亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        廣義Rosenau-KdV-RLW方程的一個(gè)新的高精度守恒差分格式

        2024-05-15 21:34:38胡俊林劉哲含胡勁松
        關(guān)鍵詞:收斂性穩(wěn)定性

        胡俊林 劉哲含 胡勁松

        DOI:10.16783/j.cnki.nwnuz.2024.03.014

        收稿日期:2023-10-20;修改稿收到日期:2023-11-25

        基金項(xiàng)目:四川省應(yīng)用基礎(chǔ)研究資助項(xiàng)目(2019YJ0387);國(guó)家自然科學(xué)青年基金資助項(xiàng)目(11701481)

        作者簡(jiǎn)介:胡俊林(1998—),男,四川會(huì)理人,碩士研究生.主要研究方向?yàn)槲⒎址匠虜?shù)值解.

        E-mail:1072450812@qq.com

        *通信聯(lián)系人,男,四川射洪人,教授,博士.主要研究方向?yàn)槲⒎址匠虜?shù)值解.

        E-mail:hjs888hjs@163.com

        摘要:對(duì)一類(lèi)廣義Rosenau-KdV-RLW方程的初邊值問(wèn)題提出一個(gè)新的高精度守恒差分算法.利用Taylor展式,在空間層做部分外推處理,直接從整體上抵消空間截?cái)嗾`差的二階部分,在時(shí)間層采用Crank-Nicolson格式,從而在時(shí)間方向和空間方向分別達(dá)到了二階精度和四階精度;合理模擬了問(wèn)題本身的一個(gè)守恒量,并利用離散Sobolev嵌入不等式和離散泛函分析方法,證明了格式的收斂性和穩(wěn)定性;最后,數(shù)值算例驗(yàn)證了該方法的有效性.

        關(guān)鍵詞:廣義Rosenau-KdV-RLW方程;高精度守恒差分格式;收斂性;穩(wěn)定性

        中圖分類(lèi)號(hào):O 241.82??? 文獻(xiàn)標(biāo)志碼:A??? 文章編號(hào):1001-988Ⅹ(2024)03-0127-06

        A new high-accuracy conservative difference scheme

        for the generalized Rosenau-KdV-RLW equation

        HU Jun-lin,LIU Zhe-han,HU Jin-song

        (School of Science,Xihua University,Chengdu 610039,Sichuan,China)

        Abstract:A new conservative difference algorithm with the high-accuracy is proposed for the initial boundary value problem of the generalized Rosenau-KdV-RLW equation.For the space direction in this scheme,the Taylor expansion and the partial extrapolation are used to make the second-order term of the truncation error be removed directly,then it can achieve the fourth-order accuracy.And for the time direction,the Crank-Nicolson method is performed so that it has second-order accuracy in time.This algorithm can simulate reasonably a conservative property of the original problem.By using discrete Sobolev embedding inequality and the discrete functional analysis method,the convergence and stability of this algorithm are proved,respectively.Finally,the numerical examples show that this algorithm is reliable.

        Key words:generalized Rosenau-KdV-RLW equation;high-accuracy conservative difference scheme;convergence;stability

        考慮廣義Rosenau-KdV-RLW方程[1,2]初邊值問(wèn)題

        ut-3ux2t+5ux4t+

        ux+3ux3+upx=0,

        x∈(xL,xR),t∈(0,T],(1)

        u|t=0=u0(x), x∈[xR,xL],(2)

        u|x=xR=u|x=xL=0,

        2ux2x=xR=2ux2x=xL=0,

        t∈(0,T],(3)

        其中u0(x)是一個(gè)已知的光滑函數(shù),p≥2為整數(shù).問(wèn)題(1)~(3)滿(mǎn)足守恒律[1,2]:

        Q(t)=∫xRxLu(x,t)dx=

        ∫xRxLu0(x)dx=Q(0),(4)

        其中Q(0)為僅與初始條件有關(guān)的常數(shù).方程(1)是描述非線(xiàn)性波動(dòng)行為的重要數(shù)學(xué)模型,在許多領(lǐng)域都有著廣泛的應(yīng)用,著名的KdV方程[3]、RLW方程[4]和Rosenau方程[5]等均可視為其特殊情形,其數(shù)值求解方法研究也備受關(guān)注[6-16].由于不能用離散分部求和公式[17]在齊次邊界條件下推導(dǎo)出如下結(jié)論[16]:

        (n)p,2n=0, p≥2,

        故文獻(xiàn)[16]不能從理論上嚴(yán)格保證其方法的有效性.本文利用Tayor展開(kāi),在空間層做部分外推離散,直接從整體上抵消空間截?cái)嗾`差的二階部分,在時(shí)間層采用Crank-Nicolson格式,從而對(duì)問(wèn)題(1)~(3)提出一個(gè)理論精度為O(τ2+h4)的兩層非線(xiàn)性差分格式,并合理模擬了守恒量(4),并利用離散Sobolev嵌入不等式[17]和離散泛函分析方法給出了其收斂性和穩(wěn)定性的理論證明,最后進(jìn)行數(shù)值驗(yàn)證.

        1? 差分格式及其守恒律

        對(duì)區(qū)域[xL,xR]×[0,T]作等距網(wǎng)格剖分,設(shè)時(shí)間步長(zhǎng)為τ,令

        tn=nτ, 0≤n≤N,N=Tτ;

        xj=xL+jh, 0≤j≤J,h=xR-xLJ

        為空間步長(zhǎng);記unj=u(xj,tn),Unj≈u(xj,tn),約定C是一般常數(shù),且C>0.并定義

        (Unj)x=Unj+1-Unjh, (Unj)=Unj-Unj-1h,

        (Unj)=Unj+1-Unj-12h, (Unj)t=Un+1j-Unjτ,

        Un+1/2j=Un+1j+Unj2, Un,Vn=h∑J-1j=1UnjVnj,

        Un2=Un,Un, Un∞=max1≤j≤J-1Unj,

        Z0h={U=(Uj):U-2=U-1=U0=UJ=UJ+1=

        UJ+2=0, j=-2,-1,…,J+1,J+2}.

        若函數(shù)u(x,t)足夠光滑,當(dāng)τ,h→0時(shí),通過(guò)Taylor展開(kāi)可得

        (unj)x=2ux2nj+112h24ux4nj+O(h4),(5)

        (unj)=2ux2nj+13h24ux4nj+O(h4),(6)

        (unj)x=3ux3nj+14h25ux5nj+O(h4),(7)

        (unj)=3ux3nj+12h25ux5nj+O(h4).(8)

        由(5)~(8)式,有

        23(unj)x+13(unj)=2ux2nj+

        16h24ux4nj+O(h4),(9)

        43(unj)x-13(unj)=3ux3nj+

        16h25ux5nj+O(h4),(10)

        (unj)t=utn+1/2j+O(τ2),(11)

        (unj)=uxnj+16h23ux3nj+O(h4),(12)

        [(unj)p]=upxnj+16h23upx3nj+O(h4),(13)

        (unj)xx=4ux4nj+16h26ux6nj+O(h4).(14)

        將方程(1)對(duì)x兩次求偏導(dǎo),則有

        3ux2t-5ux4t+7ux6t+

        3ux3+5ux5+3upx3=0,(15)

        再將方程(1)在點(diǎn)(xj,tn+1/2)處進(jìn)行差分離散,并結(jié)合(9)~(14)式有

        (unj)t-23(unj)xt+13(unj)t-

        16h25ux4tn+1/2j+

        (unj)xxt-16h27ux6tn+1/2j+

        (un+1/2j)-16h23ux3n+1/2j+

        43(un+1/2j)x-13(un+1/2j)-

        16h25ux5n+1/2j+

        [(un+1/2j)p]-16h23upx3n+1/2j=

        O(τ2+h4).

        結(jié)合(15)式,整理有

        (unj)t-23(unj)xt+13(unj)t+

        (unj)xxt+(un+1/2j)+

        43(un+1/2j)x-13(un+1/2j)+

        [(un+1/2j)p]+16h23ux2tnj=

        O(τ2+h4).

        再由(5)式可得

        (unj)t-23(unj)xt+13(unj)t+

        (unj)xxt+(un+1/2j)+

        43(un+1/2j)x-13(un+1/2j)+

        [(un+1/2j)p]+16h2(unj)xt=

        O(τ2+h4).(16)

        于是,對(duì)問(wèn)題(1)~(3)構(gòu)造如下差分格式:

        (Unj)t-23(Unj)xt+13(Unj)t+

        (Unj)xxt+(Un+1/2j)+

        43(Un+1/2j)x-13(Un+1/2j)+

        [(Un+1/2j)p]+16h2(Unj)xt=0,

        j=1,2,…,J-1,

        n=0,1,…,N-1;(17)

        Unj=u0(xj), j=0,1,…,J;(18)

        Un∈Z0h, n=0,1,…,N.(19)

        定理1? 差分格式(17)~(19)關(guān)于離散能量

        Qn=h∑J-1j=1Unj=Qn-1=…=Q0(20)

        守恒,其中,n=1,2,…,N.

        證明? 將(17)式兩端乘以h后,對(duì)j從1到J-1求和,由邊界條件(19)和分部求和公式[17]有

        h∑J=1j=1(Unj)t=0,

        由Qn的定義,關(guān)于n遞推即可得(20)式.? 】

        2? 收斂性和穩(wěn)定性

        定義差分格式(17)~(19)的截?cái)嗾`差為:

        rnj=(unj)t-23(unj)xt+13(unj)t+

        (unj)xxt+(un+1/2j)+

        43(un+1/2j)x-13(un+1/2j)+

        [(un+1/2j)p]+16h2(unj)xt,

        j=1,2,…,J-1,

        n=0,1,…,N-1;(21)

        u0j=u0(xj), j=0,1,…,J;(22)

        un∈Z0h, n=0,1,…,N.(23)

        由(16)式可知,當(dāng)h,τ→0時(shí),

        |rnj|=O(τ2+h4).(24)

        引理1[8]? 設(shè)u0足夠光滑,則初邊值問(wèn)題(1)~(3)的解滿(mǎn)足:

        uL∞≤C, uxL∞≤C.

        引理2[15]? 對(duì)U∈Z0h有U2≤Ux2.

        定理2? 設(shè)u0足夠光滑,若時(shí)間步長(zhǎng)τ和空間步長(zhǎng)h充分小,則差分格式(17)~(19)的解Un以·∞收斂到初邊值問(wèn)題(1)~(3)的解,且收斂階為O(τ2+h4).

        證明? 用數(shù)學(xué)歸納法.記enj=unj-Unj,由(21)~(23)式減去(17)~(19)式,有

        rnj=(enj)t-23(enj)xt+13(enj)t+

        (enj)xxt+(en+1/2j)+

        43(en+1/2j)x-13(en+1/2j)+

        [(un+1/2j)p]-[(Un+1/2j)p]+h26(enj)xt,

        j=1,2,…,J-1,

        n=0,1,…,N-1;(25)

        e0j=0, j=0,1,…,J;(26)

        en∈Z0h, n=0,1,…,N.(27)

        由引理1以及(24)式知,存在與τ和h無(wú)關(guān)的常數(shù)Cu和Cr,使得

        un∞≤Cu, rn∞≤Cr(τ2+h4),

        n=1,2,…,N.(28)

        再由(26)式以及(18)式可得以下估計(jì):

        e0=0, U0≤Cu.(29)

        現(xiàn)在假設(shè)當(dāng)n≤N-1時(shí),有

        el+elx+elxx≤Cl(τ2+h4),(30)

        其中Cl(l=1,2,…,n)為與τ和h無(wú)關(guān)的常數(shù),則由離散的Sobolev不等式[17]和Cauchy-Schwarz不等式,有

        el∞≤C0elelx+el≤

        12C0(2el+elx)≤

        32C0Cl(τ2+h4),(31)

        Ul∞≤ul∞+el∞≤

        Cu+32C0Cl(τ2+h4),

        l=1,2,…,n.(32)

        將(25)式兩端與en+1/2取內(nèi)積,由邊界條件(27)式和分部求和公式[17],并注意到

        en+1/2,en+1/2=0,

        en+1/2x,en+1/2=0,

        en+1/2,en+1/2=0,

        整理得

        12en2t+13-h212enx2t+

        16en2t+12enxx2t=

        rn,en+1/2-[(un+1/2)p-

        (Un+1/2)p],en+1/2.(33)

        再取h和τ充分小,使得

        32C0·max0≤l≤nCl(τ2+h4)≤1,(34)

        則由(32),(34)式和分部求和公式[17]、引理2以及Cauchy-Schwarz不等式可得

        -[(un+1/2)p-(Un+1/2)p],en+1/2=

        [(un+1/2)p-(Un+1/2)p],en+1/2=

        h∑J-1j=1en+1/2j∑p-1i=1(un+1/2j)p-1-i(Un+1/2j)i)×

        (en+1/2j)≤

        ∑p-1i=1(Cu)p-1-i(Cu+1)ih×

        ∑J-1j=1en+1/2j·(en+1/2j)≤

        p(Cu+1)p-1h∑J-1j=1en+1/2j·(en+1/2j)≤

        p2(Cu+1)p-1en+1/22+en+1/2x2≤

        p4(Cu+1)p-1(en+12+en2+

        en+1x2+enx2),(35)

        rn,en+1/2≤12rn2+

        14(en+12+en2).(36)

        將(35)和(36)式代入(33)式,整理得

        (en+12-en2)+23-h26×

        (en+1x2-enx2)+

        13(en+12-en2)+

        (en+1xx2-enxx2)≤

        τrn2+12τ(en+12+en2)+

        τp2(Cn+1)p-1×

        (en+12+en2+en+1x2+enx2)≤

        τrn2+τp(Cu+1)p-1(en+12+

        en2+en+1x2+enx2).(37)

        An=en2+enx2+enxx2,

        Bn=en2+23-h26enx2+

        13en2+enxx2,

        將(37)式從1到n遞推求和,并整理有

        Bn+1≤B1+τ∑nk=1rk2+

        τ∑n+1k=12p(Cn+1)p-1×

        (ek2+ekx2).(38)

        由(28)式和(30)式有

        τ∑nk=1rk2≤nτmax1≤k≤nrk2≤T(Cr)2(τ2+h4)2,

        B1≤(C1)2(τ2+h4)2,

        取h充分小使得2/3-h2/6>1/3,則(38)式變?yōu)?/p>

        An+1≤3Bn+1≤3(T(Cr)2+(C1)2)(τ2+h4)2+

        τ∑n+1k=16p(Cu+1)p-1Ak.

        利用離散Gronwall不等式[17],取

        τ<112p(Cn+1)p-1,

        An+1≤(Cn+1)2(τ2+h4)2, n=1,2,…,N-1,

        其中Cn+1=(3TCr+3C1)eT[6p(Cu+1)p-1].顯然常數(shù)Cn+1與時(shí)間層n無(wú)關(guān).從而由歸納假設(shè)有

        en≤O(τ2+h4), enx≤O(τ2+h4),

        enxx≤O(τ2+h4), n=1,2,…,N.

        最后由離散的Sobolev不等式[17],有

        en∞≤O(τ2+h4), n=1,2,…,N.? 】

        定理3? 在定理2的條件下,差分格式(17)~(19)的解滿(mǎn)足:

        Un∞≤0, n=1,2,…,N,

        其中0是與τ和h無(wú)關(guān)的常數(shù).

        證明? 對(duì)于充分小的τ和h,由定理2有

        Un∞≤un∞+en∞≤0.? 】

        注1? 定理3表明差分格式(17)~(19)的解Un以·∞關(guān)于初值穩(wěn)定.

        3? 數(shù)值實(shí)驗(yàn)

        考慮p=3和p=5兩種情形進(jìn)行數(shù)值實(shí)驗(yàn).當(dāng)p=3時(shí),方程(1)的孤波解[1]為

        u(x,t)=15(57-5)/(45(57-5)-8)×

        sech218257-10

        x-142(557+33)t;

        當(dāng)p=5時(shí),方程(1)的孤波解[1]為

        u(x,t)=3-3/42243-10×

        (9/80(43-5)-72))1/4×

        sech16443-20×

        x-191(59+1043)t.

        在數(shù)值實(shí)驗(yàn)中,取初值函數(shù)u0(x)=u(x,0).固定xL=-40,xR=120,T=40.就τ和h的不同取值,數(shù)值解在一些不同時(shí)刻的誤差見(jiàn)表1~2,對(duì)差分格式(17)~(19)的理論精度檢驗(yàn)見(jiàn)表3~4,對(duì)守恒量(4)的數(shù)值模擬部分?jǐn)?shù)據(jù)見(jiàn)表5.

        從數(shù)值實(shí)驗(yàn)結(jié)果可以看出,本文對(duì)問(wèn)題(1)~(3)提出的差分格式(17)~(19)是可靠的.

        參考文獻(xiàn):

        [1]? RAZBOROVA P,AHMED B,BISWAS A.Solitons,shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity[J].Appl Math Inf Sci,2014,8(2):485.

        [2]? SANCHEZ P,EBADI G,MOJAVER A,et al.Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity[J].Acta Phys Polon A,2015,127(6):1577.

        [3]? KORTEWAG D J,DEVRIES G.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves[J].Philos Mag,1985,39(5):422.

        [4]? BENJAMIN T B,BONA J L,MAHONY J J.Model equations for long waves in nonlinear dispersive systems[J].Philos T R Soc B,1972,272:47.

        [5]? ROSENAU P.A quasi-continuous description of a nonlinear transmission line[J].Phys Scripta,1986,34:827.

        [6]? FOROUTAN M,EBADIAN A,Chebyshev rational approximations for the Rosenau-KdV-RLW equation on the whole line[J].Int J Anal Appl,2018,16(1):1.

        [7]? SIBEL .An effective numerical technique for the Rosenau-KdV-RLW equation[J].Balkesir niv Fen Bilim Enst derg,2018,20(3):1.

        [8]? 卓茹,李佳佳,胡勁松.求解廣義Rosenau-KdV-RLW方程的一個(gè)非線(xiàn)性守恒差分格式[J].四川大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,54(4):703.

        [9]? WONGSAIJAI B,POOCHINAPAN K.A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation[J].Appl Math Comput,2014,245:289.

        [10]? PAN X,WANG Y,ZHANG L.Numerical analysis of a pseudo-compact C-N conservative scheme for the Rosenau-KdV equation coupling with the Rosenau-RLW equation[J].Bound Value Probl,2015:65.

        [11]? SHALLU,KUMAR K V.An efficient collocation algorithm with SSP-RK43 scheme to solve Rosenau-KdV-RLW equation[J].Int J Ap Mat Com-Pol,2021,7(161):1.

        [12]? AHMAT M,QIU J X.SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation[J].J Math Study,2022,55(1):1.

        [13]? ANKUR,JIWARI R,KUMAR N.Analysis and simulation of Korteweg-de Vries-Rosenau-Regularised long-wave model via Galerkin finite element method[J].Comput Math Appl,2023,135:134.

        [14]? VERMA A K,RAWANI M K.Numerical solutions of generalized Rosenau-KdV-RLW equation by using haar wavelet collocation approach coupled with nonstandard finite difference scheme and quasilinearization[J].Numer Meth Part D E,2022,39(2):1085.

        [15]? GHILOUFI A,OMRANI K.New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves[J].Numer Meth Part D E,2018,34(2):451.

        [16]? WANG X,DAI W.A new conservative finite difference scheme for the generalized Rosenau-KdV-RLW Equation[J].Comput Math Appl,2020,39(3):1.

        [17]? ZHOU Y.Application of Discrete Functional Analysis to the Finite Difference Method[M].Beijing:International Academic Publishers,1991.

        (責(zé)任編輯? 馬宇鴻)

        猜你喜歡
        收斂性穩(wěn)定性
        一類(lèi)k-Hessian方程解的存在性和漸近穩(wěn)定性
        SBR改性瀝青的穩(wěn)定性評(píng)價(jià)
        石油瀝青(2021年4期)2021-10-14 08:50:44
        行間AANA隨機(jī)變量陣列加權(quán)和的完全矩收斂性
        WOD隨機(jī)變量序列的完全收斂性和矩完全收斂性
        END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
        非線(xiàn)性中立型變延遲微分方程的長(zhǎng)時(shí)間穩(wěn)定性
        END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
        半動(dòng)力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
        行為ND隨機(jī)變量陣列加權(quán)和的完全收斂性
        松弛型二級(jí)多分裂法的上松弛收斂性
        久久99久久99精品免视看国产成人| 亚洲热线99精品视频| 女人扒开下面无遮挡| 男女好痛好深好爽视频一区 | 久久久久久久女国产乱让韩| 国产一级淫片a免费播放口| 国产另类人妖在线观看| 真人抽搐一进一出视频| 国产成人无码免费网站| 精品国产高清a毛片| 亚洲无毛成人在线视频| 无码人妻丰满熟妇啪啪网站| 中文乱码人妻系列一区二区| 中文字幕麻豆一区二区| 日本精品免费看99久久| 屁屁影院ccyy备用地址| 国产一国产一级新婚之夜| 男女搞黄在线观看视频| 国产成人精品一区二区20p| 精品人妻无码一区二区三区蜜桃一 | 自拍视频在线观看成人| 国产自拍偷拍精品视频在线观看| 日韩亚洲欧美中文在线| 亚洲人妻无缓冲av不卡| 久久久国产精品首页免费| 亚洲精品国偷拍自产在线| 少妇人妻偷人精品一区二区| 亚洲无码美韩综合| 自由成熟女性性毛茸茸应用特色| 欧美午夜刺激影院| 国产成人综合久久久久久 | 国产日产一区二区三区四区五区| 十八18禁国产精品www| 免费无码又爽又刺激高潮的视频网站 | 久久午夜夜伦鲁鲁片免费无码 | 国产精品天天看大片特色视频| 亚洲中文字幕乱码在线观看| 亚洲性久久久影院| 亚洲h视频| av免费在线观看网站大全| 欧美xxxx做受欧美88|