亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有季節(jié)交替的n維Gilpin-Ayala競爭模型的動力學(xué)

        2024-05-29 20:24:43陳梅香謝溪莊

        陳梅香 謝溪莊

        摘要:研究一類具有季節(jié)交替的n維Gilpin-Ayala競爭模型。利用單調(diào)動力系統(tǒng)的理論,當(dāng)n=1時,系統(tǒng)存在著閾值動力學(xué)。根據(jù)離散競爭映射的負(fù)載單形理論,證得n維系統(tǒng)存在一個(n-1)維的負(fù)載單形。結(jié)果表明:(n-1)維的負(fù)載單形吸引了系統(tǒng)在Rn+中的所有非平凡軌道。

        關(guān)鍵詞:季節(jié)交替;Gilpin-Ayala競爭模型;周期解;龐加萊映射;負(fù)載單形

        中圖分類號:O 175.13文獻(xiàn)標(biāo)志碼:A

        文章編號:1000-5013(2024)03-0417-06

        Dynamics of A n-Dimensional Gilpin-Ayala Competition Model With Seasonal Succession

        CHEN Meixiang,XIE Xizhuang

        (School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)

        Abstract:A type of n dimensional Gilpin-Ayala competition models with seasonal succession are studied. Using the theory of monotonic dynamical systems,when n=1,the system has threshold dynamics. Using the theory of carrying simplex of discrete competitive mappings,the existence of a (n-1) dimensional carrying simplex in the n dimensional system is proved. The result shows that (n-1) dimensional carrying simplex attracts all nontrivial orbits in Rn+of the system.

        Keywords:seasonal succession;Gilpin-Ayala competition model;periodic solution;Poincaré mapping;carrying simplex

        1 預(yù)備知識

        季節(jié)性更替是自然界的普遍現(xiàn)象,深深影響著種群的生存與增長,群落的結(jié)構(gòu)和組成[1]。當(dāng)氣溫、降水量、氣壓、濕度和季風(fēng)隨著季節(jié)的更替而變化時,種群和群落處于一個周期性波動的外部環(huán)境中[2-3]。Sommer等[4]利用季節(jié)交替模型研究種群動力學(xué)[5-7]。在經(jīng)典的n種群Gilpin-Ayala競爭模型[8-9]的基礎(chǔ)上,利用文獻(xiàn)[2,5]中的建模方法,構(gòu)造具有季節(jié)交替的n種群Gilpin-Ayala競爭模型,即

        2 基本定義和引理

        3 負(fù)載單形的存在性及其證明

        4 結(jié)論

        1)當(dāng)n=1時,系統(tǒng)(1)存在閾值動力學(xué),即當(dāng)rφ-λ(1-φ)≤0時,不管種群的初始數(shù)量處于什么水平,種群都將走向滅絕;當(dāng)rφ-λ(1-φ)>0時,系統(tǒng)(1)存在唯一的正周期解,使種群的初始數(shù)量為非零值時,最終都將收斂到這個正周期解。

        2)當(dāng)n≥2時,系統(tǒng)(1)必將存在一個(n-1)維的有界不變閉曲面(負(fù)載單形),其吸引了系統(tǒng)(1)的所有非平凡軌道。

        參考文獻(xiàn):

        [1]WHITE E R,HASTINGS A.Seasonality in ecology: Progress and prospects in theory [J].Ecological Complexity,2020,44:100867.DOI:10.1016/j.ecocom.2020.100867.

        [2]KLAUSMEIER C A.Successional state dynamics: A novel approach to modeling nonequilibrium foodweb dynamics[J].Journal of Theoretical Biology,2010,262:584-595.DOI:10.1016/j.jtbi.2009.10.018.

        [3]KREMER C T,KLAUSMEIER C A.Coexistence in a variable environment: Eco-evolutionary perspectives[J].Journal of Theoretical Biology,2013,339:14-25.DOI:10.1016/j.jtbi.2013.05.005.

        [4]SOMMER U,GLIWICZ Z M,LAMPERT W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters[J].Archiv für Hydrobiologie,1986,106:433-471.

        [5]HSU S B,ZHAO Xiaoqiang.A Lotka-Volterra competition model with seasonal succession[J].Journal of Mathematical Biology,2012,64:109-130.DOI:10.1007/s00285-011-0408-6.

        [6]FENG Xiaomei,LIU Yunfeng,RUAN Shigui,et al.Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting[J].Journal of Differential Equations,2023,354:237-263.DOI:10.1016/j.jde.2023.01.014.

        [7]PU Liqiong,LIN Zhigui,LOU Yuan.A west nile virus nonlocal model with free boundaries and seasonal succession[J].Journal of Mathematical Biology,2023,86:25.DOI:10.1007/s00285-022-01860-x.

        [8]GILPIN M,AYALA F.Global models of growth and competition[J].Proceeding of the National Academy of Sciences of the United States of America,1973,70:3590-3593.DOI:10.1073/pnas.70.12.3590.

        [9]GILPIN M,AYALA F.Schoener′s model and drosophila competition[J].Theoretical Population Biology,1976,9(1):12-14.DOI:10.1016/0040-5809(76)90031-9.

        [10]GOH B S,AGNEW T T.Stability in Gilpin and Ayala′s models of competition[J].Journal of Mathematical Biology,1977,4:275-279.DOI:10.1007/BF00280977.

        [11]WANG Yi,JIANG Jifa.Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems[J].Journal of Differential Equations,2002,186:611-632.DOI:10.1016/S0022-0396(02)00025-6.

        [12]ZHAO Xiaoqiang.Dynamical systems in population biology[M].2nd.New York:Springer,2017.DOI:10.1007/978-3-319-56433-3.

        [13]DIEKMANN O,WANG Yi,YAN Ping.Carrying simplices in discrete competitive systems and age-structured semelparous populations[J].Discrete and Continuous Dynamical Systems,2008,20:37-52.DOI:10.3934/dcds.2008.20.37.

        [14]NIU Lin,WANG Yi,XIE Xizhuang.Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications[J].Discrete and Continuous Dynamical Systems-Series B,2021,26(4):2161-2172.DOI:10.3934/dcdsb.2021014.

        [15]SMITH H L.Periodic solutions of periodic competitive and cooperative systems[J].SIAM Journal on Mathematical Analysis,1986,17:1289-1318.DOI:10.1137/0517091.

        [16]JIANG Jifa,MIERCZYSKI J,WANG Yi.Smoothness of the carrying simplex for discrete-time competitive dynamical systems: A characterization of neat embedding[J].Journal of Differential Equations,2009,246:1623-1672.DOI:10.1016/j.jde.2008.10.008.

        (責(zé)任編輯:陳志賢 ?英文審校:黃心中)

        国产精品久久久久免费a∨| 男女av一区二区三区| 曰韩无码无遮挡a级毛片| 亚洲精品无码成人片久久不卡| 久久久99精品成人片中文字幕| 视频福利一区二区三区| 日本人妻免费一区二区三区| 精品日韩在线观看视频| 欧美高清精品一区二区| 亚洲日韩国产精品乱-久| 日韩欧美第一页| 亚洲精品国产一区av| 亚洲国产丝袜久久久精品一区二区| 国产无吗一区二区三区在线欢| 台湾无码av一区二区三区| 久久国产亚洲精品超碰热| 国产精品不卡免费版在线观看| 久久精品国产av一级二级三级| 久久久久亚洲精品中文字幕| 成人xx免费无码| 日本一道高清在线一区二区| 影音先锋久久久久av综合网成人| 亚洲精品无码久久久久久| 中文字幕久久久久久久系列| 日本久久久精品免费免费理论| 国产av一区二区三区在线播放| 天下第二社区在线视频| 狠狠色狠狠色综合日日92| 男女视频网站免费精品播放 | 亚洲av熟女天堂系列| 日本男人精品一区二区| 亚洲成av人片在线观看www| 福利一区视频| 亚洲av乱码一区二区三区观影| 精品一二三四区中文字幕| 日本丰满熟妇bbxbbxhd| 天堂69亚洲精品中文字幕| 国产av丝袜熟女丰满一区二区| 精品久久久久久成人av| 婷婷丁香91| av男人天堂网在线观看|