張海波 鄭云柯 付毛妮 張建斌 賈彩紅 李新國 劉菊華
DOI:10.13925/j.cnki.gsxb.20230404
摘??? 要:【目的】在全基因組水平上重新鑒定香蕉A基因組中的AP2/ERF家族成員,研究其在香蕉果實采后成熟過程中的差異表達特性,明確可能參與香蕉果實成熟調(diào)控的關(guān)鍵基因?!痉椒ā繉ο憬禔基因組中AP2/ERF家族成員進行系統(tǒng)進化、結(jié)構(gòu)特征、蛋白質(zhì)特性、保守結(jié)構(gòu)域分析和兩大類主栽品種巴西蕉(AAA)和粉蕉(ABB)果實采后成熟不同階段的轉(zhuǎn)錄組分析?!窘Y(jié)果】發(fā)現(xiàn)AP2/ERFs家族共有317個家族成員,分為AP2(49個)、ERF(253)和RAV(15)三個亞家族,他們不均勻地分布在染色體上。根據(jù)保守結(jié)構(gòu)域和基因結(jié)構(gòu)特征,ERF又分為a、b、c、d、e、f、h、i、j和k共10個亞類。轉(zhuǎn)錄組分析結(jié)果表明,在巴西蕉果實采后成熟過程中差異表達的AP2/ERFs家族成員有77個,其中高水平表達的有MaERF15、36、42和AP2-28。在粉蕉果實采后成熟過程中差異表達的AP2/ERFs家族成員有74個,其中高水平表達的有MaERF42和AP2-28。同時在巴西蕉和粉蕉果實成熟過程中差異表達的基因有57個,其中高水平表達的基因有MaERF15、42和AP2-28,只在巴西蕉果實中特異表達的有20個,只在粉蕉中特異表達的有17個?!窘Y(jié)論】重新鑒定了香蕉AP2/ERFs超家族成員及其在果實后熟過程中的差異表達特性,為系統(tǒng)深入解析香蕉AP2/ERF基因功能奠定了基礎,對為調(diào)控香蕉果實成熟提供靶標基因具有一定的理論意義。
關(guān)鍵詞:香蕉;AP2/ERFs;全基因組分析;果實成熟;差異表達分析
中圖分類號:S668.1?????????? 文獻標志碼:A??????????? 文章編號:1009-9980(2024)05-0861-14
收稿日期:2023-11-02??????? 接受日期:2024-03-06
基金項目:國家自然科學基金項目(32172269);國家香蕉產(chǎn)業(yè)技術(shù)體系(CARS-31);熱帶作物生物育種全國重點實驗室科研項目(NKLTCB202301)
作者簡介:張海波,在讀碩士研究生,研究方向為香蕉遺傳改良。E-mail:3519266095@qq.com
*通信作者 Author for correspondence. E-mail:juhua69@126.com;E-mail:lixinguo13@163.com
果 樹 學 報 2024,41(5): 861-874
Journal of Fruit Science
Re-identification of MaAP2/ERFs and their differential expression characteristics during postharvest banana fruit ripening
ZHANG Haibo1, 2, ZHENG Yunke2, 3, FU Maoni3, ZHANG Jianbin2, 3, JIA Caihong3, LI Xinguo1*, LIU Juhua2, 3*
(1School of Tropical Agriculture and Forestry, Hainan University/National Key Laboratory of Tropical Crop Breeding, Haikou 570228, Hainan, China; 2Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan, China; 3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crop Biotechnology of the Ministry of Agriculture and Rural Affairs, Haikou 571101, Hainan, China)
Abstract: 【Objective】 APETALA2/ethylene response factors (AP2/ERFs) are in a super transcription factor family involved in the terminal of ethylene signal transduction pathway, which plays important regulatory roles in plant growth and development, stress response, fruit ripening, quality formation and other biological processes. However, there is no systematically re-identification of Musa acuminate AP2/ERFs (MaAP2/ERFs). With the rapid development of sequencing technology, the quality of whole genome assembly is improving. The aims of the present study were to re-identify the MaAP2/ERFs family members in the whole genome-wide level and to determine the key genes involved in the regulation of banana fruit ripening. 【Methods】 MaAP2/ERFs family members were genome-widely analyzed. The whole AP2/ERFs protein sequences of banana and tomato were obtained from the Banana Genome Hub released January 2016 and references report, respectively. To identify the MaAP2/ERFs family genes, BLAST searches were performed to check the predicted MaAP2/ERFs in banana database with all the tomato AP2/ERFs as queries. All candidate protein sequences were further examined by the CDD and PFAM databases. Then, multiple sequence alignments were applied to confirm the conserved domains of predicted MaAP2/ERFs proteins. Additionally, sequence alignments of the full-length MaAP2/ERFs proteins from banana and tomato were performed by Clustal X 2.0. The bootstrap neighbor-joining evolutionary tree was created by MEGA 5.0 software with 1000 bootstrap replicates based on the sequence alignments. The ExPASy proteomics server and TBtools were employed to detect the molecular weight and isoelectric points and gene structure, respectively. At 0 day postharvest (DPH), two main cultivars BaXi Jiao (BX) and Fen Jiao (FJ) fruits were obtained from the banana plantation of Institute of Tropical Bioscience and Biotechnology (Chengmai, Hainan, 20 N, 110 E). Postharvest banana hands at similar developmental stage were selected and allowed to ripen naturally. Samples at the 8 DPH and 14 DPH fruits for BX and at 3 DPH and 6 DPH fruits for FJ were obtained according to ethylene production, which occurred faster in FJ reaching full yellow degree earlier than in BX. Samples were collected to extract total RNA using plant RNeasy extraction kit for transcriptome analysis. The sequencing was performed with an Illumina GAII following manufacturers instructions. Gene expression levels were calculated as Fragments per Kilobase of exon model per Million mapped reads (FPKM). 【Results】 A total of 317 MaAP2/ERFs family members were identified. The 317 predicted MaAP2/ERFs proteins varied from 68 (MaERF68) to 716 (MaAP2-41) in amino acid residues and the relative molecular mass ranged from 7.5 (MaERF68) to 76.6 (MaAP2-34) kDa, with isoelectric points in the range of 4.6–10.3. The instability index varied from 44.0 (MaERF218) to 83.5 (MaERF240), with hydropathicity ranged from -1.3 (MaERF52) to -0.2 (MaERF134). MaAP2/ERFs could be divided into three subfamilies: AP2 (49), ERF (253) and RAV (15). ERFs were further divided into 10 subgroups, including a, b, c, d, e, f, h, i, j and k, according to the conserved domain and gene structure characteristics. The 317 AP2/ERFs were unevenly distributed on 11 chromosomes. The maximum number of 41 genes (12.9%) localized on chromosome 4, followed by 37 (11.7%) on chromosome 3 and 33 (10.4%) on chromosomes 6 and 10, whereas chromosomes 1 had only 12 (3.8%). The gene structure characteristics of MaAP2/ERFs are similar among different members of the same subfamily. AP2 subfamily members contained 7-10 exons and 6-9 introns. 14 of a total of 15 MaRAVs contained only one exon. In ERF subfamily, most of the intronless genes were clustered in a, b, c, d, f, i, h and j subgroups and only 2 genes with a single intron. The pattern of two exons with one intron was found in all members in k subgroup. Most of the genes in e subgroup had 6 introns. This suggested that similar exon-intron organizations of MaAP2/ERFs exist in the same group and the gene structure might be meaningful for gene evolution and function. Conservative domain analysis showed that all AP2/ERFs family members had two conserved AP2 domains, which further supports the phylogenetic analyses. The expression patterns of MaAP2/ERFs were detected in fruits sampled from different ripening stages of BX and FJ. The results indicate 24.3% and 23.3% of MaAP2/ERFs were differentially expressed during postharvest ripening process of BX and FJ fruits, respectively. For BX, there were 77 MaAP2/ERFs differentially expressed. Specially, 14 genes (MaERF15, 36, 42, 44, 103, 115, 132, 156, 180, 181, 222, 242, AP2-28 and MaRAV2) were highly expressed (FPKM value>50). Among them, MaERF15, 36, 42, and AP2-28 displayed super expression levels (FPKM value>100). For FJ, there were 74 MaAP2/ERFs differentially expressed. Among them, 4 genes (MaERF15, 42, AP2-28 and MaRAV2) were highly expressed with the expression levels (FPKM value>50). Among them, MaERF42 and AP2-28 displayed super expression levels (FPKM value>100). 57 MaAP2/ERFs simultaneously expressed in BX and FJ. 20 and 17 MaAP2/ERFs specially expressed in BX and FJ, respectively. Among those differentially expressed genes, the expression patterns of 34 genes (MaERF5, 15, 22, 32, 42, 49, 63, 72, 77, 103, 109, 111, 131, 139, 140, 141, 142, 143, 165, 167, 174, 179, 180, 185, 193, 207, 213, 222, 228, 234, 242, 250, MaRAV2 and MaRAV4) were closely related to BX fruit ripening process, whose expression levels were quickly increased at 8 DPH and were 2-fold higher than at 0 DPH. The expression patterns of 29 genes (MaERF11, 32, 36, 45, 49, 50, 70, 72, 73, 97, 103, 111, 120, 122, 140, 142, 143, 164, 165, 174, 193, 204, 240, 242, 247, 250, 252, AP2-44 and MaRAV4) were closely related to FJ fruit ripening process, and their expression levels quickly increased at 3 DPH and were 2-fold higher than those at 0 DPH. These results suggested that these genes play important roles in BX and FJ fruits ripening. 【Conclusion】 317 MaAP2/ERFs family members were genome-widely re-identified. The key genes involved in BX and FJ fruit ripening were detected. These findings laid a foundation for the systematic and in-depth analysis of the function of MaAP2/ERFs, and provided target genes for the regulation of fruit ripening.
Key words: Banana (Musa spp.); AP2/ERFs; Genome wide analysis; Fruit ripening; Differential gene expression
APETALA2/ethylene response factor(AP2/ERF)轉(zhuǎn)錄因子處于乙烯信號通路下游,廣泛參與果實生長、成熟軟化、葉綠素降解、類黃酮和芳香物質(zhì)的合成,對植物生長發(fā)育、逆境響應和其他生物學過程具有重要調(diào)控作用[1-6]。香蕉MaERFs通過調(diào)控與乙烯生物合成相關(guān)的基因表達來調(diào)控果實成熟過程[7],進一步研究發(fā)現(xiàn)MaDof23能與MaERF9結(jié)合作為抑制子調(diào)控果實成熟[8]。
AP2/ERF轉(zhuǎn)錄因子家族因含有1~2個約由60個氨基酸組成的AP2/ERF結(jié)構(gòu)域而得名,根據(jù)保守結(jié)構(gòu)域特征和數(shù)目分為AP2、ERF、RAV和Soloist四個亞家族[9]。自Jofuku等[10]首次從擬南芥中分離出APETALA2(AP2)轉(zhuǎn)錄因子后,經(jīng)過近30年的發(fā)展,已有20種植物中的AP2/ERF家族成員被分離鑒定。其中數(shù)目最多的油菜含531個[11],其次是煙草375個[12],玉米214個[13],水稻170個[14],擬南芥147個[15],番茄134個[16],最少的菠蘿也有97個[17]。
在全球大食物觀的背景下,香蕉是世界重要的果糧兼用作物,是全球近20億人碳水化合物的主要來源?,F(xiàn)有的香蕉栽培品種均來源于兩個原始祖先種,即尖葉蕉A基因組(Musa acuminata,A genome)和長梗蕉B基因組(M. balbisiana,B genome)[18]。然而到目前為止,除了Jourda等[19]和侯曉婉等[20]在第一版香蕉A基因組測序背景下報道了香蕉A基因組和栽培品種巴西蕉中AP2/ERFs家族分別有122和117個成員外,還沒有在全基因組水平上對香蕉AP2/ERF基因家族進行系統(tǒng)分離鑒定的更新報道。隨著測序技術(shù)的飛速發(fā)展和大數(shù)據(jù)分析技術(shù)的逐步完善,原有的分析結(jié)果已適應不了新的發(fā)展需求,需要及時更新。筆者在本研究中對香蕉A基因組中的AP2/ERF家族成員進行全基因組分析,包括系統(tǒng)進化、在染色體上的分布、基因結(jié)構(gòu)、理化特性,分析他們在兩個主栽品種巴西蕉(AAA)和粉蕉(ABB)果實采后成熟過程中的差異表達特性,篩選出可能參與香蕉果實成熟和品質(zhì)調(diào)控的關(guān)鍵基因。研究結(jié)果為深入解析AP2/ERF家族成員在香蕉果實成熟過程中的作用奠定基礎,為香蕉品質(zhì)改良和生物育種提供基因資源。
1 材料和方法
1.1 試驗材料和處理
盛花期后80 d(80 DAF),即采收后0 d(0 DPH)的香蕉(M. spp.)果實來自中國熱帶農(nóng)業(yè)科學院熱帶生物技術(shù)研究所香蕉種植園(海南澄邁)。選擇處于相似發(fā)育階段的香蕉果實并使其自然成熟。由于果實采后粉蕉果實的乙烯釋放量迅速上升使其比巴西蕉更快地達到全黃色,因此巴西蕉(BX)的果實分別在采后第8天和第14天達到乙烯生物合成啟動期和高峰期,而粉蕉(FJ)果實分別在采后第3天和第6天達到乙烯生物合成啟動期和高峰期。將果實樣品在液氮中迅速冷凍并儲存在-80 ℃,用于總RNA提取和轉(zhuǎn)錄組分析。
1.2 基因鑒定和進化分析
香蕉MaAP2/ERFs蛋白序列來自香蕉全基因組測序數(shù)據(jù)庫(http://banana-genome-hub.Southgreen.fr/download)[21],番茄的AP2/ERFs序列來自Yang等[16]的報道。為了鑒定MaAP2/ERFs超家族成員基因,以已知的MaAP2/ERFs去搜索香蕉全基因組數(shù)據(jù)庫[21]。隨后,將從香蕉全基因組數(shù)據(jù)庫中得到的所有MaAP2/ERFs與番茄的AP2/ERF進行比對。所有候選蛋白序列通過CDD(http://www.ncbi.nlm.nih.gov/cdd/)和PFAM(http://pfam.sanger.ac.ac.uk/)數(shù)據(jù)庫進行檢驗。最后,使用多個序列比對確認預測的MaAP2/ERF蛋白的保守域。使用Clustal X V.2.0對香蕉與番茄的AP2/ERFs全長序列進行多序列比對。采用MEGA 5.0軟件構(gòu)建系統(tǒng)進化樹[22]。
1.3 基因結(jié)構(gòu)特征分析
利用香蕉基因組數(shù)據(jù)庫(https://banana-genome-hub.southgreen.fr/)獲取香蕉A基因組的gff功能注釋文件,而后利用TBtools軟件中的Visualize Gene Structure功能對MaAP2/ERFs家族成員的基因結(jié)構(gòu)進行可視化分析:首先在set input .gff3界面導入香蕉A基因組.gff注釋文件,而后在set input ID list界面導入MaAP2/ERF家族成員基因編號,即可得到MaERF家族成員基因結(jié)構(gòu)。
1.4 蛋白質(zhì)特性和保守結(jié)構(gòu)域分析
采用ExPASy軟件(http://expasy.org/)檢測預測的MaAP2/ERF蛋白的分子質(zhì)量和等電點。利用NCBI在線網(wǎng)站的CD-Search Tool功能(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)對目標蛋白序列進行保守結(jié)構(gòu)域分析,并下載在線分析結(jié)果。而后將在線分析結(jié)果導入Tbtools,利用Visualize NCBI CDD Domain Pattern功能對目標蛋白保守結(jié)構(gòu)域進行可視化分析。
1.5 轉(zhuǎn)錄組分析
選取80 DAF(0 DPH)、BX 8 DPH和14 DPH、FJ 3 DPH和6 DPH的香蕉果實,用植物RNeasy提取試劑盒(天根,北京,中國)提取總RNA,進行轉(zhuǎn)錄組分析。按照說明書,用Illumina GAⅡ進行測序。每個樣本2次重復。測序深度平均為5.34X。使用FASTX軟件去除原始序列中的接頭序列。用FastQC去除低質(zhì)量序列。用TopHat v.2.0.10軟件將高質(zhì)量的序列與參考基因組DH-Pahang(M. acuminata,A-Genome,2n = 22)進行比對[20]。轉(zhuǎn)錄組使用Cufflinks[23]進行組裝?;虮磉_水平計算為每百萬映射讀取的外顯子模型每千堿基讀取數(shù)(FPKM)。DEGseq用于鑒定差異表達的基因。RNAseq數(shù)據(jù)登陸在NCBI-SRA數(shù)據(jù)庫中(登錄號:PRJNA343716)。
2 結(jié)果與分析
2.1 香蕉AP2/ERFs超家族的鑒定和系統(tǒng)進化分析
為了準確地鑒定出香蕉AP2/ERFs超家族成員,采用BLAST和Hidden Markov Mode兩個軟件將從香蕉A基因組數(shù)據(jù)庫(http://banana-genome.cirad.fr/)(2019年發(fā)布版)中得到的AP2/ERFs超家族成員進行比對和鑒定,共得到317個家族成員,分為AP2(49個),ERF(253個)和RAV(15個)三個亞家族。他們編碼蛋白的氨基酸數(shù)量為68~716,分子質(zhì)量為7.50~76.67 kDa,等電點為4.60~10.34,不穩(wěn)定系數(shù)為31.63~108.56,脂溶指數(shù)為44.03~83.47,親水系數(shù)為-1.29~-0.18。與番茄中的AP2/ERFs家族構(gòu)建系統(tǒng)進化樹,發(fā)現(xiàn)ERF亞家族又分為a、b、c、d、e、f、h、i、j和k,10個亞類,其中h亞類所含的基因數(shù)目最多,為67個;其次是c亞類,為44個;再次是i亞類,為37個,所含基因數(shù)目最少的是j亞類,僅含有1個基因。AP2亞家族被分為3個亞類,所含基因數(shù)目最多的有28個,其次是含有20個,所含基因數(shù)目最少的亞類只有1個基因。RAV亞家族也被分為3個亞類,所含基因數(shù)目最多的有8個,其次是含有6個,所含基因數(shù)目最少的亞類也只有1個基因(圖1)。
2.2 香蕉AP2/ERFs超家族成員在染色體上的分布特征
香蕉AP2/ERFs的317個家族成員不均勻地分布在11條染色體上,其中數(shù)量最多的是4號染色體,41個,占12.93%,其中AP2家族3個,RAV家族3個,ERF家族35個;其次是3號染色體,37個,占11.67%,其中AP2家族10個,RAV家族2個,ERF家族25個;再次是6號和10號染色體,均為33個,占10.41%;6號染色體上分布5個AP2,2個RAV,26個ERF;10號染色體上分布3個AP2,1個RAV,29個ERF;數(shù)量最少的是1號染色體,僅12個,占3.8%,其中AP2家族5個,RAV家族2個,ERF家族5個(圖2)。從253個ERF亞家族成員在染色體上的分布規(guī)律來看,除了1號和random染色體外,其余的10條染色體上都存在一個或多個由串聯(lián)重復引起的基因簇,這些基因簇的出現(xiàn)為香蕉更好地適應多變的環(huán)境奠定了基礎。
2.3 香蕉AP2/ERFs超家族成員的基因結(jié)構(gòu)特征
AP2亞家族具有7~10個外顯子,6~9個內(nèi)含子。RAV亞家族15個成員中14個都是單外顯子,2個具有單內(nèi)含子。ERF亞家族a、b、c、j亞類中只有2個具有單內(nèi)含子,其余的都是單外顯子無內(nèi)含子結(jié)構(gòu);d、f、i、h亞類中大多數(shù)也是單外顯子,少數(shù)有單內(nèi)含子;k亞類全都具有2個外顯子和1個內(nèi)含子;e亞類中絕大多數(shù)具有6個內(nèi)含子(圖3)。以上結(jié)果表明同一亞族不同成員之間具有相似的基因結(jié)構(gòu),決定其在香蕉生長發(fā)育、成熟和對環(huán)境適應性等方面可能具有類似作用。
2.4 香蕉AP2/ERFs超家族成員的保守結(jié)構(gòu)域分析
所有AP2/ERFs超家族成員都具有AP2和AP2 superfamily兩個保守結(jié)構(gòu)域,因此,AP2結(jié)構(gòu)域是該家族成員執(zhí)行生物學功能的結(jié)構(gòu)基礎。除此之外,AP2亞家族還具有PHA03247 superfamily,RAV亞家族還具有B3 superfamily,ERF亞家族的a、b、c、d、e、f、i具有DNA-bind superfamily(圖4)。這些亞家族成員具有的特異性保守結(jié)構(gòu)域為香蕉AP2/ERFs超家族成員的功能分化奠定了結(jié)構(gòu)基礎。
2.5 香蕉AP2/ERFs超家族成員在香蕉果實采后成熟過程中的差異表達分析
為了解AP2/ERFs超家族成員在不同香蕉果實采后成熟過程中的作用,采用轉(zhuǎn)錄組學研究他們在巴西蕉和粉蕉果實采后成熟過程中的差異表達特性(圖5-A)。結(jié)果表明,AP2/ERFs超家族的317個成員中,在巴西蕉果實采后成熟過程中差異表達的有77個,占24.3%,其中FPKM值大于10的有45個,大于50的有14個,分別為MaERF15、36、42、44、103、115、132、156、180、181、222、242,AP2-28和MaRAV2;FPKM值大于100的有4個,分別是MaERF15,36,42和AP2-28。在粉蕉果實采后成熟過程中差異表達的有74個,占23.3%,其中FPKM值大于10的有32個,大于50的有4個,分別為MaERF15、42,AP2-28和MaRAV2;FPKM值大于100的有2個,分別是MaERF42和AP2-28。同時在巴西蕉和粉蕉果實成熟過程中差異表達的有57個。只在巴西蕉果實中特異表達的有20個,只在粉蕉中特異表達的有17個。在上述差異表達的基因中,與巴西蕉果實成熟過程密切相關(guān)的有34個,分別是MaERF5、15、22、32、42、49、63、72、77、103、109、111、131、139、140、141、142、143、165、167、174、179、180、185、193、207、213、222、228、234、242、250、MaRAV2和MaRAV4,他們在巴西蕉果實采后乙烯生物合成啟動期(8 DPH)表達量迅速上升,為采收時(0 DPH)的2倍以上,推測他們在巴西蕉果實采后成熟過程中具有重要調(diào)控作用。在上述差異表達的基因中,與粉蕉果實成熟過程密切相關(guān)的有29個,分別是MaERF11、32、36、45、49、50、70、72、73、97、103、111、120、122、140、142、143、164、165、174、193、204、240、242、247、250、252、AP2-44和MaRAV4,他們在粉蕉果實采后乙烯生物合成啟動期(3 DPH)表達量迅速上升,為采收時(0 DPH)的2倍以上,推測他們在粉蕉果實采后成熟過程中具有重要調(diào)控作用。
采用qRT-PCR技術(shù)對MaERF15、36、42和AP2-28在巴西蕉和粉蕉果實采后成熟過程中的差異表達特性進行驗證,結(jié)果表明,這4個基因在果實采后成熟過程中的表達趨勢一致,且MaAP2-28的表達與果實采后成熟呈負相關(guān),MaERF15、36和42等3個基因在乙烯生物合成啟動期和高峰期的表達水平,巴西蕉高于粉蕉(圖5-B~E)。這些結(jié)果與轉(zhuǎn)錄組的結(jié)果相符,表明轉(zhuǎn)錄組的結(jié)果是較為準確的。
3 討 論
3.1 AP2/ERFs是植物中超大基因家族,不同植物中的成員數(shù)量各不相同
通過全基因組分析,發(fā)現(xiàn)香蕉中有317個AP2/ERFs成員,比Jourda等[19]報道的香蕉A基因組中AP2/ERFs多195個,比侯曉婉等[20]報道的巴西蕉中AP2/ERFs多200個。更豐富的MaAP2/ERFs超家族成員的獲得離不開全基因組測序及分析技術(shù)的高質(zhì)量發(fā)展,筆者在本研究中分離的MaAP2/ERFs是建立在第二版分析結(jié)果的基礎上的,與第一版相比質(zhì)量更高。在已報道的植物中,其數(shù)目僅次于油菜[11]和煙草[12],排第三位。香蕉AP2/ERFs分為AP2、RAV、ERF三個亞家族,這與大多數(shù)植物AP2/ERFs家族的分類是一致的,然而香蕉中并未見到Soloist這一個亞類,與悅曼芳等[9]的報道不一致,這可能是因為香蕉AP2/ERFs家族基因的結(jié)構(gòu)一致性較高。ERF亞家族又細分為a、b、c、d、e、f、h、i、j和k共10個亞類,這是與番茄中的ERF亞家族構(gòu)建系統(tǒng)進化樹得到的,選擇番茄AP2/ERFs全基因家族進行比較的原因是香蕉與番茄同屬典型的呼吸躍變型果實,乙烯在果實成熟過程中具有非常重要的作用,而AP2/ERFs又是乙烯信號途徑下游重要的乙烯響應因子。
3.2 MaAP2/ERFs在染色體上的不均勻分布及基因結(jié)構(gòu)的差異性
317個MaAP2/ERFs超家族成員不均勻地分布在11條染色體和random染色體上,特別是253個MaERFs,從其在染色體上的分布規(guī)律來看,除了1號和random染色體外,其余的10條染色體上都存在一個或多個由于串聯(lián)重復事件引起的基因簇,說明香蕉在漫長的進化過程中,MaERFs家族在數(shù)量上顯著擴張,這與Wang等[18]的研究結(jié)果類似。這些基因簇的出現(xiàn)為香蕉更好地適應多變的環(huán)境奠定了基礎。
3.3 MaAP2/ERFs在不同品種果實采后成熟過程中的差異表達
巴西蕉(基因型AAA)和粉蕉(基因型ABB)是目前生產(chǎn)上兩大類主栽品種,均是由兩個野生的二倍體祖先種通過種內(nèi)或種間雜交后,經(jīng)過漫長的進化和選擇而形成的[24-25]。從轉(zhuǎn)錄組分析MaAP2/ERFs超家族成員在巴西蕉和粉蕉果實采后成熟過程的差異表達特性來看,有24.3%和23.3%的AP2/ERFs超家族成員分別在巴西蕉和粉蕉果實采后成熟過程中差異表達。有趣的是,他們中有57個同時在巴西蕉和粉蕉中差異表達,有20個只在巴西蕉中差異表達,有17個只在粉蕉中差異表達,表明他們在巴西蕉和粉蕉果實采后成熟過程中雖然都具有重要作用,但扮演的角色隨著品種基因型不同而有差異。特別是與巴西蕉和粉蕉果實成熟過程密切相關(guān)的34個和29個MaAP2/ERFs以及在巴西蕉和粉蕉果實成熟過程中超高水平表達的MaERF15、36、42和AP2-28等基因,利用qRT-PCR對這4個基因的驗證結(jié)果也證明了這一點,對其功能及作用機制的深入研究,將為香蕉果實成熟品質(zhì)的形成調(diào)控提供重要的基因資源。
4 結(jié) 論
從香蕉A基因組中共鑒定到317個AP2/ERFs家族成員,歸為AP2(49個)、ERF(253個)和RAV(15個)三個亞家族。根據(jù)保守結(jié)構(gòu)域和基因結(jié)構(gòu)特征,ERF又分為a、b、c、d、e、f、h、i、j和k共10個亞類。轉(zhuǎn)錄組分析結(jié)果表明,在巴西蕉果實采后成熟過程中高水平表達的有MaERF15、36、42和AP2-28。在粉蕉果實采后成熟過程中高水平表達的有MaERF42和AP2-28。同時在巴西蕉和粉蕉果實成熟過程中高水平表達的基因有MaERF15、42和AP2-28,只在巴西蕉果實中特異表達的有20個,只在粉蕉中特異表達的有17個。
參考文獻 References:
[1]?? LIU M C,GOMES B L,MILA I,PURGATTO E,PERES L E P,F(xiàn)RASSE P,MAZA E,ZOUINE M,ROUSTAN J P,BOUZAYEN M,PIRRELLO J. Comprehensive profiling of ethylene response factor expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato[J]. Plant Physiology,2016,170(3):1732-1744.
[2]?? GU C,GUO Z H,HAO P P,WANG G M,JIN Z M,ZHANG S L. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Botanical Studies,2017,58(1):6.
[3]?? CHEN T,QIN G Z,TIAN S P. Regulatory network of fruit ripening:Current understanding and future challenges[J]. The New Phytologist,2020,228(4):1219-1226.
[4]?? ZHOU H,ZHAO L,YANG Q R,AMAR M H,OGUTU C,PENG Q,LIAO L,ZHANG J Y,HAN Y P. Identification of EIL and ERF genes related to fruit ripening in peach[J]. International Journal of Molecular Sciences,2020,21(8):2846.
[5]?? DANG Q Y,SHA H Y,NIE J Y,WANG Y Z,YUAN Y B,JIA D J. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation[J]. Horticulture Research,2021,8:223.
[6]?? ZHAI Y L,F(xiàn)AN Z Y,CUI Y Y,GU X J,CHEN S W,MA H Q. APETALA2/ethylene responsive factor in fruit ripening:Roles,interactions and expression regulation[J]. Frontiers in Plant Science,2022,13:979348.
[7]?? XIAO Y Y,CHEN J Y,KUANG J F,SHAN W,XIE H,JIANG Y M,LU W J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes[J]. Journal of Experimental Botany,2013,64(8):2499-2510.
[8]?? FENG B H,HAN Y C,XIAO Y Y,KUANG J F,F(xiàn)AN Z Q,CHEN J Y,LU W J. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes[J]. Journal of Experimental Botany,2016,67(8):2263-2275.
[9]?? 悅曼芳,張春,吳忠義. 植物轉(zhuǎn)錄因子AP2/ERF家族蛋白結(jié)構(gòu)和功能的研究進展[J]. 生物技術(shù)通報,2022,38(12):11-26.
YUE Manfang,ZHANG Chun,WU Zhongyi. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family[J]. Biotechnology Bulletin,2022,38(12):11-26.
[10] JOFUKU K D,DEN BOER B G,VAN MONTAGU M,OKAMURO J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell,1994,6(9):1211-1225.
[11] GHORBANI R,ZAKIPOUR Z,ALEMZADEH A,RAZI H. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus[J]. Physiology and Molecular Biology of Plants,2020,26(7):1463-1476.
[12] GAO Y,HAN D,JIA W,MA X H,YANG Y X,XU Z C. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress[J]. Plant Physiology and Biochemistry,2020,156:420-435.
[13] ZHANG J,LIAO J Y,LING Q Q,XI Y,QIAN Y X. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics,2022,23(1):125.
[14] RASHID M,HE G Y,YANG G X,HUSSAIN J,YAN X. AP2/ERF transcription factor in rice:Genome-wide canvas and syntenic relationships between monocots and eudicots[J]. Evolutionary Bioinformatics Online,2012,8:321-355.
[15] NAKANO T,SUZUKI K,F(xiàn)UJIMURA T,SHINSHI H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology,2006,140(2):411-432.
[16] YANG H H,SUN Y G,WANG H X,ZHAO T T,XU X Y,JIANG J B,LI J F. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato[J]. BMC Plant Biology,2021,21(1):72.
[17] ZHANG H N,PAN X L,LIU S H,LIN W Q,LI Y H,ZHANG X M. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development[J]. Genomics,2021,113(2):474-489.
[18] WANG Z,MIAO H X,LIU J H,XU B Y,YAO X M,XU C Y,ZHAO S C,F(xiàn)ANG X D,JIA C H,WANG J Y,ZHANG J B,LI J Y,XU Y,WANG J S,MA W H,WU Z Y,YU L L,YANG Y L,LIU C,GUO Y,SUN S L,BAURENS F C,MARTIN G,SALMON F,GARSMEUR O,YAHIAOUI N,HERVOUET C,ROUARD M,LABOUREAU N,HABAS R,RICCI S,PENG M,GUO A P,XIE J H,LI Y,DING Z H,YAN Y,TIE W W,DHONT A,HU W,JIN Z Q. Musa balbisiana genome reveals subgenome evolution and functional divergence[J]. Nature Plants,2019,5:810-821.
[19] JOURDA C,CARDI C,MB?GUI?-A-MB?GUI? D,BOCS S,GARSMEUR O,DHONT A,YAHIAOUI N. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications[J]. The New Phytologist,2014,202(3):986-1000.
[20] 侯曉婉,胡偉,徐碧玉,金志強,張魯斌,鹿志偉. 巴西蕉AP2/ERF超家族全基因組分析[J]. 熱帶作物學報,2017,38(2):302-312.
HOU Xiaowan,HU Wei,XU Biyu,JIN Zhiqiang,ZHANG Lubin,LU Zhiwei. Genome-wide analysis of AP2/ERF super family in Musaceae,Musa[J]. Chinese Journal of Tropical Crops,2017,38(2):302-312.
[21] DHONT A,DENOEUD F,AURY J M,BAURENS F C,CARREEL F,GARSMEUR O,NOEL B,BOCS S,DROC G,ROUARD M,DA SILVA C,JABBARI K,CARDI C,POULAIN J,SOUQUET M,LABADIE K,JOURDA C,LENGELL? J,RODIER-GOUD M,ALBERTI A,BERNARD M,CORREA M,AYYAMPALAYAM S,MCKAIN M R,LEEBENS-MACK J,BURGESS D,F(xiàn)REELING M,MB?GUI?-A-MB?GUI? D,CHABANNES M,WICKER T,PANAUD O,BARBOSA J,HRIBOVA E,HESLOP-HARRISON P,HABAS R,RIVALLAN R,F(xiàn)RANCOIS P,POIRON C,KILIAN A,BURTHIA D,JENNY C,BAKRY F,BROWN S,GUIGNON V,KEMA G,DITA M,WAALWIJK C,JOSEPH S,DIEVART A,JAILLON O,LECLERCQ J,ARGOUT X,LYONS E,ALMEIDA A,JERIDI M,DOLEZEL J,ROUX N,RISTERUCCI A M,WEISSENBACH J,RUIZ M,GLASZMANN J C,QU?TIER F,YAHIAOUI N,WINCKER P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants[J]. Nature,2012,488:213-217.
[22] TAMURA K,PETERSON D,PETERSON N,STECHER G,NEI M,KUMAR S. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[23] TRAPNELL C,ROBERTS A,GOFF L,PERTEA G,KIM D,KELLEY D R,PIMENTEL H,SALZBERG S L,RINN J L,PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols,2012,7:562-578.
[24] HESLOP-HARRISON J S,SCHWARZACHER T. Domestication,genomics and the future for banana[J]. Annals of Botany,2007,100(5):1073-1084.
[25] WU W,YANG Y L,HE W M,ROUARD M,LI W M,XU M,ROUX N,GE X J. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus[J]. Scientific Reports,2016,6:31586.