周雪婷 武凱凱 崔藍(lán)芳 張坤璽 白團(tuán)輝 史江莉 焦健 王苗苗 劉昱 趙玉潔 萬然 郝鵬博 鄭先波
DOI:10.13925/j.cnki.gsxb.20240046
摘??? 要:【目的】建立并優(yōu)化平邑甜茶(Malus hupehensis Rehd.)幼苗簡單、高效、快速的發(fā)根農(nóng)桿菌轉(zhuǎn)化體系。【方法】以不同苗齡的平邑甜茶幼苗為材料,使用攜帶GFP及GUS過表達(dá)質(zhì)粒的發(fā)根農(nóng)桿菌K599,通過注射法、活化菌液浸染及菌株涂抹方法侵染平邑甜茶根頸部誘導(dǎo)毛狀根,利用GFP熒光檢測、GFP蛋白印跡檢測、DNA檢測和GUS染色方法進(jìn)行轉(zhuǎn)基因株系驗(yàn)證,同時對成功轉(zhuǎn)化株系根、莖、葉組織的表達(dá)量進(jìn)行分析,檢測發(fā)根農(nóng)桿菌在轉(zhuǎn)化平邑甜茶株系中的遷移性?!窘Y(jié)果】不同苗齡平邑甜茶幼苗誘導(dǎo)毛狀根能力具有較大差異,其中三葉齡幼苗誘導(dǎo)毛狀根率最高,為96%,五葉齡幼苗最高的毛狀根誘導(dǎo)率為65%,以使用菌株涂抹方式轉(zhuǎn)化植株的毛狀根分布為最佳、毛狀根誘導(dǎo)率為最高。發(fā)根農(nóng)桿菌在成功轉(zhuǎn)化株系中存在隨機(jī)向地上部遷移的現(xiàn)象,并能夠整合目的基因至葉片葉柄及部分主葉脈基因組中,但在培養(yǎng)30 d時無法通過蛋白印跡方式在蛋白水平上檢測到蛋白信號。【結(jié)論】建立并優(yōu)化了簡單、高效的發(fā)根農(nóng)桿菌介導(dǎo)的平邑甜茶轉(zhuǎn)化體系,鑒定了發(fā)根農(nóng)桿菌在轉(zhuǎn)化株系中隨機(jī)向地上部遷移規(guī)律,為發(fā)根農(nóng)桿菌技術(shù)的進(jìn)一步利用提供理論依據(jù)。
關(guān)鍵詞:平邑甜茶;發(fā)根農(nóng)桿菌;轉(zhuǎn)化效率;遷移性
中圖分類號:S661.1?????????? 文獻(xiàn)標(biāo)志碼:A??????????? 文章編號:1009-9980(2024)05-0999-10
收稿日期:2024-01-23??????? 接受日期:2024-02-16
基金項(xiàng)目:河南省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(HARS-22-09-Z2)
作者簡介:周雪婷,在讀碩士研究生,研究方向?yàn)樘O果輕簡化栽培。E-mail:965481274@qq.com
*通信作者 Author for correspondence. E-mail:hao_pb@henau.edu.cn;E-mail:xbzheng@henau.edu.cn
果 樹 學(xué) 報 2024,41(5): 999-1008
Journal of Fruit Science
Construction and optimization of transformation system mediated by Agrobacterium rhizogenes in Malus hupehensis var. mengshanensis G. Z. Qian & W. H. Shao
ZHOU Xueting1, 2, WU Kaikai1, 2, CUI Lanfang1, 2, ZHANG Kunxi1, 2, BAI Tuanhui1, 2, SHI Jiangli1, 2, JIAO Jian1, 2, WANG Miaomiao1, 2, LIU Yu1, 2, ZHAO Yujie1, 2, WAN Ran1, 2, HAO Pengbo1, 2*, ZHENG Xianbo1, 2*
(1College of Horticulture, Henan Agricultural University, Zhengzhou 450046, Henan, China; 2International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046, Henan, China)
Abstract: 【Objective】 Using biotechnology to improve and innovate apple germplasm can further improve the production efficiency and quality of apple. The transformation method of Agrobacterium rhizogenes has the advantages of high transformation efficiency and simple operation steps, especially in the mining and functional verification of soil stress-related resistance genes. However, A. rhizogenes transformation system for apples is still time-consuming with complicated steps and low efficiency. Therefore, we established and optimized an efficient and rapid A. rhizogenes transformation system for Malus hupehensis var. mengshanensis G. Z. Qian & W. H. Shao seedlings. 【Methods】 The seedlings at different ages were used as materials, A. rhizogenes K599 carrying GFP and GUS overexpression plasmids was used to infect M. hupehensis var. mengshanensis rhizome by injection (a 2 mL sterile syringe was used to draw the strain resuspension and inject it at the rhizome of the the seedlings), activating bacteria solution infiltration method (the main root system at the rhizome of the seedlings was cut off, and then the seedlings were directly invaded 30 min in the activated bacteria solution) and strain smearing method (the main root system at the rhizome of the seedlings was cut off, and then the strains on the plate were collected by aseptic spreader and applied to the wounds of the seedlings), then the infected seedlings were planted in sterilized nutrient soil and kept in high humidity environment, co-cultured in dark for 2 days, and the hairy root induction was detected one month later. The lines with successfully induced hairy roots were selected and the DNA was extracted. In order to identify the effectiveness of the hairy roots of the genetic transformation lines, the GFP signal of the hairy roots was identified by portable fluorescent protein excitation light source and photographed. The hairy root DNA was further extracted, the GUS tag gene was cloned by PCR, and the GUS staining of the roots and leaves of the transformed lines were analyzed to identify whether the target gene was integrated into M. hupehensis var. mengshanensis root genome. 【Results】 The hairy root induction rate of the seedlings at different ages was induced by injection, and the rooting rate of seedlings at eight-leaf stage was 39%, and wilting death occurred in three-leaf stage seedlings after injection, and the overall hairy root induction rate was 35%. After excluding the dead lines, the hairy root induction rate was 67.9%, indicating that the hairy root induction ability of the three-leaf stage seedlings was high, but the overall hairy root induction rate was low due to weak growth. The activating bacteria solution infiltration method was used to infect the seedlings at different ages and it was found that there were differences in the hairy roots induction number. Among them, the hairy roots induction rate of the seedlings at the three-leaf stage was 84%, and the induction rates of the seedlings at the five-leaf stage and eight-leaf stage were 47% and 52.5%, respectively. Therefore, the seedlings at the three-leaf stage would be more suitable as transformation materials for the activating bacteria solution infiltration method. The hairy roots could be successfully induced in the seedlings at different ages, and the hairy roots induced by direct smearing of strains in three-leaf stage and eight-leaf stage were 96% and 60%, respectively. In addition, after comparing the hairy roots induced by the above ways, the roots induced by strain smearing method of the seedlings at the three-leaf stage were evenly distributed at the base of the stem segment, and the roots were more abundant, so the hairy root distribution and hairy root induction rate were the best. In order to identify the expression pattern of the target gene in A. rhizogenes transformed plants, the DNA of the roots, stems and leaves of transformed plants were extracted. Through the PCR cloning of GUS gene, it was found that there were GUS signals in the roots, stems and leaves. The GUS staining analysis of the transformed roots and leaves showed that there were GUS signals in the petiole and main leaf vein of some lines. The strains with GUS signal detected in the leaves were selected as material, and the expression of GUS in the root, stem and leaf samples was detected. The results showed that weak expression of the GUS gene was detected in the stems and leaves. Then the total proteins of the roots and leaves were further extracted. Western blotting showed that the expression of the GFP protein was detected in the roots of transformed positive lines, but no obvious expression of GFP fluorescent protein was detected in leaves. The above results showed that in the transgenic lines obtained by A. rhizogenes transformation, A. rhizogenes migrated randomly to the shoot through vascular tissue. 【Conclusion】 A rapid, simple and efficient apple transformation system mediated by A. rhizogenes K599 was established in this study. Seedling age is the key factor affecting the transformation efficiency of the seedlings infected by A. rhizogenes. Using strain smearing method to infect three-leaf seedlings, the positive hairy root plants with high uniformity could be obtained in about 45 days, and the induction rate is as high as 96%. The migration of A. rhizogenes in transformed plants was explored to provide a theoretical basis for the further utilization of A. rhizogenes transformation technology.
Key words: Malus hupehensis var. mengshanensis G. Z. Qian & W. H. Shao; Agrobacterium rhizogenes; Transformation efficiency; Mobility
蘋果(Malus domestica)屬于雙子葉薔薇科植物,是世界上廣泛栽培的水果之一。中國蘋果栽培面積及產(chǎn)量均居世界首位,蘋果產(chǎn)業(yè)在中國農(nóng)村經(jīng)濟(jì)振興、促進(jìn)農(nóng)民增收和出口創(chuàng)匯中發(fā)揮著重要的作用[1]。利用現(xiàn)代分子生物學(xué)技術(shù)開展蘋果種質(zhì)改良與創(chuàng)新,能夠進(jìn)一步提高蘋果生產(chǎn)效率及品質(zhì)[2]。建立穩(wěn)定的蘋果遺傳轉(zhuǎn)化體系是關(guān)鍵基因發(fā)掘及功能驗(yàn)證的必要條件之一,目前主要通過根癌農(nóng)桿菌轉(zhuǎn)化法、發(fā)根農(nóng)桿菌轉(zhuǎn)化法實(shí)現(xiàn)[3]。根癌農(nóng)桿菌轉(zhuǎn)化方法具有表達(dá)穩(wěn)定等優(yōu)點(diǎn),但其依賴于組培無菌條件下進(jìn)行,操作過程繁瑣,轉(zhuǎn)化周期長、成本高[4-6]。發(fā)根農(nóng)桿菌轉(zhuǎn)化方法相比根癌農(nóng)桿菌轉(zhuǎn)化法具有轉(zhuǎn)化效率高、操作步驟簡單、用時短等優(yōu)點(diǎn),尤其在土壤逆境相關(guān)抗性基因的挖掘及功能驗(yàn)證中發(fā)揮重要作用[7-9]。因此建立一個簡單、快速、高效的蘋果發(fā)根農(nóng)桿菌轉(zhuǎn)化體系具有重要的意義。
發(fā)根農(nóng)桿菌(Agrobacterium rhizogenes)屬于根瘤菌科農(nóng)桿菌屬,是一種侵染性強(qiáng)的好氧型革蘭氏陰性細(xì)菌,具有感染大多數(shù)雙子葉植物能力,其攜帶Ri質(zhì)粒中T-DNA片段在完成侵染植物后可整合至植物基因組中,從而誘導(dǎo)植物形成毛狀根(hairy root)[10-11]。毛狀根是具有分枝多、生長快、遺傳特性穩(wěn)定等特性的不定根[12],通常用來進(jìn)行植株基因過表達(dá)、基因沉默和基因編輯等[13-15]。發(fā)根農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化技術(shù)在草本植物如甘薯[16]、大豆[17]、菠菜[18]、花生[19]、大白菜[20-21]中運(yùn)用較為普遍,而在部分木本植物中仍存在轉(zhuǎn)化率低的問題。隨著發(fā)根農(nóng)桿菌轉(zhuǎn)化技術(shù)的不斷進(jìn)步,目前在核桃[22]、蘋果[2,23]、梨[24]、茶樹[11]、光皮樺[25]、銀杏樹和桉樹[26]等材料研究中的研究結(jié)果表明,使用不同方法進(jìn)行發(fā)根農(nóng)桿菌侵染毛狀根誘導(dǎo)率存在較大差異,木本植物毛狀根的誘導(dǎo)率為2%~88.3%[27-28]。
目前蘋果中常規(guī)的發(fā)根農(nóng)桿菌轉(zhuǎn)化體系以注射方法為主[9,13,29],對蘋果幼苗進(jìn)行發(fā)根農(nóng)桿菌侵染雖具有一定的毛狀根誘導(dǎo)效率,但在注射實(shí)際操作過程中仍存在效率低下問題,例如幼苗注射后難以存活,大苗注射后毛狀根誘導(dǎo)率較低,同時也因物理損傷及后期剪斷主根等操作極大地延長遺傳轉(zhuǎn)化時間。筆者在本研究中擬利用發(fā)根農(nóng)桿菌K599建立一種高效轉(zhuǎn)化體系,通過對不同苗齡材料及不同侵染方法的發(fā)根率統(tǒng)計(jì),篩選蘋果砧木平邑甜茶(Malus hupehensis var. mengshanensis G. Z. Qian & W. H. Shao)發(fā)根農(nóng)桿菌轉(zhuǎn)化效率高、操作簡單、用時較短的轉(zhuǎn)化方法;此外鑒定發(fā)根農(nóng)桿菌K599在轉(zhuǎn)化株系中的遷移性,以期為平邑甜茶中基因功能的分析提供更為有效、便捷的方法,同時為發(fā)根農(nóng)桿菌技術(shù)的進(jìn)一步利用提供理論依據(jù)。
1 材料和方法
1.1 植物材料
以平邑甜茶(具有無融合生殖特性)實(shí)生苗為試驗(yàn)材料。幼苗培養(yǎng)于光照時間16 h·d-1、光照度100 μmol·m-2·s-1、(25±2) ℃的苗木培養(yǎng)室。發(fā)根農(nóng)桿菌K599感受態(tài)購自北京莊盟國際生物基因科技有限公司。用于遺傳轉(zhuǎn)化載體基于pCAMBIA1305載體骨架改造,同時攜帶β-葡萄糖苷酸酶基因(β-glucuronidase,GUS)及綠色熒光蛋白基因(green fluorescent protein,GFP),由西北農(nóng)林科技大學(xué)園藝學(xué)院李征教授惠贈。
1.2 試驗(yàn)方法
1.2.1 催芽與播種 將平邑甜茶種子用紗布包裹好,放置于水龍頭下沖洗1 d,將沖洗后的種子同滅菌后粗砂混合后置于玻璃皿中,隨后放置于4 ℃冰箱,每隔3 d檢查粗砂濕度,挑除發(fā)霉種子。待種子萌發(fā)露白后直接播種在裝有滅菌基質(zhì)(草炭∶蛭石∶珍珠巖=3∶1∶1,體積比)穴盤中,噴水覆膜后放置于苗木培養(yǎng)室中培養(yǎng)。幼苗生長至三葉齡(木質(zhì)化程度較低)、五葉齡(木質(zhì)化程度增加)、八葉齡(木質(zhì)化程度高)時用于后續(xù)侵染試驗(yàn)。
1.2.2 發(fā)根農(nóng)桿菌轉(zhuǎn)化 從-80 ℃冰箱中取出發(fā)根農(nóng)桿菌K599感受態(tài)迅速置于冰上融化,每100 ?L感受態(tài)加入1 ?g載體質(zhì)粒,緩慢吹打混勻后分別在冰上靜置5 min、液氮中5 min、37 ℃水浴鍋中5 min,冰上靜置5 min。隨后加入500 ?L TY培養(yǎng)液,置于28 ℃恒溫?fù)u床中震蕩培養(yǎng)2 h后,均勻涂布于含50 mg·L-1鏈霉素、50 mg·L-1卡那霉素的固體TY培養(yǎng)基,28 ℃倒置培養(yǎng)2 d。挑取單克隆接種于600 ?L含鏈霉素和卡那霉素的液體LB培養(yǎng)基中,28 ℃ 200 r·min-1振蕩培養(yǎng)過夜。菌液經(jīng)PCR鑒定后進(jìn)行50%甘油保菌,保存于-80 ℃冰箱備用。
1.2.3 菌株活化與侵染液的制備 將-80 ℃冰箱保存的菌株在TY固體培養(yǎng)基上均勻涂布后倒置活化培養(yǎng)2 d,用無菌的槍頭挑取單菌落接種于500 μL TY液體培養(yǎng)基中,28 ℃、200 r·min-1 振蕩培養(yǎng)12 h,吸取100 μL活化的菌液接種于100 mL TY液體培養(yǎng)基中繼續(xù)過夜振蕩培養(yǎng),待菌液OD600值為0.8時,集菌后重懸于MES緩沖液,靜止3 h后進(jìn)行注射。
1.2.4 毛狀根誘導(dǎo) 注射法侵染:利用2 mL無菌注射器吸取陽性菌株重懸液,注射于平邑甜茶幼苗根頸處。
菌液浸染法:在平邑甜茶幼苗根頸處將主根系剪除,隨后直接浸入活化菌液中,浸入深度3 cm左右,浸染時間30 min。
菌株涂抹法:在平邑甜茶幼苗根頸處將主根系剪除,利用無菌涂布器將平板上的菌株收集起來,涂抹于平邑甜茶幼苗剪口處。
侵染后把幼苗移栽到基質(zhì)中,使用基質(zhì)覆蓋侵染部位,隨后蓋上育苗盤透明保濕罩,在黑暗條件下共培養(yǎng)2 d。共培養(yǎng)結(jié)束后轉(zhuǎn)移至正常光照條件下培養(yǎng),注意通過定期噴水保濕,而不是通過托盤中大量澆水保濕。培養(yǎng)30 d后統(tǒng)計(jì)成功誘導(dǎo)出毛狀根的株數(shù),計(jì)算誘導(dǎo)率。
1.2.5 毛狀根和轉(zhuǎn)基因根的鑒定及統(tǒng)計(jì)分析 為了鑒定平邑甜茶遺傳轉(zhuǎn)化株系毛狀根有效性,使用便攜式熒光蛋白激發(fā)光源(LUYOR-3415,美國)鑒定誘導(dǎo)出毛狀根GFP信號并拍照。為了鑒定目的基因是否整合到平邑甜茶根系基因組中,進(jìn)一步提取毛狀根DNA,通過PCR克隆GUS標(biāo)簽基因,有目的條帶的即為陽性(引物見表1)。采取成功轉(zhuǎn)化株系根系及葉片進(jìn)行GUS染色,采用北京華越洋生物科技有限公司GUS染色試劑盒(CAT:GT0391),染色方法見試劑盒說明書。提取轉(zhuǎn)化株系根和葉的RNA,反轉(zhuǎn)錄后進(jìn)行GUS基因表達(dá)量分析,相關(guān)引物見表1。選取3株陽性轉(zhuǎn)化株系的根和葉片進(jìn)行蛋白印跡分析,平邑甜茶根葉組織總蛋白提取采用碧云天植物Western及IP細(xì)胞裂解液(P0043)提取,蛋白印跡檢測一抗為Biolinkedin@ Anti-GFP 鼠單克隆抗體(L-MAb06),二抗為SIGMA-ALDRICH 公司抗小鼠IgG(Fc特異性,CAT: A1418),采用北京莊盟國際生物基因科技有限公司堿性磷酸酶底物顯色試劑盒(CAT: ZD315)進(jìn)行顯色,具體操作步驟見試劑盒說明書。
1.2.6 數(shù)據(jù)統(tǒng)計(jì)與分析 采用 Excel 記錄試驗(yàn)數(shù)據(jù),運(yùn)用Prism8.0進(jìn)行數(shù)據(jù)分析,使用Adobe illustrator作圖。
2 結(jié)果與分析
2.1 平邑甜茶注射法發(fā)根農(nóng)桿菌侵染體系建立
選取三葉齡、八葉齡的平邑甜茶幼苗為材料,進(jìn)行注射法進(jìn)行侵染(圖1-A)。在培養(yǎng)30 d后統(tǒng)計(jì)發(fā)現(xiàn),以八葉齡幼苗為材料的毛狀根誘導(dǎo)率為39%(表2),以三葉齡幼苗侵染材料的毛狀根誘導(dǎo)率為35%,需要注意的是在注射后3 d左右發(fā)現(xiàn)三葉齡平邑甜茶幼苗不斷萎蔫(圖1-B),經(jīng)觀察為注射創(chuàng)傷較大導(dǎo)致傷口潰爛,進(jìn)而引起植株萎蔫死亡,在去除萎蔫株系后生根率為67.9%。對發(fā)根農(nóng)桿菌誘導(dǎo)出的毛狀根進(jìn)行熒光檢測,發(fā)現(xiàn)所有毛狀根均具有GFP熒光。綜合以上結(jié)果表明,利用注射法進(jìn)行發(fā)根農(nóng)桿菌轉(zhuǎn)化時,總體上以八葉齡幼苗為材料要優(yōu)于三葉齡幼苗,而拋除萎蔫死亡株系后,三葉齡幼苗誘導(dǎo)毛狀根能力更強(qiáng)。此外,注射法轉(zhuǎn)化株系,剪去主根后毛狀根通常分布在注射孔一側(cè)(圖1-C、D、E)。
2.2 不同苗齡對平邑甜茶毛狀根誘導(dǎo)率的影響
蘋果幼苗注射法存在轉(zhuǎn)化效率整體較低、操作步驟繁瑣、用時較長等問題。近幾年隨著發(fā)根農(nóng)桿菌技術(shù)的不斷發(fā)展,發(fā)現(xiàn)使用幼嫩植株直接浸泡菌液或刮取細(xì)菌菌株涂抹方法可以更為簡單、快速、高效地獲得轉(zhuǎn)基因株系[28,30-31]。為了縮短遺傳轉(zhuǎn)化時間,簡化操作步驟,接下來分別采用菌液浸染法和菌株涂抹法對平邑甜茶發(fā)根農(nóng)桿菌遺傳轉(zhuǎn)化體系進(jìn)行優(yōu)化。選取三葉齡、五葉齡、八葉齡平邑甜茶幼苗為材料,使用菌液浸染法轉(zhuǎn)化后培養(yǎng)30 d,對毛狀根誘導(dǎo)株數(shù)進(jìn)行統(tǒng)計(jì)(圖2)。
結(jié)果表明,不同苗齡平邑甜茶的毛狀根的誘導(dǎo)數(shù)存在差異,三葉齡平邑甜茶苗的毛狀根誘導(dǎo)率最高,為84%,五葉齡、八葉齡平邑甜茶幼苗的誘導(dǎo)率分別為47%、52.5%,因此三葉齡平邑甜茶苗更適宜作為菌液浸染法的轉(zhuǎn)化材料(表3)。為了進(jìn)一步優(yōu)化毛狀根誘導(dǎo)流程,選取三葉齡、八葉齡平邑甜茶幼苗為材料,使用菌株涂抹法進(jìn)行侵染后扦插于穴盤中培養(yǎng)30 d,毛狀根誘導(dǎo)率統(tǒng)計(jì)結(jié)果表明,不同苗齡平邑甜茶苗都能成功誘導(dǎo)毛狀根,其中三葉齡直接涂抹菌株處理毛狀根誘導(dǎo)率為96%,八葉齡毛狀根誘導(dǎo)率為60%(表3)。此外對比以上途徑誘導(dǎo)出的毛狀根后,發(fā)現(xiàn)三葉齡平邑甜茶苗菌株涂抹所誘導(dǎo)出根系均勻分布于莖段基部,其根系更為豐富,且同一批轉(zhuǎn)化幼苗整齊度較高(圖3)。通過GFP熒光觀察發(fā)現(xiàn)毛狀根系均有熒光信號。除此之外,對比毛狀根誘導(dǎo)率較高的轉(zhuǎn)化方法后發(fā)現(xiàn),從種植幼苗開始算起注射法整個轉(zhuǎn)化周期要60~90 d才能獲取轉(zhuǎn)基因株系,而以三葉齡平邑甜茶幼苗為材料采用菌株涂抹法可以將轉(zhuǎn)基因株系獲取時間縮短至45 d,并且擁有更高的毛狀根發(fā)根整齊度及根系結(jié)構(gòu)(圖3)。綜合以上結(jié)果表明,選擇三葉齡平邑甜茶幼苗作為轉(zhuǎn)化材料,采用菌株涂抹方式去侵染可以較快、簡單、高效地獲得整齊度高的轉(zhuǎn)化株系。
2.3 平邑甜茶發(fā)根農(nóng)桿菌轉(zhuǎn)化植株的鑒定
對平邑甜茶遺傳轉(zhuǎn)化株系毛狀根進(jìn)行熒光檢測,結(jié)果表明,所有成功誘導(dǎo)出的毛狀根系均有綠色熒光信號(圖4-A)。為了鑒定目的基因是否整合到平邑甜茶根系基因組中,從不同組合中隨機(jī)選取3株轉(zhuǎn)化植株,進(jìn)一步提取毛狀根DNA,通過PCR克隆GUS標(biāo)簽基因后發(fā)現(xiàn),所有毛狀根均有陽性信號(圖4-B)。
2.4 發(fā)根農(nóng)桿菌在植株中遷移特性分析
為了鑒定發(fā)根農(nóng)桿菌在轉(zhuǎn)化植株中的遷移性,對轉(zhuǎn)化植株根、莖和葉組織DNA中GUS基因進(jìn)行克隆,發(fā)現(xiàn)根、莖和葉中均有GUS的信號(圖5-A)。對轉(zhuǎn)化根系進(jìn)行根和葉的GUS染色分析,發(fā)現(xiàn)部分株系葉片葉柄、主葉脈中有GUS信號(圖5-B)。進(jìn)一步對葉片中檢測到GUS信號株系的根、莖、葉樣品中GUS表達(dá)量進(jìn)行檢測,結(jié)果表明在莖段和葉片中均檢測到GUS基因的微弱表達(dá)(圖5-C)。隨后對轉(zhuǎn)化陽性株系根和葉片的總蛋白GFP蛋白印跡檢測發(fā)現(xiàn),根系中檢測到GFP蛋白表達(dá),而葉片中并未檢測到GFP熒光蛋白表達(dá)(圖5-D)。綜合以上結(jié)果表明,使用發(fā)根農(nóng)桿菌遺傳轉(zhuǎn)化技術(shù)獲得株系中,發(fā)根農(nóng)桿菌存在隨機(jī)通過脈管組織向地上部遷移的現(xiàn)象。
3 討 論
植物轉(zhuǎn)基因技術(shù)廣泛應(yīng)用于植物種質(zhì)改良,也是鑒定基因功能的關(guān)鍵技術(shù)[7,12,32]。然而對于木本植物,基于根癌農(nóng)桿菌穩(wěn)定轉(zhuǎn)化體系存在著費(fèi)時、操作繁瑣等問題,不能快速獲得轉(zhuǎn)化植株進(jìn)行功能驗(yàn)證[5,33]。而發(fā)根農(nóng)桿菌遺傳轉(zhuǎn)化體系的建立能夠快速得到具備穩(wěn)定轉(zhuǎn)化的根系,從而快速進(jìn)行一些基因功能的驗(yàn)證,尤其在土傳病害抗性基因的挖掘與營養(yǎng)元素高效吸收相關(guān)基因的鑒定方面[3,34-35]。例如使用發(fā)根農(nóng)桿菌轉(zhuǎn)化技術(shù)在蘋果幼苗中過表達(dá)MdNRT2.4可以顯著提高對低氮的耐受性[10],過表達(dá)MdWRKY75可增強(qiáng)蘋果根系對F. solani的抗性[7],過表達(dá)CHS促進(jìn)了類黃酮的積累和對氮的吸收[30]。然而目前蘋果發(fā)根農(nóng)桿菌體系往往需要60~90 d才能獲得轉(zhuǎn)基因植物。此外在毛狀根誘導(dǎo)的過程中,如注射法,采用木質(zhì)化程度較低的三葉齡幼苗進(jìn)行注射時很容易將莖段刺穿從而導(dǎo)致幼苗萎蔫死亡,采用木質(zhì)化程度較高的八葉齡平邑甜茶幼苗注射法存在毛狀根誘導(dǎo)率較低、根系分布不均勻等問題。隨著植物發(fā)根農(nóng)桿菌轉(zhuǎn)化方法的不斷改進(jìn),直接浸泡菌液或刮取細(xì)菌菌株涂抹方法被證明是具有更為快速、簡單、高效等優(yōu)點(diǎn)的轉(zhuǎn)化方法[28,31,36]。筆者在本研究中使用菌液直接浸泡法和涂抹菌株法對不同苗齡平邑甜茶幼苗進(jìn)行侵染,結(jié)果表明,以菌液涂抹法毛狀根誘導(dǎo)率最高(96%)。通過GFP熒光觀察和PCR分析發(fā)現(xiàn),采用菌株涂抹法誘導(dǎo)毛狀根根系均具有轉(zhuǎn)化陽性信號,該結(jié)果與先前在山丁子中得到的結(jié)果相似[23]。本研究中首次使用菌株涂抹法對木質(zhì)化程度較低的三葉齡平邑甜茶幼苗進(jìn)行侵染,對比傳統(tǒng)注射法可將轉(zhuǎn)化周期由60~90 d縮短至45 d,轉(zhuǎn)化率相比傳統(tǒng)注射法明顯增高,并且已達(dá)到相同方法在草本植物的轉(zhuǎn)化率水平[37],同時擁有更好的毛狀根發(fā)根整齊度及根系結(jié)構(gòu)。
先前報道表明,農(nóng)桿菌在植株中具有一定的遷移性,通過發(fā)根農(nóng)桿菌轉(zhuǎn)化株系通常會引起煙草葉片卷曲等表型,在通常情況下是無害的[10],柑橘發(fā)根農(nóng)桿菌轉(zhuǎn)化株系中也發(fā)現(xiàn)農(nóng)桿菌從根系到莖中的轉(zhuǎn)移[38],但目前發(fā)根農(nóng)桿菌在植株中遷移及轉(zhuǎn)化規(guī)律尚不明確。為了探明在發(fā)根農(nóng)桿菌在蘋果植株中的遷移性,對成功轉(zhuǎn)化植株根、葉樣品進(jìn)行檢測,發(fā)現(xiàn)在平邑甜茶中存在著隨機(jī)向上遷移的現(xiàn)象,然而這種傳遞僅在葉柄及部分主葉脈處有表達(dá),對整個葉片進(jìn)行蛋白水平上檢測并未檢出明顯陽性信號,可能是培養(yǎng)時間較短導(dǎo)致表達(dá)量較低,或者表達(dá)部位僅局限在葉柄和部分葉脈所致。以上結(jié)果可為蘋果發(fā)根農(nóng)桿菌轉(zhuǎn)化體系的應(yīng)用提供理論基礎(chǔ),例如在鑒定根、莖、葉間長距離傳遞信號中存在一定的假陽性,需要通過增加空載質(zhì)粒轉(zhuǎn)化株系的數(shù)量來驗(yàn)證目的傳遞基因及蛋白信號的可信度。
4 結(jié) 論
筆者在本研究中建立了快速、簡單、高效的發(fā)根農(nóng)桿菌K599介導(dǎo)的平邑甜茶轉(zhuǎn)化體系。利用菌株涂抹法侵染三葉齡幼苗,可在45 d左右獲得整齊度較高的陽性毛狀根植株,誘導(dǎo)率高達(dá)96%。驗(yàn)證了發(fā)根農(nóng)桿菌在轉(zhuǎn)化植株內(nèi)隨機(jī)向地上部遷移的現(xiàn)象。
參考文獻(xiàn)References:
[1]?? 王憶,楊曉光,謝紅江,王春良,王繼勛,張建軍,郝淑英,馬鈞,于文全,張宏,高建國,韓振海. 基于品質(zhì)和效益的我國蘋果栽培新區(qū)區(qū)劃初見[J]. 中國果樹,2022(11):1-5.
WANG Yi,YANG Xiaoguang,XIE Hongjiang,WANG Chunliang,WANG Jixun,ZHANG Jianjun,HAO Shuying,MA Jun,YU Wenquan,ZHANG Hong,GAO Jianguo,HAN Zhenhai. Preliminary views of regional plantation for apple production in China referred to fruit quality and orchard income[J]. China Fruits,2022(11):1-5.
[2]?? 武姣,孔瑾,王憶,韓振海,許雪峰. 發(fā)根農(nóng)桿菌介導(dǎo)山定子遺傳轉(zhuǎn)化及發(fā)根再生植株[J]. 園藝學(xué)報,2008,35(7):959-966.
WU Jiao,KONG Jin,WANG Yi,HAN Zhenhai,XU Xuefeng. Agrobacterium rhizogenes-mediated transformation and hairy root regeneration of Malus baccata (L.) Borkh.[J]. Acta Horticulturae Sinica,2008,35(7):959-966.
[3]?? 王玉珠. 發(fā)根農(nóng)桿菌介導(dǎo)蘋果毛狀根遺傳轉(zhuǎn)化體系的建立[D]. 楊凌:西北農(nóng)林科技大學(xué),2023.
WANG Yuzhu. Establishment of Agrobacterium rhizogenes mediated hairy root genetic transformation system in Malus domestica[D]. Yangling:Northwest A & F University,2023.
[4]?? WANG S J,WANG G,LI H L,LI F,WANG J B. Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in ‘Feizixiao litchi[J]. Horticultural Plant Journal,2023,9(5):947-957.
[5]?? 王憶. 蘋果再生體系建立與MxIrt1基因功能的初步研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2005.
WANG Yi. The establishment of apple regeneration system and functional characterization of MxIrt1 gene[D]. Beijing:China Agricultural University,2005.
[6]?? 秦玲. 蘋果(Malus domestica Borkh.)遺傳轉(zhuǎn)化體系的建立及ipt基因的導(dǎo)入[D]. 楊凌:西北農(nóng)林科技大學(xué),2002.
QIN Ling. Establishment of the genetic transformation system and transferring ipt genes into apple (Malus domestica Borkh.)[D]. Yangling:Northwest A & F University,2002.
[7]?? LIU Y S,LIU Q W,LI X W,ZHANG Z J,AI S K,LIU C,MA F W,LI C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63[J]. Plant Physiology,2023,192(3):2015-2029.
[8]?? CHAI X F,WANG X N,PI Y,WU T,ZHANG X Z,XU X F,HAN Z H,WANG Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks[J]. Journal of Experimental Botany,2022,73(18):6490-6504.
[9]?? SMOLKA A,LI X Y,HEIKELT C,WELANDER M,ZHU L H. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple[J]. Transgenic Research,2010,19(6):933-948.
[10] TEPFER D. Transformation of several species of higher plants by Agrobacterium rhizogenes:Sexual transmission of the transformed genotype and phenotype[J]. Cell,1984,37(3):959-967.
[11] ALAGARSAMY K,SHAMALA L F,WEI S. Protocol:High-efficiency in- planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis[J]. Plant Methods,2018,14:17.
[12] STANI?I? M,?OSI? T,SAVI? J,KRSTI?-MILO?EVI? D,MI?I? D,SMIGOCKI A,NINKOVI? S,BANJAC N. Hairy root culture as a valuable tool for allelopathic studies in apple[J]. Tree Physiology,2019,39(5):888-905.
[13] 張?jiān)聠?,葛潔,田樹娟,袁? 利用發(fā)根農(nóng)桿菌體系檢測西瓜CRISPR/Cas9系統(tǒng)的靶位點(diǎn)[J]. 中國瓜菜,2020,33(4):7-11.
ZHANG Yueqiao,GE Jie,TIAN Shujuan,YUAN Li. Detection of target sites of CRISPR/Cas9 system in watermelon by Agrobacterium rhizogenes system[J]. China Cucurbits and Vegetables,2020,33(4):7-11.
[14] HU Q Y,DONG J H,YING J L,WANG Y,XU L,MA Y B,WANG L,LI J X,LIU L W. Functional analysis of RsWUSb with Agrobacterium-mediated in planta transformation in radish (Raphanus sativus L.)[J]. Scientia Horticulturae,2024,323:112504.
[15] QIN T J,WANG S,YI X F,YING J L,DONG J H,YAO S Q,NI M,LIU L W,XU L,WANG Y. Development of a fast and efficient root transgenic system for exploring the function of RsMYB90 involved in the anthocyanin biosynthesis of radish[J]. Scientia Horticulturae,2024,323:112490.
[16] 陶娜,李茂興,郭華春. 發(fā)根農(nóng)桿菌介導(dǎo)的甘薯遺傳轉(zhuǎn)化體系優(yōu)化[J]. 生物技術(shù)通報,2023,39(10):175-183.
TAO Na,LI Maoxing,GUO Huachun. Optimization of sweet potato genetic transformation system mediated by Agrobacterium rhizogenes[J]. Biotechnology Bulletin,2023,39(10):175-183.
[17] CHENG Y Y,WANG X L,CAO L,JI J,LIU T F,DUAN K X. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean[J]. Plant Methods,2021,17(1):73.
[18] 徐悅,曹英萍,王玉,付春祥,戴紹軍. 發(fā)根農(nóng)桿菌介導(dǎo)的菠菜毛狀根遺傳轉(zhuǎn)化體系的建立[J]. 植物學(xué)報,2019,54(4):515-521.
XU Yue,CAO Yingping,WANG Yu,F(xiàn)U Chunxiang,DAI Shaojun. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea[J]. Chinese Bulletin of Botany,2019,54(4):515-521.
[19] SHARMA K K,ANJAIAH V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation[J]. Plant Science,2000,159(1):7-19.
[20] WANG H Y,ZHENG Y S,ZHOU Q,LI Y,LIU T K,HOU X L. Fast,simple,efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots[J/OL]. Horticultural Plant Journal,[2023-11-13]. https://doi.org/10.1016/j.hpj.2023.03.018.
[21] LI X N,LI H Y,ZHAO Y Z,ZONG P X,ZHAN Z X,PIAO Z Y. Establishment of A simple and efficient Agrobacterium-mediated genetic transformation system to Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. Horticultural Plant Journal,2021,7(2):117-128.
[22] 謝曉婷,黃巧宇,溫廣超,袁虎威,何漪,閆道良,黃堅(jiān)欽,王曉飛,鄭炳松. 非組培依賴的發(fā)根農(nóng)桿菌介導(dǎo)的薄殼山核桃轉(zhuǎn)化體系構(gòu)建[J]. 果樹學(xué)報,2022,39(1):131-140.
XIE Xiaoting,HUANG Qiaoyu,WEN Guangchao,YUAN Huwei,HE Yi,YAN Daoliang,HUANG Jianqin,WANG Xiaofei,ZHENG Bingsong. Construction of Agrobacterium rhizogenes-mediated transformation system of Carya illinoinensis without dependence on tissue culture[J]. Journal of Fruit Science,2022,39(1):131-140.
[23] WU J,WANG Y,ZHANG L X,ZHANG X Z,KONG J,LU J,HAN Z H. High-efficiency regeneration of Agrobacterium rhizogenes-induced hairy root in apple rootstock Malus baccata (L.) Borkh.[J]. Plant Cell,Tissue and Organ Culture,2012,111(2):183-189.
[24] XIAO Y X,ZHANG S C,LIU Y,CHEN Y,ZHAI R,YANG C Q,WANG Z G,MA F W,XU L F. Efficient Agrobacterium-mediated genetic transformation using cotyledons,hypocotyls and roots of ‘Duli (Pyrus betulifolia Bunge)[J]. Scientia Horticulturae,2022,296:110906.
[25] 劉雪羽,杜笑雪,陳思源,胡現(xiàn)鉻,黃華宏,童再康. 發(fā)根農(nóng)桿菌介導(dǎo)的光皮樺毛狀根高頻誘導(dǎo)體系及遺傳轉(zhuǎn)化[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報,2021,29(3):495-505.
LIU Xueyu,DU Xiaoxue,CHEN Siyuan,HU Xiange,HUANG Huahong,TONG Zaikang. Agrobacterium rhizogenes mediated high frequency hairy root induction system and genetic transformation in Betula luminifera[J]. Journal of Agricultural Biotechnology,2021,29(3):495-505.
[26] 羅萍,張昊楠,徐建民,胡冰,王曉萍,李光友,范春節(jié). 發(fā)根農(nóng)桿菌介導(dǎo)的尾巨桉遺傳轉(zhuǎn)化體系的建立[J]. 植物研究,2022,42(3):512-520.
LUO Ping,ZHANG Haonan,XU Jianmin,HU Bing,WANG Xiaoping,LI Guangyou,F(xiàn)AN Chunjie. Establishment of Agrobacterium rhizogenes-mediated genetic transformation system of Eucalyptus urophylla × E. grandis[J]. Bulletin of Botanical Research,2022,42(3):512-520.
[27] MENG D,YANG Q,DONG B Y,SONG Z H,NIU L L,WANG L T,CAO H Y,LI H H,F(xiàn)U Y J. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants[J]. Plant Biotechnology Journal,2019,17(9):1804-1813.
[28] YING W,WEN G C,XU W Y,LIU H X,DING W N,ZHENG L Q,HE Y,YUAN H W,YAN D L,CUI F Q,HUANG J Q,ZHENG B S,WANG X F. Agrobacterium rhizogenes:Paving the road to research and breeding for woody plants[J]. Frontiers in Plant Science,2023,14:1196561.
[29] YAMASHITA H,DAIMON H,AKASAKA-KENNEDY Y,MASUDA T. Plant regeneration from hairy roots of apple rootstock,Malus prunifolia Borkh. var. ringo Asami,strain Nagano No. 1,transformed by Agrobacterium rhizogenes[J]. Journal of the Japanese Society for Horticultural Science,2004,73(6):505-510.
[30] WANG X N,CHAI X F,GAO B B,DENG C,G?NTHER C S,WU T,ZHANG X Z,XU X F,HAN Z H,WANG Y. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock[J]. Plant Physiology,2023,191(2):1305-1323.
[31] FAN Y L,XU F L,ZHOU H Z,LIU X X,YANG X Y,WENG K X,SUN X L,LYU S H. A fast,simple,high efficient and one-step generation of composite cucumber plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation[J]. Plant Cell,Tissue and Organ Culture,2020,141(1):207-216.
[32] NUCCIO M L,WU J,MOWERS R,ZHOU H P,MEGHJI M,PRIMAVESI L F,PAUL M J,CHEN X,GAO Y,HAQUE E,BASU S S,LAGRIMINI L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nature Biotechnology,2015,33(8):862-869.
[33] LIU L F,GU Q S,IJAZ R,ZHANG J H,YE Z B. Generation of transgenic watermelon resistance to cucumber mosaic virus facilitated by an effective Agrobacterium-mediated transformation method[J]. Scientia Horticulturae,2016,205:32-38.
[34] XU S L,LAI E H,ZHAO L,CAI Y M,OGUTU C,CHERONO S,HAN Y P,ZHENG B B. Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach[J]. Scientific Reports,2020,10:2836.
[35] BAHRAMNEJAD B,NAJI M,BOSE R,JHA S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation[J]. Biotechnology Advances,2019,37(7):107405.
[36] FAN Y L,ZHANG X H,ZHONG L J,WANG X Y,JIN L S,LYU S H. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation[J]. BMC Plant Biology,2020,20(1):208.
[37] 王平勇,徐永陽,趙光偉,賀玉花,李明,孔維虎,張健,劉水苗,劉夢麗,徐志紅. 發(fā)根農(nóng)桿菌介導(dǎo)甜瓜轉(zhuǎn)基因過表達(dá)體系的建立[J]. 中國瓜菜,2019,32(12):15-18.
WANG Pingyong,XU Yongyang,ZHAO Guangwei,HE Yuhua,LI Ming,KONG Weihu,ZHANG Jian,LIU Shuimiao,LIU Mengli,XU Zhihong. Establishment of Agrobacterium rhizogenes-mediated gene overexpression system in melon[J]. China Cucurbits and Vegetables,2019,32(12):15-18.
[38] XIAO Y X,DUTT M,MA H J,XIAO C,TONG Z,WANG Z Q,HE X J,SUN Z H,QIU W M. Establishment of an efficient root mediated genetic transformation method for gene function verification in citrus[J]. Scientia Horticulturae,2023,321:112298.