減少表面能。浸漬法是通過將載體浸漬于金屬前體溶液,通過干燥和焙燒來獲得碳基SACs的方法[30]。在浸漬法得到的碳基SACs中,大部分的活性金屬組分被置于碳基載體表面,使金屬原子的使用效率大幅提高。共沉淀法是指將金屬前驅(qū)體液與載體前驅(qū)體液混合得到混合前驅(qū)體液,再向其中添加沉淀劑,使它們相互作用生成沉淀,通過過濾、分離、洗滌、干燥和焙燒來獲得碳基SACs的方法。該合成方法能得到高分散性的碳基SACs,這是因?yàn)榻饘偾膀?qū)體與載體前驅(qū)體在液相中均勻分散,二者之間會(huì)產(chǎn)生相互作用,使金屬原子于載體上趨向在一定距離內(nèi)負(fù)載。使用共沉淀法合成過程中會(huì)導(dǎo)致一部分活性金屬被載體包覆,導(dǎo)致這部分活性金屬不能參與到催化反應(yīng)中而造成浪費(fèi)。

        Kustov等[31]用浸漬法制備了一種含鋅、鐵單原子的碳基SACs,該催化劑具有良好的CO2加氫選擇性和活性。Li等[32]提出了多巴胺介導(dǎo)氨活化的策略,采用液相共沉淀法合成了以多孔碳為載體的ZnCo-SACs催化劑。

        1.3電化學(xué)沉積法

        電化學(xué)沉積法是指通過在電化學(xué)三電極體系上施加外加電壓,使電解液中的金屬離子基團(tuán)在電解質(zhì)中定向向電極遷移的方法。當(dāng)施加瞬時(shí)電壓或瞬時(shí)電流密度的增大時(shí),金屬晶體的生長速度加快,并且靠近電極附近的電解液中的金屬離子也更快地被還原[33]。當(dāng)沉積速率較慢時(shí),電解質(zhì)中的離子有足夠的時(shí)間來補(bǔ)充離子濃度,導(dǎo)致擴(kuò)散層更薄,使得金屬原子沉積更均勻。美中不足的是,當(dāng)外加電壓超過析氫電位時(shí),沉積過程伴隨著HER副反應(yīng)[34]。HER的出現(xiàn)降低了電沉積過程的法拉第效率(faraday efficiency,F(xiàn)E),進(jìn)而降低了電能的利用效率,而且這種方法還需要額外電解池設(shè)備,操作相對復(fù)雜。

        Zhang等[35]利用電化學(xué)沉積法制備了30余種碳基SACs。由于陰極和陽極上SACs的電子態(tài)不同,陰極上的SACs更容易發(fā)生HER,而陽極上的SACs更容易發(fā)生OER。其中,Ir-Co(OH)2 SACs陰極在過電壓為8 mV時(shí)就能獲得電流密度10 mA/cm2,是一種有希望實(shí)現(xiàn)大規(guī)模制造的SACs。Luo等[36]利用三電極體系裝置在CoP-CNT上合成Pt單原子。實(shí)驗(yàn)中,以Ni泡沫上的CoP-CNT載體作為工作電極,將Pt薄片在溶液中進(jìn)行電離、溶解、再沉積到CoP-CNT上。這樣的無黏合劑催化劑具有厘米級的大小,有利于工業(yè)推廣。

        1.4原位合成法

        原位合成是指將金屬前驅(qū)體直接導(dǎo)入到載體表面或內(nèi)部,然后通過機(jī)械加工得到SACs的方法[37]。原位合成工藝簡單、反應(yīng)條件溫和、反應(yīng)過程可控制、比表面積大、催化活性高,是一種新的合成方法。通過對制備過程中的溫度、時(shí)間和濃度等反應(yīng)條件進(jìn)行控制,可使催化劑的物理和化學(xué)性質(zhì)發(fā)生變化,進(jìn)而改變催化劑的催化活性。

        Fang等[37]結(jié)合高溫?zé)峤庠缓铣闪嗽贜,S共摻雜碳納米片上負(fù)載Co原子的Co-SACs電催化劑。Wang等[38]報(bào)道了一種用氣相發(fā)泡法制備的超薄氮摻雜多孔碳基Fe-SACs,比表面積高達(dá)1 126 m2/g。原位合成法合成碳基SACs示意圖如圖2所示。在反應(yīng)電位為0.863 V,塔菲爾斜率為68.3 mV/dec時(shí),超薄氮摻雜多孔碳基Fe-SACs比Pt-C具有更好的氧還原活性和更快的氧還原動(dòng)力學(xué)。結(jié)果表明,超薄氮摻雜多孔碳基Fe-SACs在鋅-空氣電池中具有較好的穩(wěn)定性和可逆性,鋅-空氣電池的循環(huán)效率可達(dá)60.8%。

        1.5球磨法

        球磨法通常是將原料放入球磨機(jī)中,利用球磨機(jī)的高速旋轉(zhuǎn)和摩擦力將原料研磨成微小顆粒,能夠高效制備碳基SACs的方法[39]。機(jī)械碰撞可使催化劑原位產(chǎn)生高缺陷密度,從而顯著增強(qiáng)催化劑的活性,促進(jìn)化學(xué)反應(yīng)的高效進(jìn)行[40]。該方法不僅反應(yīng)速度快,能耗低,而且能合成某些傳統(tǒng)合成方法不能合成的物質(zhì),是適應(yīng)當(dāng)今化工可持續(xù)發(fā)展及“綠色化學(xué)”理念的新型合成技術(shù)[41-42]。

        Wang等[41]通過高能量球磨,使前驅(qū)體在KCL表面均勻分布。正如實(shí)驗(yàn)所證實(shí)的那樣,碳納米籠表面成功地?fù)饺肓薔和Co單原子,且二者分布均勻。由于獨(dú)特的籠狀結(jié)構(gòu)和Co、N、Co-Nx配合物的協(xié)同催化作用,所制得的最佳催化劑在初始電位0.924 V(相對于可逆氫電極)的條件下具有較高的氧還原活性。另外,該催化劑的穩(wěn)定性和對甲醇的耐受性也比市面上的Pt-C催化劑好得多。由此可見,該合成方法具有簡單通用的特點(diǎn),其中碳納米籠的合成方法可以作為模板推廣應(yīng)用。Gan等[43]用2種具有非常類似性質(zhì)的乙酰丙酮化合物作為原料,采用球磨法制備了Pt均勻分布于Co納米顆粒表面的碳基Pt(Co)單原子合金催化劑。球磨法合成碳基SACs的示意圖如圖3所示。研究結(jié)果表明,該催化劑對5-羥甲基糠醛(HMF)的加氫脫氧合成2,5-二甲基呋喃(DMF)具有良好的催化活性。在此條件下5-羥甲基糠醛的轉(zhuǎn)化率和2,5-二甲基呋喃的選擇性分別達(dá)到了100%和92.9%。

        2電催化應(yīng)用

        迄今為止,國內(nèi)外已經(jīng)報(bào)道了許多關(guān)于碳基SACs用于ORR、OER、HER、NRR和CO2RR的研究報(bào)道。接下來將重點(diǎn)綜述碳基SACs在上述5個(gè)典型電催化反應(yīng)中的前沿應(yīng)用。

        2.1 ORR

        ORR是燃料電池和金屬空氣電池陰極發(fā)生的關(guān)鍵反應(yīng),氧的吸附和解吸代表了氧的擴(kuò)散和交換,是ORR催化的關(guān)鍵步驟。催化劑和中間物質(zhì)之間的吸附和解吸取決于碳基SACs中活性位點(diǎn)的電子結(jié)構(gòu)。目前ORR電催化領(lǐng)域一個(gè)嚴(yán)峻挑戰(zhàn)是提升選擇性,因?yàn)镠2O還原生成過氧化氫是ORR反應(yīng)的主要競爭反應(yīng),從而使ORR反應(yīng)產(chǎn)率下降。目前碳基SACs作為一種新興材料通過超高的活性位點(diǎn)以及卓越的導(dǎo)電性,大大提升了O2解離速率,從而有效提升ORR催化效率,ORR的通用反應(yīng)方程式[44]通常可以表示為

        O2+4H++4e-→2H2O。(1)

        Zhang等[45]開發(fā)了一種制備聚磷腈納米球的方法,并作為前驅(qū)體制備了碳基Co-SACs。密度泛函理論計(jì)算(density functional theory,DFT)表明,在反應(yīng)電壓為1.23 V時(shí),具有碳基載體的最優(yōu)催化劑對應(yīng)ORR的反應(yīng)中間體自由能能壘顯著低于對比催化劑。使得O2在最優(yōu)催化劑上的吸附能較低,對H2O的吸附能較高,因此,碳基Co-SACs能夠更有效地結(jié)合O2以引發(fā)反應(yīng),對H2O的弱結(jié)合可以大大削弱副反應(yīng),從而有效提升ORR反應(yīng)的選擇性。Su等[46]使用精準(zhǔn)合成的S-Co(N,C)SACs作為正極材料構(gòu)建了Zn-O2電池。理論和實(shí)驗(yàn)證實(shí),碳基底的引入使得該電池表現(xiàn)出色,電流密度約為400 mA/cm2,最大功率密度為260 mW/cm,顯著優(yōu)于商用Pt-C和其他鈷基催化劑。

        2.2 HER

        HER是指通過電催化水分解產(chǎn)生氫氣,為生產(chǎn)綠色氫氣提供了一條有吸引力的途徑。與能量轉(zhuǎn)換效率低的風(fēng)、水和太陽能等常見的可再生能源作為生產(chǎn)H2的方式相比,電解水制氫已成為備受矚目的高效制氫策略[47]。其中,HER是水分解反應(yīng)中的一個(gè)半反應(yīng),具有特殊配位結(jié)構(gòu)的碳基SACs可以有效地優(yōu)化活性中心對H原子的吸附過程,從而顯著降低HER反應(yīng)中間體的吸附能壘,進(jìn)而提高HER電催化活性,HER的反應(yīng)方程式[47]通常表示為

        2H++2e-→H2。(2)

        Xue等[48]開發(fā)了一種Mo單原子錨定在摻N碳纖維上的SACs合成方法,Mo原子與N、C、O原子配位,以實(shí)現(xiàn)高效的HER。碳基SACs在HER中的應(yīng)用:H2O產(chǎn)生H2的機(jī)制如圖4所示。

        由于配位的O原子在酸性條件下容易形成羥基,學(xué)者構(gòu)建了MoC3-OH、MoC2N-OH、MoCN2-OH和MoN3-OH模型,以探索多個(gè)雜原子配位對催化性能的影響。態(tài)密度理論計(jì)算表明,C、N和O原子的協(xié)同配位顯著地調(diào)節(jié)了單原子Mo的電子結(jié)構(gòu)。其中,MoC2N-OH和MoC3-OH對反應(yīng)中間體H*的吉布斯自由能接近0,這顯著提高了HER的電催化效率。Mo-C鍵在水解過程中可能是不穩(wěn)定的,而N配位的模型能量計(jì)算較小,結(jié)構(gòu)更穩(wěn)定,因此,MoC2N-OH結(jié)構(gòu)的HER性能總體上是最好的?;谧顑?yōu)催化劑的氫電池來獲得氫,所收集的H2體積與理論值吻合較好,表明最優(yōu)催化劑具有近100%的法拉第效應(yīng)。Luo等[49]制備了多種過渡金屬(Co、Ni、W)錨定在富氮石墨烯上,可以廣泛應(yīng)用于HER領(lǐng)域。通過高倍率透射電鏡對3種SACs(Co、Ni、W)的表征表明,孤立原子以M-N4C4實(shí)體的形式均勻分散在氮增強(qiáng)石墨烯表面,并通過同步輻射進(jìn)一步印證該結(jié)論。這種摻N的碳載體可以為高效碳基SACs的設(shè)計(jì)提供借鑒和思路。

        2.3 OER

        OER是指在電化學(xué)過程中,水分子(或其他氧化物)被氧化成氧氣的反應(yīng)。在水電解中,OER是水分解的關(guān)鍵步驟之一,發(fā)生在陽極上,反應(yīng)機(jī)制表達(dá)式如(3)所示。由于OER反應(yīng)通常需要高能量輸入以及催化劑的催化作用,因此尋找高效的催化劑成為本領(lǐng)域的研究熱點(diǎn)。

        2H2O→O2+4H++4e-。(3)

        Huang等[50]報(bào)道了一種將單原子過渡金屬(Fe、Co、Ni)均勻分布在富氮石墨烯中的一般合成策略,都具有共享的金屬-N4C4結(jié)構(gòu),該共享結(jié)構(gòu)大大降低了OER反應(yīng)中間體的自由能能壘,從而顯著提升電催化OER的選擇性。

        Hou等[51]將S作為摻雜劑引入到從石墨烯箔中提取的多孔碳納米片中。與商用Ir?C相比,該材料表現(xiàn)出較低的電勢和優(yōu)越的電流密度,具有出色的OER電催化性能。通過DFT計(jì)算表明,S原子與碳載體之間的電子相互作顯著提高了該催化劑的OER性能。

        2.4 NRR

        氨(NH3)是一種工業(yè)和農(nóng)業(yè)不可或缺的化工生產(chǎn)原料。傳統(tǒng)合成NH3的方法是Haber?Bosch工藝,但需要消耗大量能源并產(chǎn)生大量溫室氣體。具有反應(yīng)條件溫和、綠色可持續(xù)特點(diǎn)的電催化NRR獲得廣泛關(guān)注。電催化NRR利用H2O、N2和電能在環(huán)境條件下生成NH3,是一種綠色、低能耗、安全的新型合成NH3方法[52]。由于N2過于惰性以及HER副反應(yīng),電催化NRR過程的FE和NH3產(chǎn)率相對較低[53]。為了提高電催化NRR效率,亟待設(shè)計(jì)出能夠有效抑制HER并降低N,N三鍵解離能的高活性催化劑。NRR的通用反應(yīng)方程式[53]通??梢员硎緸?/p>

        N2+6H++6e-→2NH3。(4)

        Han等[11]通過控制Mn-O鍵的結(jié)合能,成功地將特殊的Mn-O3N1位點(diǎn)錨定在多孔碳上,制備出了可用于高效NRR催化的Mn-SACs。研究發(fā)現(xiàn),Mn-O3N1位點(diǎn)與N2的結(jié)合強(qiáng)度明顯強(qiáng)于Mn-N4位點(diǎn)(Mn-O3N1為0.83 eV,Mn-N4為0.09 eV)。原因?yàn)樵贛n-O3N1結(jié)構(gòu)中,Mn原子突出于平面之外,N2只能吸附在Mn原子之上;O原子的配位調(diào)節(jié)了Mn的電子結(jié)構(gòu),該位點(diǎn)有利于N2的極化和活化。Mn-O3N1結(jié)構(gòu)顯著降低了NRR反應(yīng)中間體的自由能能壘。從Bader電荷分析來看,N2在Mn-O3N1結(jié)構(gòu)上獲得了更多的轉(zhuǎn)移電子,這是導(dǎo)致提升NRR活性的本質(zhì)。Kong等54]利用沸石咪唑酯骨架,通過高溫?zé)峤夥ê铣闪艘环N碳基Zn-SACs。由于獨(dú)特的多孔絲狀結(jié)構(gòu)和獨(dú)特結(jié)合方式,Zn-SACs納米纖維在堿性條件下表現(xiàn)出優(yōu)異的NRR性能,碳基SACs在NRR中的應(yīng)用:N2還原為NH3的反應(yīng)機(jī)制如圖5所示。

        該催化劑制NH3的反應(yīng)速率和選擇性均高于普通的Zn基催化劑?;趯?shí)驗(yàn)和理論進(jìn)一步研究發(fā)現(xiàn),Zn-SACs附近石墨氮化合物的存在加速了加氫反應(yīng)的動(dòng)態(tài)特性,降低了關(guān)鍵中間體*NNH的自由能能壘,大大提高了電催化NRR活性。

        2.5 CO2RR

        電催化CO2RR可以將CO2轉(zhuǎn)化為各種原料化學(xué)品[55-57]。該反應(yīng)的轉(zhuǎn)化效率受CO2本身高穩(wěn)定性以及析氫副反應(yīng)的影響很大[58]。目前,不同單原子摻雜的碳基SACs中的活性位點(diǎn)不僅可以抑制HER反應(yīng),還可以優(yōu)化*CO和*COOH的吸附能以提高催化性能[59-60]。

        Zhang等[61]探索了Mn-SACs的C原子配位結(jié)構(gòu)對CO2RR催化活性的影響。用原位XAS光譜研究反應(yīng)過程,發(fā)現(xiàn)CO2RR過程中的C配位對Mn原子的氧化態(tài)存在顯著的影響。此外,它還可以促進(jìn)Mn原子的重構(gòu),從而形成穩(wěn)定的平面結(jié)構(gòu)。DFT還表明,額外的C配位能夠有效地調(diào)節(jié)Mn中心的電子結(jié)構(gòu),增強(qiáng)與CO2和*COOH的吸附,并促進(jìn)關(guān)鍵中間體*COOH形成。特別是,與未結(jié)合C原子配位的Mn-SACs相比,配位C原子的Mn-SACs具有更高的*H中間體的吸附能,從而有效地抑制了HER副反應(yīng)?;趯?shí)驗(yàn)和計(jì)算結(jié)果,作者提出了活性中心的結(jié)構(gòu)演化:特殊的碳配位活性中心可以有效穩(wěn)定地吸附反應(yīng)中間體,促進(jìn)最終的CO脫附過程,從而獲得卓越的催化選擇性。Liu等[62]發(fā)現(xiàn),在反應(yīng)過程中,F(xiàn)e-SACs通過質(zhì)子供給效應(yīng)有效地促進(jìn)了CO2RR的催化活性。制備了具有Fe-N4S結(jié)構(gòu)和S原子二次配位的Fe-NSC催化劑。摻雜S原子不僅有效地調(diào)節(jié)了Fe單原子和碳載體彼此間的電子結(jié)構(gòu),促進(jìn)了CO2的活化和吸附,而且有效降低了反應(yīng)中間體*COOH反應(yīng)能壘,提升了CO的選擇性。

        3結(jié)論

        碳基SACs作為一種具有高活性、高選擇性和高穩(wěn)定性的新型高效電催化劑,在未來的催化領(lǐng)域中具有廣闊的發(fā)展前景。特別是,從原子利用率和資源可持續(xù)利用的觀點(diǎn)出發(fā),碳基SACs的開發(fā)應(yīng)用對緩解溫室效應(yīng)、解決能源危機(jī)以及促進(jìn)可持續(xù)發(fā)展具有十分重要意義。本文中綜述了碳基SACs材料的合成及電催化應(yīng)用,并對碳基SACs在催化方面的應(yīng)用潛力和優(yōu)點(diǎn)進(jìn)行了深入的探討。

        1)碳基SACs的合成方法,包括熱解法、濕化學(xué)法、電化學(xué)沉積法、原位合成法和球磨法等,合成方法在國內(nèi)外已有較多的報(bào)道。通過對催化劑的合成條件的優(yōu)化,可以使催化劑的形貌和組成發(fā)生變化,從而對催化劑的催化活性進(jìn)行調(diào)控和優(yōu)化。

        2)碳基SACs被廣泛應(yīng)用于ORR、HER、OER、NRR以及CO2RR等電催化反應(yīng)領(lǐng)域,而且在金屬空氣電池、燃料電池以及光催化等催化領(lǐng)域也有著廣泛的應(yīng)用前景。碳基SACs催化劑通過有效地調(diào)節(jié)金屬原子在催化劑表面的配位環(huán)境和電子結(jié)構(gòu),從而改善催化劑的催化性能,并能有效提高反應(yīng)選擇性和產(chǎn)品收率。

        3)目前碳基SACs的合成方法大多復(fù)雜且成本較高,限制了大規(guī)模工業(yè)化生產(chǎn)和應(yīng)用。在電催化應(yīng)用中仍存在穩(wěn)定性較差、活性不足、選擇性較低以及催化機(jī)制不明確等問題,在未來研究中需要根據(jù)目前存在的不足更精準(zhǔn)的設(shè)計(jì)碳基SACs催化劑以提高實(shí)際應(yīng)用價(jià)值。

        4)通過理論計(jì)算,可以更深入地探究碳基SACs的催化活性增強(qiáng)機(jī)制,更精確地預(yù)測目標(biāo)催化劑的設(shè)計(jì)方案,從而提高碳基SACs實(shí)際應(yīng)用前景。利用原位光譜表征技術(shù),研究碳基SACs的結(jié)構(gòu)、電子態(tài)以及表面活性,為進(jìn)一步深入研究碳基SACs催化活性中心提供理論基礎(chǔ),更好地應(yīng)用于電催化等領(lǐng)域。

        利益沖突聲明(Conflict of Interests)

        所有作者聲明不存在利益沖突。

        All authors disclose no relevant conflict of interests.

        作者貢獻(xiàn)(Authors’Contributions)

        劉熙俊、陳明英、馬俊杰參與了論文的設(shè)計(jì)和撰寫。梁璟琦、李春勝、陳叢瑾、何會(huì)兵參與了審查和修改。所有作者均閱讀并同意了最終稿件的提交。

        The review was designed and written by LIU Xijun,CHENMingying,and MA Junjie.The manuscript was revised by LIANG Jingqi,LIChunsheng,CHENCongjin,and HE Huibing.All authors have read the last ver?sion of paper and consented to its submission.

        參考文獻(xiàn)(References)

        [1]ZHAO C C,SU X F,WANG S,et al.Single-atom catalysts on supported silicomolybdic acid for CO2 electroreduction:a DFT prediction[J].Journal of Materials Chemistry A,2022,10(11):6178-6186.

        [2]潘琪,李靜,閆良國.光熱材料-木材太陽能驅(qū)動(dòng)界面蒸發(fā)器的研究進(jìn)展[J].中國粉體技術(shù),2024,30(1):90-102.

        PAN Q,LI J,YAN L G.Research progress of photothermal material-wood evaporators for solar-driven interfacial evapora-tion[J].China Powder Science and Technology,2024,30(1):90-102.

        [3]JEONG H M,KWON Y,WON J H,et al.Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide[J].Advanced Energy Materials,2020,10(10):1903423.

        [4]LI H F,LIU T F,WEI P F,et al.High-rate CO2 electroreduction to C2+products over a copper-copper iodide catalyst[J].AngewandteChemie(International Ed in English),2021,60(26):14329-14333.

        [5]LIU M,WANG Q Y,LUO T,et al.Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies[J].Journal of the American Chemical Society,2024,146(1):468-475.

        [6]TIAN J,YU J L,TANG Q X,et al.Self-assembled supramolecular materials for photocatalytic H2 production and CO2 redu-ction[J].Materials Futures,2022,1(4):042104.

        [7]SUN H N,XU X M,SONG Y F,et al.Designing high-valence metal sites for electrochemical water splitting[J].Advanced Functional Materials,2021,31(16):2009779.

        [8]JIANG F,DING B B,ZHAO Y J,et al.BiocompatibleCuO-decorated carbon nanoplatforms for multiplexed imaging and enhanced antitumor efficacy via combined photothermal therapy/chemodynamic therapy/chemotherapy[J].Science China Materials,2020,63(9):1818-1830.

        [9]PENG X Y,ZHAO S Z,MI Y Y,et al.Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media[J].Small,2020,16(33):e2002888.

        [10]ZHAO S Z,WEN Y F,PENG X Y,et al.Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol[J].Journal of Materials Chemistry A,2020,8(18):8913-8919.

        [11]HAN L L,HOU M C,OU P F,et al.Local modulation of single-atomic Mn sites for enhanced ambient ammonia electro?synthesis[J].ACS Catalysis,2021,11(2):509-516.

        [12]HAN Z X,WANG K,DU F L,et al.High efficiency red emission carbon dots based on phenylene diisocyanate for trichro?matic white and red LEDs[J].Journal of Materials Chemistry C,2018,6(36):9631-9635.

        [13]HAN G F,LI F,RYKOV A I,et al.Abrading bulk metal into single atoms[J].Nature Nanotechnology,2022,17(4):403-407.

        [14]RAMALINGAM V,VARADHAN P,F(xiàn)U H C,et al.Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution[J].Advanced Materials,2019,31(48):1903841.

        [15]ZHU C Z,F(xiàn)U S F,SHI Q R,et al.Single-atom electrocatalysts[J].AngewandteChemie International Edition,2017,56(45):13944-13960.

        [16]ZHANG C X,YUAN W J,WANG Q,et al.Single Cu atoms as catalysts for efficient hydrazine oxidation reaction[J].ChemNanoMat,2020,6(10):1474-1478.

        [17]CHEN Y Z,SUN H L,GATES B C.Prototype atomically dispersed supported metal catalysts:iridium and platinum[J].Small,2021,17(16):2004665.

        [18]WANG Z F,YAN Y J,ZHANG Y G,et al.Single-atomic Co-B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries[J].Carbon Energy,2023,5(11):e306.

        [19]LIU J,CHEN Z X,LIU C B,et al.Molecular engineered palladium single atom catalysts with an M-C1N3 subunit for Suzuki coupling[J].Journal of Materials Chemistry A,2021,9(18):11427-11432.

        [20]TANG C,JIAO Y,SHI B Y,et al.Coordination tunes selectivity:two-electron oxygen reduction on high-loading molybde?num single-atom catalysts[J].AngewandteChemie(International Ed in English),2020,59(23):9171-9176.

        [21]YU J,CAO C Y,JIN H Q,et al.Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol[J].National Science Review,2022,9(9):nwac018.

        [22]張承昕,徐昊,王余蓮,等.納米金@石墨烯復(fù)合多孔材料還原4-硝基苯酚[J].中國粉體技術(shù),2023,29(4):80-93.

        ZHANG C X,XU H,WANG Y L,et al.Reduction of 4-nitrophenol with nano-gold@graphene composite porous material[J].China Powder Science and Technology,2023,29(4):80-93.

        [23]DONG H,LU M,WANG Y,et al.Covalently anchoring covalent organic framework on carbon nanotubes for highly effi?cient electrocatalytic CO2 reduction[J].Applied Catalysis B:Environmental,2022,303:120897.

        [24]CHEN X,MA D D,CHEN B,et al.Metal-organic framework-derived mesoporous carbon nanoframes embedded withatomically dispersed Fe-N x active sites for efficient bifunctional oxygen and carbon dioxide electroreduction[J].Applied Catalysis B:Environmental,2020,267:118720.

        [25]XIE X Y,SHANG L,XIONG X Y,et al.Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells[J].Advanced Energy Materials,2022,12(3):2102688.

        [26]HAN S G,MA D D,ZHOU S H,et al.Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction[J].Applied Catalysis B:Environmental,2021,283:119591.

        [27]ZHAO Y M,ZHANG P C,XU C,et al.Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhanc?ing the oxygen reduction reaction in fuel cells[J].ACS Applied Materialsamp;Interfaces,2020,12(15):17334-17342.

        [28]GAO J,LUO X C,F(xiàn)ANG F Z,et al.Fundamentals of atomic and close-to-atomic scale manufacturing:a review[J].Inter?national Journal of Extreme Manufacturing,2022,4(1):012001.

        [29]LüF,BAO H H,MI Y Y,et al.Electrochemical CO2 reduction:from nanoclusters to single atom catalysts[J].Sustain?ableEnergyamp;Fuels,2020,4(3):1012-1028.

        [30]SU Y,F(xiàn)U K X,ZHENG Y F,et al.Catalytic oxidation of dichloromethane over Pt-Co/HZSM-5 catalyst:synergistic effect of single-atom Pt,Co3O4,and HZSM-5[J].Applied Catalysis B:Environmental,2021,288:119980.

        [31]EVDOKIMENKO N D,KAPUSTIN G I,TKACHENKO O P,et al.Zn doping effect on the performance of Fe-based cata?lysts for the hydrogenation of CO2 to light hydrocarbons[J].Molecules,2022,27(3):1065.

        [32]LI Z J,LENG L P,JI S Q,et al.Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction[J].Journal of Energy Chemistry,2022,73:469-477.

        [33]LI Y,WANG Z H,CAI Y,et al.Designing advanced aqueous zinc-ion batteries:principles,strategies,and perspectives[J].Energy\amp;Environmental Materials,2022,5(3):823-851.

        [34]KALE M B,BORSE R A,GOMAA ABDELKADER MOHAMED A,et al.Electrocatalysts by electrodeposition:recent advances,synthesis methods,and applications in energy conversion[J].Advanced Functional Materials,2021,31(25):2101313.

        [35]ZHANG Z R,F(xiàn)ENG C,LIU C X,et al.Electrochemical deposition as a universal route for fabricating single-atom cata?lysts[J].Nature Communications,2020,11(1):1215.

        [36]ZHANG L H,HAN L L,LIU H X,et al.Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolu?tion in neutral media[J].AngewandteChemie(International Ed in English),2017,56(44):13694-13698.

        [37]FANG Y,KONG W C,ZHOU X,et al.In-situ synthesis of mott-schottky Co/Co9S8 heterojunction anchored on carbon nanosheets for efficient electrochemical performance[J].Materials Reports,2024,38(8):23040234-23040237.

        [38]WANG X L,DU J,ZHANG Q H,et al.In situ synthesis of sustainable highly efficient single iron atoms anchored on nitro?gen doped carbon derived from renewable biomass[J].Carbon,2020,157:614-621.

        [39]ZHANG X C,ZHONG Y Z,CHEN H Y,et al.Synthesis of nitrogen-doped carbon supported cerium single atom catalyst by ball milling for selective oxidation of ethylbenzene[J].Chemical Research in Chinese Universities,2022,38(5):1258-1262.

        [40]HAN G F,LI F,CHEN Z W,et al.Mechanochemistry for ammonia synthesis under mild conditions[J].Nature Nanotech?nology,2021,16:325-330.

        [41]WANG J,YANG S H,SONG W N,et al.High-efficiency synthesis of Co,N-doped carbon nanocages by ball milling-hard template method as an active catalyst for oxygen reduction reaction[J].International Journal of Hydrogen Energy,2020,45(11):6318-6327.

        [42]吳紅娥,費(fèi)廣濤,高旭東,等.聚苯胺及其復(fù)合材料的制備及應(yīng)用研究進(jìn)展[J].中國粉體技術(shù),2023,29(5):70-80.

        WU H E,F(xiàn)EI G T,GAO X D,et al.Research progress on preparation and application of polyaniline and its composite materials[J].China Powder Science and Technology,2023,29(5):70-80.

        [43]GAN T,LIU Y F,HE Q,et al.Facile synthesis of kilogram-scale co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural[J].ACS Sustainable Chemistryamp;Engineering,2020,8(23):8692-8699.

        [44]XU H D,YANG J,GE R Y,et al.Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions:optimization strategies and mechanistic analysis[J].Journal of Energy Chemistry,2022,71:234-265.

        [45]WEI X,ZHENG D,ZHAO M,et al.Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction[J].AngewandteChemie(International Ed in Eng?lish),2020,59(34):14639-14646.

        [46]SUN T,ZANG W J,YAN H,et al.Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions[J].ACS Catalysis,2021,11(8):4498-4509.

        [47]WANG R X,YANG L,CHEN H Y,et al.Rationally designing of Co-WS2 catalysts with optimized electronic structure to enhance hydrogen evolution reaction[J].Journal of Colloid and Interface Science,2024,667:192-198.

        [48]LI T F,LU T Y,LI X,et al.Atomically dispersed Mo sites anchored on multichannel carbon nanofibers toward superior electrocatalytic hydrogen evolution[J].ACS Nano,2021,15(12):20032-20041.

        [49]HOSSAIN M D,LIU Z J,ZHUANG M H,et al.Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction[J].Advanced Energy Materials,2019,9(10):1803689.

        [50]FEI H L,DONG J C,F(xiàn)ENG Y X,et al.General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J].Nature Catalysis,2018,1:63-72.

        [51]HOU Y,QIU M,KIM M G,et al.Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation[J].Nature Communications,2019,10(1):1392.

        [52]LIU M L,RAO F,LIAO M Q,et al.Screening of borophene-supported highly active and selective single-atom catalysts for electrocatalytic nitrogen reduction reactions[J].Applied Materials Today,2024,38:102166.

        [53]LüF,ZHAO S Z,GUO R J,et al.Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media[J].Nano Energy,2019,61:420-427.

        [54]KONG Y,LI Y,SANG X H,et al.Atomically dispersed zinc(I)active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis[J].Advanced Materials,2022,34(2):e2103548.

        [55]MI Y Y,SHEN S B,PENG X Y,et al.Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires[J].Chem Electro Chem,2019,6(9):2393-2397.

        [56]PENG X Y,CHEN Y,MI Y Y,et al.Efficient electroreduction CO2 to CO over MnO2 nanosheets[J].Inorganic Chemistry,2019,58(14):8910-8914.

        [57]耿奎發(fā),吳龔鵬,苗華明,等.超臨界二氧化碳制備超細(xì)粉體研究進(jìn)展[J].中國粉體技術(shù),2024,30(2):123-137.

        GENG K F,WU G P,MIAO H M,et al.Progress in preparation of ultrafine powder by supercritical carbon dioxide[J].China Powder Science and Technology,2024,30(2):123-137.

        [58]HAN L L,LIU X J,HE J,et al.Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production[J].Advanced Energy Materials,2021,11(24):2100044.

        [59]HOU T,DING J Y,ZHANG H,et al.FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate[J].Materials Chemistry Frontiers,2023,7(20):4952-4960.

        [60]MA J J,HUANG F,XU A H,et al.Three-phase-heterojunction Cu/Cu2O-Sb2O3 catalyst enables efficient CO2 electrore?duction to CO and high-performance aqueous Zn-CO2 battery[J].Advanced Article,2024,2(11):2306858.

        [61]ZHANG B X,ZHANG J L,SHI J B,et al.Manganese acting as a high-performance heterogeneous electrocatalyst in car?bon dioxide reduction[J].Nature Communications,2019,10(1):2980.

        [62]CHEN S Y,LI X Q,KAO C W,et al.Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction[J].AngewandteChemie International Edition,2022,61(32):2206233.

        Advances in the synthesis strategies of carbon?based single?atom catalysts and their electrochemical applications

        LIU Xijuna,b CHEN Mingyinga,MA Junjiea,LIANG Jingqia,LI Chunshenga,CHEN Congjina,HE Huibinga

        a.School of Chemistry and Chemical Engineering,b.School of Resources,Environment and Materials,Guangxi University,Nanning 530001,China

        Abstract

        Significance To address global challenges such as environmental pollution and energy crisis,there is an urgent need for a new and highly efficient energy-saving catalyst that can effectively respond to energy and environmental challenges as well as improve economic efficiency.In recent years,single-atom catalysts(SACs)have attracted significant attention due to their ultra-high electrocatalytic efficiency.Carbon-based SACs,in particular,are considered promising new electrocatalytic materials due to their tunable structures,ordered pore arrangements,high atom utilization,good electrical conductivity,high porosity,large spe?cific surface area,and excellent stability.These features make them particularly suitable for addressing the pressing energy and environmental issues in China.

        Progress In recent years,various synthesis techniques for carbon-based SACs have been extensively explored,including ther?mal decomposition,wet chemistry,electrochemical reduction,in situ synthesis and ball milling.Among these,the thermal decomposition method is noted for its simplicity in operation and high yield;the wet chemical method is prized for its high prod?uct purity,controllable structure and high catalyst activity;electrochemical deposition method offers simplicity in operation,suitable for large-scale production and has high catalyst activity;in-situ synthesis allows for controllable structure and morphol?ogy;and the ball milling method has a fast reaction speed,low energy consumption,and uniform product dispersion.In short,each method has its own merits and can be selected based on specific reaction conditions and requirements.In addition,the advancements in the application of carbon-based SACs in various electrochemical reactions,including oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),nitrogen reduction reaction(NRR),and car?bon dioxide reduction reaction(CO2RR),are summarized.Taking ORR as an example,studies have shown that carbon-based SACs can effectively improve the activity and selectivity of ORR,while also greatly improving its industrial prospects due to their ultra-high atom utilization rate and excellent electrical conductivity.These catalysts also exhibit robust performance in HER,OER,NRR,and CO2RR.Furthermore,carbon-based SACs have many superior properties,including high specific surface area,controllable active sites,and good electron transport properties.These advantages give theman edge over many challenges faced by conventional catalysts and lay a solid foundation for their wide application in electrocatalysis.

        Conclusions and Prospects Carbon-based SACs will play a pivotal role in the future of energy and environmental protection.Ongoing research aims to further optimize and improve the synthesis process and performance characteristics of these materials for broader application in production.With their unique properties,carbon-based SACs are ideal candidates for a variety of applications requiring high performance and sustainability.As the field evolves,these catalysts are expected not only torevolu?tionize the field of energy catalysis,but also to significantly contribute to environmental protection efforts.Their ability to store and convert energy efficiently,while also being recyclable and environmentally friendly,makes them key players in the green revolution.Carbon-based SACs,as a new type of highly efficient electrocatalysts with high activity,high selectivity and high sta?bility,have a promising future in the field of catalysis.They are particularly significant for mitigating the greenhouse effect,addressing the energy crisis,and promoting sustainable development through optimal atomic and resource utilization.In the future,carbon-based SACs are expected to find broader application in the following aspects.

        Optimization of synthesis methods:With the continuous development in synthesis technologies,the synthesis methods of carbon-based SACs will be simpler,more efficient and controllable.Novel synthesis strategies may further improve the activity and stability of the catalysts,broadening their applications in various reactions.Diversified electrocatalytic applications:In addition to the well-researched oxygen reduction,hydrogen precipitation,and carbon dioxide reduction reactions,carbon-based SACs are also expected to impact other important electrocatalytic reactions,such as nitrogen reduction and organic electrocataly?sis.Future research will explore more possible application scenarios.

        Design and realization of multifunctional catalytic performance:Future research will focus on the design of carbon-based SACs with multifunctional performance,such as efficient catalysis of both oxygen reduction and hydrogen precipitation reac?tions.Such multifunctional catalysts can improve the efficiency of energy conversion and advance sustainable energy technologies.

        Composite applications with other materials:Future research will explore the composite applications of carbon-based SACs with other functional materials,such as metal-organic frameworks and carbon nanotubes.Such composites aim to leverage the strengths of each material to improve catalytic performance and stability.Overall,carbon-based SACs,as a promising new type of catalyst,have great potential for synthesis and electrocatalytic applications.Future research will continue to focus onoptimiz?ing synthesis methods,expanding application areas,designing catalysts with multifunctional properties,and exploring compos?ite applications with other materials,to promote the application of carbon-based SACs in the fields of environmental protection and energy transition.

        Keywords:carbon-based;single atom catalysts synthesize;electrochemical application

        (責(zé)任編輯:武秀娟)

        99久久久无码国产精品9| 久久免费看黄a级毛片| 高清偷自拍亚洲精品三区| 亚洲国产高清在线一区二区三区| 精品国产品欧美日产在线| 蜜桃av福利精品小视频| 性色视频加勒比在线观看| 无码一区二区三区亚洲人妻| 亚洲无毛片| 午夜香蕉av一区二区三区| 日韩亚洲无吗av一区二区| 亚洲裸男gv网站| 亚洲免费视频播放| 人妻尤物娇呻雪白丰挺| av影片在线免费观看| 精品乱码久久久久久久| 国产精品视频久久久久| 国产精品久久婷婷六月| 天堂av在线美女免费| 亚洲aⅴ在线无码播放毛片一线天 中国国语毛片免费观看视频 | 午夜精品久久久久久久无码| 无码夜色一区二区三区| 99久久久精品国产性黑人| 美女人妻中出日本人妻| 国产精品无码一本二本三本色| 亚洲AV无码资源在线观看| 中文字幕久久国产精品| 精品精品国产高清a毛片| 久久中文精品无码中文字幕| 久久99老妇伦国产熟女高清| 一区二区三区在线视频观看 | 精品国产成人av久久| 午夜精品一区二区三区的区别| 国产欧美曰韩一区二区三区| 久久久精品国产三级精品| 亚洲国产精品无码久久| 国产精在线| 青青草在线成人免费视频| 极品尤物一区二区三区| 国产女精品视频网站免费| 精品久久日产国产一区|