收稿日期:2023-12-04
基金項目:國家自然科學基金面上項目(52274001,52074018);中石化科技部課題(P21069)
第一作者:孫騰飛(1986-),男,教授,博士,碩士生導師,研究方向為井筒安全技術(shù)與管理。E-mail:suntengfei@mail.buct.edu.cn。
通信作者:孔祥偉(1982-),男,教授,博士,博士生導師,研究方向為井控技術(shù)。E-mail:76922591@qq.com。
文章編號:1673-5005(2024)02-0083-09""" doi:10.3969/j.issn.1673-5005.2024.02.009
摘要:考慮相界面雷諾應力、拖拽力、虛擬質(zhì)量力、氣液物性差異等參數(shù),創(chuàng)建井筒多相壓力波速及壓力響應數(shù)學模型,基于超深井環(huán)空多相壓力波響應圖版唯一性,提出壓力波響應圖版識別超深井氣侵位置的新方法;考慮井口氣體溢流量、回壓、鉆井液密度等邊界參數(shù),結(jié)合差分數(shù)學方法對其求解,該方法在超深井YS1井(8680 m)驗證,壓力響應誤差小于等于1.703 s,計算與實測誤差小于等于6.15%。結(jié)果表明:隨回壓增大,井筒流體可壓縮性減小,井筒壓力波速增大,壓力響應時間減?。浑S井口氣體溢流量增大,環(huán)空空隙率增大,壓力波速減小,井筒壓力響應時間延長,井口氣體溢流量從0.83 L/min變化至38.33 L/min,井底8680 m處壓力響應時間從10.127 s增至36.643 s,增大了261.83%;氣侵位置識別結(jié)果不僅取決于井口壓力及流量傳感器準確度,也與壓力波響應圖版計算準確性有關(guān);實踐證明借助壓力波響應圖版識別超深井氣侵溢流位置的方法可行。
關(guān)鍵詞:壓力波響應圖版; 氣侵位置; 壓力波速; 多相流; 多相壓力
中圖分類號:TE 122.3""" 文獻標志碼:A
引用格式:孫騰飛,李永安,張楊,等. 基于多相壓力波響應圖版識別超深井氣侵位置[J].中國石油大學學報(自然科學版),2024,48(2):83-91.
SUN Tengfei, LI Yongan, ZHANG Yang, et al. Identification of gas invasion location in ultra-deep wells based on multiphase pressure wave response chart[J]. Journal of China University of Petroleum(Edition of Natural Science),2024,48(2):83-91.
Identification of gas invasion location in ultra-deep wells based
on multiphase pressure wave response chart
SUN Tengfei1, LI Yongan1, ZHANG Yang1, KONG Xiangwei2
(1.School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
2.Petroleum Engineering College, Yangtze University, Wuhan 430000, China)
Abstract: In this study, considering the parameters of phase interface Reynolds stress, drag force, virtual mass force and gas-liquid physical property difference, a mathematical model of wellbore multiphase pressure wave velocity and pressure response was established, and a new method for identifying the location of gas invasion in ultra-deep wells was proposed based on the uniqueness of the multiphase pressure wave response chart in the wells. In consideration of the boundary parameters, such as wellhead gas overflow rate, backpressure and drilling fluid density, the solution of the model was programed using a differential mathematical method. The new method was verified using the data from an ultra-deep well YS1 (8680 m), with the pressure response error less than 1.703 s, and the calculation and measurement error less than 6.15% for predicting the gas invasion location. The results show that, with the increase of the backpressure, the compressibility of wellbore fluid decreases the velocity of wellbore pressure wave increases and the pressure response time decreases. With the increase of the wellhead gas flow rate, the annulus void ratio increases, the pressure wave velocity decreases and the wellbore pressure response time will be prolonged. For instance, when the wellhead gas flow changes from 0.83 L/min to 38.33 L/min, the pressure response time at 8680 m of the bottom hole can be increased by 261.83%, from 10.127 s to 36.643 s. The results of gas invasion location identification not only depend on the accuracy of wellhead pressure and flow sensors, but also on the calculation accuracy of the pressure wave response chart. This study has proved that identifying the gas invasion location in ultra-deep wells by means of the pressure wave response chart is feasible.
Keywords: pressure wave response chart; gas invasion location; pressure wave velocity; multiphase flow; multiphase pressure
近年由于石油及天然氣勘探開發(fā)的需要,超深井鉆井井位增加,鉆井技術(shù)也隨之迅速發(fā)展[1-5]。據(jù)不完全統(tǒng)計,目前世界上已鉆成
8000 m以上超深井15口,其中美國6口、前蘇聯(lián)2口、挪威1口、奧地利1口、原民主德國1口、中國4口。2015年中國石油塔里木油田克深902井完鉆,實現(xiàn)8000 m鉆井的成功突破[6-10];中國石化完成2018年度亞洲第1深井川深1井,完井井深為8690 m;2019年中國石油勘探完成輪探1井完鉆井深達8882 m,打破了川深1井的紀錄。2022年6月雙魚001-H6井以9010 m井深順利完鉆,在成功突破9000 m的同時創(chuàng)造了截止2022年亞洲陸上最深氣井紀錄[11-17]。將井深4500~6000 m的鉆井定位為“深井”,6000~9000 m為“超深井”,超深井具有埋深大、高溫、高壓、高含硫化氫等特點,由于地層破碎、溶孔發(fā)育、地層出現(xiàn)多套壓力體系等客觀原因[18-21],易發(fā)生氣體溢流,由于超深井井底壓力呈現(xiàn)高溫、高壓等特點,氣體在井底處于高度壓縮狀態(tài),一旦發(fā)生氣體溢流,井底氣侵位置較難掌握,工程師處理氣體溢流周期較長,從而延誤了施工進度。目前超深井尚無有效快速識別氣侵位置方法,多數(shù)只局限于井口氣侵量的監(jiān)測,無法滿足深井高效處理氣體溢流的需要[22-28]。筆者考慮氣侵位置、溢流量、井口回壓等參數(shù),基于多相壓力波響應圖版唯一性,繪制不同溢流量、回壓、井深等條件下的壓力波圖版,創(chuàng)新性的提出基于壓力波圖版法識別超深井氣侵位置方法。由于井下氣侵量不易監(jiān)測,從井口回壓、氣體溢流量等可監(jiān)測參數(shù)入手,采用差分計算井筒多相流參數(shù),可為多相壓力波響應圖版制定提供基礎(chǔ)參數(shù),達到匹配識別井底氣侵位置的目的,為超深井氣侵位置識別提供理論基礎(chǔ)。
1" 多相壓力波響應模型建立
模型建立:①建立井筒多相流動模型;②基于多相流動參數(shù)建立井筒多相壓力波速數(shù)學模型;③求解相應井筒深度壓力響應時間;④利用壓力響應圖版匹配溢流發(fā)生位置。
圖1為壓力波響應圖版法識別氣侵位置設(shè)備示意圖。設(shè)備使用前,輸入井身結(jié)構(gòu)數(shù)據(jù)、鉆井液物性、井口氣體物性等基礎(chǔ)參數(shù),借助雙流體模型繪制不同井口參數(shù)條件下的井筒壓力波速圖版、壓力響應圖版,結(jié)合實時監(jiān)測的井口氣體流量、井口回壓及溫度等,匹配壓力波響應圖版,達到識別具體氣侵位置的目的。
1.1" 井筒多相流動數(shù)學模型建立
取井筒中多相流一微元控制體,井筒氣液兩相連續(xù)方程為
(A∑kρkφk)t+(A∑kρkφkvk)s=0.(1)
式中, A為環(huán)空截面積,m2;s為環(huán)空長度,m;φk為氣或鉆井液相的體積分數(shù),%;ρk為氣或鉆井液相密度,g/cm3;vk為氣或鉆井液相速度,m/s;k為氣或鉆井液相;t為時間,s。
井筒控制體氣液兩相運動方程為
(A∑kρkφkvk)t+(A∑kρkφkv2k)s+Ag∑kρkφk+(Ap)s+Apf=0.(2)
式中,g為重力加速度,m/s2;pf為摩阻梯度,MPa/m;p為壓力,MPa。
對井筒氣液兩相連續(xù)方程差分得
[Aρgvsg]n+1i+1-[Aρgvsg]n+1iΔs=[Aρgφg]ni2Δt+[Aρgφg]ni+12Δt-[Aρgφg]n+1i-[Aρgφg]n+1i+12Δt .(3)
式中,φg為空隙率; vsg為氣相表觀速度,m/s。
整理式(3)得
(Avsl)n+1i+1-(Avsl)n+1iΔs=(Aφl)ni+(Aφl)ni+1-(Aφl)n+1i-(Aφl)n+1i+12Δt .(4)
式中,Δs為控制體長度,m;vsl為鉆井液相表觀速度,m/s;φl為持液率,%;Δt為微元時間,s。
對井筒多相流控制體氣液兩相運動方程差分得
(Ap)n+1i+1-(Ap)n+1i=K1+K2+K3+K4.(5)
其中
K1=Δs2Δt[
(A(ρlvsl+ρgvsg))ni+
(A(ρlvsl+ρgvsg))ni+1-
(A(ρlvsl+ρgvsg))n+1i+
(A(ρlvsl+ρgvsg))n+1i+1],
K2=Aρlv2slφl+ρgv2sgφgn+1i-Aρlv2slφl+ρgv2sgφgn+1i+1,
K3=-gΔs2[(Aρl)n+1i+(Aρl)n+1i+1],
K4=-Δs2Apsn+1fri+Apsn+1fri+1.
式中,ρl為混相密度,kg/m3。
1.2" 井筒雙流體數(shù)學模型建立
井筒氣液雙流體連續(xù)方程為
t(φkρk)+x(φkρkvk)=0.(6)
井筒氣液雙流體動量方程為
t(φkρkvk)+x(φkρkv2k)=-x(φkρk)+xφk(τfrk+τRek)+Mki-4τkD .(7)
式中,τfrk為氣或鉆井液相剪切力,N/m2;τRek為氣/液相雷諾應力,N/m2;Mki為氣或鉆井液相界面動量交換,N/m3;τk為氣或鉆井液相管壁剪切力,N/m2;D為環(huán)空有效直徑,m。
當k為氣相時,界面動量交換量方程為
Mgi=-Mndli-Mdli+(τfrli+τReli)φlx+(φσs)x+(φpg)x-(pl)x . (8)
式中,pg為氣相壓力,MPa;Mndli為液相非拖拽力動量交換,N/m3;pl為液相壓力,MPa;Mdli為液相拖拽力的動量交換,N/m3;τReli為液相界面雷諾應力,N;τfrli為液相界面剪切力,N/m2;σs為表面張力,N/m2。
當k為液相時,界面動量交換量方程為
Mli=Mndli+Mdli+pli(φl)x-(τfrli+τReli)φlx .(9)
式中,pli為液相拖拽力引起的壓力,MPa。
非拖拽力引起的界面動量交換量方程為
Mndli=cvmφgρlavm-0.1φgρlururx-0.1ρlu2rφgx .(10)
式中,cvm為虛擬質(zhì)量力系數(shù);αvm為虛擬質(zhì)量加速度,m/s2;ur為氣相滑脫速度,m/s。
拖拽力引起動量界面交換量方程為
Mdli=38cDrρlφgu2r.(11)
式中,r為氣泡直徑,m;cD為拖拽力系數(shù)。
1.3" 井筒多相壓力響應數(shù)學模型建立
井筒多相壓力響應時間方程為
t(Hi)=∑iHici,i≤n.(12)
式中,t(Hi)為井筒中第i網(wǎng)格管長的壓力響應時間,s;Hi為井筒中i網(wǎng)格長度,m;ci為井筒中第i網(wǎng)格管長的壓力波速,m/s。
在氣液雙流體中沿井筒返回的壓力波傳輸時間為
T1=∑iHi/ci,i≤n.(13)
式中,T1為在氣液雙流體中沿井筒返回的壓力波傳播時間,s。
在單相鉆井液中沿井筒返回的壓力波傳播的時間為
T2=∑iHi/c,i≤n.(14)
式中,T2為在單相鉆井液中沿井筒返回的壓力波傳播的時間,s;c為壓力波在不含氣的單相鉆井液中傳播速度,m/s。
計算出的壓力波返回時差為
ΔT=T1-T2.(15)
式中,ΔT為計算出的壓力波返回時差,s。
Tc-(T1-T2)lt;δ.(16)
式中,Tc為壓力傳感器檢測到壓力波返回時差,s;δ為氣侵漏點計算精度,m。
H=∑iHi,i≤n.(17)
式中,H為氣侵位置以上井段長度,m。
2" 模型求解及驗證
2.1" 模型求解
井筒氣侵位置識別計算流程如圖2所示,具體步驟如下:
(1)對井筒劃分n個單元網(wǎng)格,將第i個井筒網(wǎng)格(t時刻)氣相密度、黏度、壓力等參數(shù)視為恒定,t=0時刻作為壓力波速求解的初始邊界條件。
(2)可通過差分方法確定第t=i+1個網(wǎng)格氣相偏差因子、氣相密度、氣相黏度、井筒壓力、溫度、空隙率等物性參數(shù)。
(3)考慮每個網(wǎng)格初始井筒多相流動參數(shù),結(jié)合流體數(shù)學模型求解每個井筒網(wǎng)格氣相壓力波速。
(4)根據(jù)各網(wǎng)格壓力波速,求取各網(wǎng)格的壓力響應時間,同時對每個網(wǎng)格壓力響應時間相加,可得到求取點的地面壓力響應時間,得到多相壓力波響應圖版。
(5)計算出氣侵位置與壓力波時差之間的對應關(guān)系,計算的兩個壓力傳感器檢測到壓力波在兩條路徑中傳播的時間差與迭代計算出的壓力響應之間的差值,若滿足精度要求,則結(jié)束運算,此時可得到井筒氣侵位置;反之,進入下一個網(wǎng)格,重復上述步驟至滿足精度要求。
2.2" 模型驗證
通過求解環(huán)空雙流模型,得到不同工況下井筒壓力波速。由于壓力波速的計算是影響壓力波響應圖版繪制準確度的關(guān)鍵因素,對壓力為30 MPa條件下的模型計算結(jié)果與前人試驗實測的壓力波速[29]進行對比,如圖3所示。模型計算結(jié)果與前人試驗測試數(shù)據(jù)具有一致性。
3" YS1井壓力波特性及溢流位置預測
由于YS1井井身8680 m屬于特深層井,該井配置了回壓測量裝置,可以驗證測試模型的準確性,因此選用YS1井作為實例井。2022年開展YS1井五開現(xiàn)場井的驗證,圖4為現(xiàn)場壓力波響應測試關(guān)鍵設(shè)備,井眼直徑Φ165.1 mm,尾管直徑Ф139.7 mm,該井目的層位為燈影組,井深為8680 m。
圖5為YS1井井底壓力響應測試井身結(jié)構(gòu)示意圖?,F(xiàn)場試驗使用主要測試設(shè)備包括壓力傳感器、溫度傳感器、泵沖傳感器、節(jié)流閥位指示器及科里奧利流量計等裝置,整個試驗過程歷時98.2 h,設(shè)備和軟件運轉(zhuǎn)正常,數(shù)據(jù)采集、傳輸及時可靠、壓力波信號提取到位。
YS1井五開8680 m井深處,鉆井液密度為2100 kg/m3、氣體相對密度為0.65、套壓0.5 MPa、井口氣體流量為3.33 L/min、氣體黏度為1.14×10-5 Pa·s;鉆桿彈性模量為2.07×1011 Pa、粗糙度為1.54×10-7 m、泊松比為0.3;地表溫度為298 K、地溫梯度為0.025 ℃/m。
圖6為現(xiàn)場試驗測試壓力響應時間與模型計算結(jié)果對比。由圖6可得:井深8680 m時,回壓為0.1 MPa時,實測和計算井底壓力響應分別為33.023和31.09 s,誤差小于等于5.97%;回壓為0.5 MPa時,實測和計算井底壓力響應分別為27.703和26.00 s,誤差小于等于6.15%。
3.1" 井口回壓對空隙率、壓力波速和壓力響應時間的影響
圖7為回壓對井筒空隙率、壓力波速及壓力響應時間的影響。由圖7可以看出:當回壓增大時,相當于在密閉井筒中整體增大壓力,使井筒中的多相流體可壓縮性減小,因此井筒空隙率呈現(xiàn)減小趨勢,井筒壓力波速增大,壓力響應時間減?。挥捎诹黧w在井底承受高壓,回壓的加載對井底壓力波速的影響較小。當井深大于等于6600 m且井口回壓大于等于1.5 MPa時,壓力波速趨于恒定,這是由于當壓力增大到一定極值時,氣體可壓縮性變小的緣故,氣液兩相壓力波速趨于液相壓力波速,其最大值趨于鉆井液相壓力波速;隨著井口回壓的增大,井底接收到的壓力響應時間呈減小趨勢,井底壓力響應時間主要受井筒壓力波速的影響,井口回壓的增大,增大了壓力傳遞速度,從而使井底壓力響應時間減小。
3.2" 井口氣體溢流量對空隙率、壓力波速和壓力響應時間的影響
井口氣體溢流量對井筒空隙率、壓力波速及壓力響應時間的影響如圖8所示。井底氣體沿井筒運移至井口過程中,
井筒壓力逐漸減小,使多相流的壓縮性增大,從而空隙率呈增大趨勢。隨氣侵量增大,環(huán)空空隙率增大,使整個環(huán)空氣體體積增大,井筒中多相流體的可壓縮性增大,壓力波速減小,從而壓力響應時間增大。
及壓力響應時間的影響
當井口氣體溢流量為0.83 L/min時,井深100 m同井底8680 m比較,空隙率從36.744%減至0.011%,減小99.97%;當井口氣體溢流量為38.33 L/min時,井深100 m同井底8680 m比較,空隙率從96.642%減至1.668%,減小98.24%。當井口氣體溢流量為0.83 L/min時,壓力波速在井深區(qū)間[0,4000 m]增大幅度較大,當井深D>4000 m時,壓力波速變化趨于平緩。當井口氣體溢流量為38.33 L/min時,井筒多相壓力波速呈線性增大趨勢。
隨著井口氣體溢流量的增大,井底壓力響應時間呈增大趨勢。井口氣體溢流量從0.83 L/min增至38.33 L/min,井深4000 m壓力響應時間從6.362 s增大至30.498 s,增大了379.38%。相同井口氣體溢流量增量,井深的變化對壓力響應時間的影響較為敏感,井底8680 m壓力響應時間從10.127 s增大至36.643 s,增大了261.83%。
3.3" 井底氣侵量為2.3 L/s時溢流量和空隙率的變化規(guī)律
圖9為井底氣侵量為2.3 L/s時井口回壓對溢流量的影響,圖10為氣侵位置(井底氣侵量為2.3 L/s)對空隙率的影響。
相同的井底氣侵量,隨著井深的增大,井口氣體量大幅增大,井筒空隙率也呈增大趨勢。當井深D=8680 m時,井底出氣量為2.3 L/s,當氣體運移至井口時,井口氣體溢流量為2365.79 L/s,這是由于井底壓力較井口壓力增大數(shù)百倍,導致井底氣體運移至井口時,氣體體積膨脹1028.6倍。
3.4" 氣侵位置對井筒多相壓力波速及壓力響應時間的影響
圖11為氣侵位置對井筒多相壓力波速及壓力響應時間圖版的影響。井筒壓力響應時間變化的實質(zhì)受氣液兩相介質(zhì)可壓縮性影響,當氣體可壓縮性小時,井筒氣液兩相壓力響應時間短。在井口附近或井筒深度較小(D≤500 m)處,井筒氣體的可壓縮性較大,從而井筒氣液兩相的壓力響應時間大幅增加。相同的井底氣侵量,井深從500 m變化至8680 m,壓力響應時間從6.605 s增至37.087 s,增加461.49%。
3.5" YS1井氣侵位置預測
表1為預測YS1井氣侵位置數(shù)據(jù)。隨著氣侵量的增大預測誤差呈減小趨勢。采用環(huán)空水力學模型對各參數(shù)進行龍格庫塔迭代,得出環(huán)空中不同網(wǎng)格的環(huán)空空隙率的分布、波速響應時間、氣侵位置與壓力波響應時間之間存在的一一對應關(guān)系,用本文中建立的預測氣侵位置的方法,可計算得到相應預測井深,預測氣侵位置與實測值具有一致性。
4" 結(jié)" 論
(1)針對超深井氣體溢流復雜工況,創(chuàng)建了井筒多相壓力波速及壓力響應數(shù)學模型,提出了壓力波響應圖版識別超深井氣侵位置的新方法??紤]氣相壓縮性、氣相壓力波速、井深等因素的數(shù)學模型,具有精度高、預測速度快的優(yōu)點,不僅適用于超深井,也適用于中淺井。
(2)隨井深的增大,井口氣體量大幅增大,井筒空隙率也呈增大趨勢;隨井口回壓的增大,井底接收到的壓力響應時間呈減小趨勢;隨氣侵量增大,環(huán)空空隙率增大,使整個環(huán)空氣體體積增大,井筒中多相流體的可壓縮性增大,壓力波速減小,從而壓力響應時間增大。
(3)壓力波響應圖版法識別氣侵位置準確性不僅依靠監(jiān)測設(shè)備的準確性,也依靠壓力波速計算的準確度,在井口監(jiān)測出壓力反射波,從而計算出壓力響應時間;壓力波響應圖版不僅可以預測氣侵發(fā)生位置,還可以指導控壓鉆井節(jié)流閥動作時間間隔、多相波動壓力計算等。參考文獻:
[1]" 蘇義腦,路保平,劉巖生,等.中國陸上深井超深井鉆完井技術(shù)現(xiàn)狀及攻關(guān)建議[J].石油鉆采工藝,2020,42(5):527-542.
SU Yinao, LU Baoping, LIU Yansheng, et al. Current status and suggestions for key technologies in the drilling and completion of deep and ultra deep wells on land in China[J]. Petroleum Drilling and Production Technology, 2020,42(5):527-542.
[2]" 薛飛.深井超深井鉆井技術(shù)現(xiàn)狀和發(fā)展研究[J].化工管理,2013(22):63.
XUE Fei. Research on the current situation and development of deep and ultra deep well drilling technology [J]. Chemical Management, 2013(22):63.
[3]" 呂開河,杜宏艷,孫金聲,等.含油鉆屑處理技術(shù)研究進展與展望[J].中國石油大學學報(自然科學版),2023,47(3):78-86.
L Kaihe, DU Hongyan, SUN Jinsheng, et al. Research and development of oily drilling cuttings treatment technologies[J]. Journal of China University of Petroleum(Edition of Natural Science),2023,47(3):78-86.
[4]" 孫金聲,蔣官澄,賀垠博,等.油基鉆井液面臨的技術(shù)難題與挑戰(zhàn)[J].中國石油大學學報(自然科學版),2023,47(5):76-89.
SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):76-89.
[5]" 梁云棟,何琳,徐榮武,等.高精度液壓系統(tǒng)壓力波傳遞速度在線測量試驗[J].國防科技大學學報,2022,44(2):195-202.
LIANG Yundong, HE Lin, XU Rongwu, et al. High precision hydraulic system pressure wave transmission speed online measurement experiment [J]. Journal of National University of Defense Science and Technology, 2022,44(2):195-202.
[6]" 孔祥偉,林元華,邱伊婕,等.鉆井泥漿泵失控/重載引發(fā)的波動壓力[J].石油學報,2015,36(1):114-119.
KONG Xiangwei, LIN Yuanhua, QIU Yijie, et al. Fluctuation pressure caused by uncontrolled/overloaded drilling mud pumps [J]. Acta Petrolei Sinica, 2015,36(1):114-119.
[7]" VONGVUTHIPORNCHAI S, RAGHAVAN R. Pressure falloff behavior in vertically fractured wells: non-Newtonian power-law fluids[J]. SPE Formation Evaluation, 1987,2(4):573-589.
[8]" WEISS W W, BALDWIN R W. Planning and implementing a large-scale polymer flood[J]. Journal of Petroleum Technology, 1985,37(4):720-730.
[9]" 李陽,趙清民,薛兆杰.新一代油氣開發(fā)技術(shù)體系構(gòu)建與創(chuàng)新實踐[J].中國石油大學學報(自然科學版),2023,47(5):45-54.
LI Yang, ZHAO Qingmin, XUE Zhaojie. Construction and innovative practice of new generation oil and gas development technology system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023,47(5):45-54.
[10]" 孔祥偉,林元華,何龍,等.一種考慮虛擬質(zhì)量力的兩相壓力波速經(jīng)驗模型[J].力學季刊,2015,36(4):611-617.
KONG Xiangwei, LIN Yuanhua, HE Long, et al. A two-phase pressure wave velocity empirical model considering virtual mass forces [J]. Journal of Mechanics Quarterly, 2015,36(4):611-617.
[11]" 王剛,劉剛,張悅,等.深水大尺寸井眼鉆進鉆井液雙循環(huán)攜巖方法[J].中國石油大學學報(自然科學版),2022,46(2):113-120.
WANG Gang, LIU Gang, ZHANG Yue, et al. Method of double drilling fluid circulation for cuttings carrying in large-size wellbore during deepwater drilling[J]. Journal of China University of Petroleum(Edition of Natural Science),2022,46(2):113-120.
[12]" 呂開河,王晨燁,雷少飛,等.裂縫性地層鉆井液漏失規(guī)律及堵漏對策[J].中國石油大學學報(自然科學版),2022,46(2):85-93.
L Kaihe, WANG Chenye, LEI Shaofei, et al. Dynamic behavior and mitigation methods for drilling fluid loss in fractured formations[J]. Journal of China University of Petroleum(Edition of Natural Science),2022,46(2):85-93.
[13]" 王慶.基于壓力信號的氣液兩相流泄漏檢測研究[D].青島:中國石油大學(華東),2017.
WANG Qing. Research on leakage detection of gas-liquid two phase flow based on pressure signal[D]. Qingdao:China University of Petroleum (East China), 2017.
[14]" WANG Y, CHENG S Q, ZHANG K D, et al. A comprehensive work flow to characterize waterflood-induced fractures by integrating real-time monitoring, formation test, and dynamic production analysis applied to Changqing Oilfield, China[J]. SPE Reservoir Evaluation amp; Engineering, 2018,22(2):692-708.
[15]" DU Q J, PAN G M, HOU J, et al. Study of the mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery for post-polymer-flooded reservoirs[J]. Petroleum Science, 2019,16(3):606-618.
[16]" 劉璞.節(jié)流壓井井筒壓力動態(tài)響應分析研究[D].成都:西南石油大學,2017.
LIU Pu. Analysis and research on dynamic response of choke and kill wellbore pressure [D]. Chengdu:Southwest Petroleum University, 2017.
[17]" 閆鐵,屈俊波,孫曉峰,等.控壓鉆井回壓壓力波在井筒中傳播的速度和時間規(guī)律[J].天然氣工業(yè),2017,37(11):77-84.
YAN Tie, QU Junbo, SUN Xiaofeng, et al. The velocity and time pattern of backpressure wave propagation in wellbore during controlled pressure drilling[J]. Natural Gas Industry, 2017,37(11):77-84.
[18]" 李紅濤.復雜流體介質(zhì)條件下井筒壓力波傳播規(guī)律研究[D].成都:西南石油大學,2015.
LI Hongtao. Study on propagation law of wellbore pressure wave under complex fluid medium conditions [D]. Chengdu: Southwest Petroleum University, 2015.
[19]" 步玉環(huán),景韶瑞,楊恒,等.深水氣井測試條件下井筒水合物生成及淺層水合物分解的環(huán)空保護液導熱系數(shù)[J].中國石油大學學報(自然科學版),2023,47(1):81-88.
BU Yuhuan, JING Shaorui, YANG Heng, et al. Influence of thermal conductivity of annular protective fluids on wellbore hydrate formation and hydrate decomposition in shallow formation during deep-water drilling and well testing[J]. Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):81-88.
[20]" JIA Z C, LI D L, YANG J H, et al. Numerical well test analysis for polymer flooding considering the non-Newtonian behavior[J]. Journal of Chemistry, 2015,2015:107625.
[21]" 孔祥偉,林元華,邱伊婕.控壓鉆井中三相流體壓力波速傳播特性[J].力學學報,2014,46(6):887-895.
KONG Xiangwei, LIN Yuanhua, QIU Yijie. Pressure wave velocity propagation characteristics of three-phase fluid in controlled pressure drilling wells[J]. Journal of Mechanics, 2014,46(6):887-895.
[22]" WEI C, CHEN Y. On improving algorithm efficiency of gas-kick simulations toward automated influx management: a robertson differential-algebraic-equation problem approach[J]. SPE Drilling amp; Completion, 2021,36(4):943-966.
[23]" 孔祥偉,劉祚才,靳彥欣.川渝裂縫性地層自動壓井環(huán)空多相壓力波速特性研究[J].應用數(shù)學和力學,2022,43(12):1370-1379.
KONG Xiangwei, LIU Zuocai, JIN Yanxin. Study on multiphase pressure wave velocity characteristics of automatic kill annulus in fractured formations in Sichuan and Chongqing [J]. Applied Mathematics and Mechanics, 2022,43(12):1370-1379.
[24]" 孔祥偉,林元華,邱伊婕.控壓鉆井重力置換與溢流氣侵判斷準則分析[J].應用力學學報,2015,32(2):317-322,358.
KONG Xiangwei, LIN Yuanhua, QIU Yijie. Analysis of judgment criteria for gravity displacement and overflow gas invasion in controlled pressure drilling[J]. Journal of Applied Mechanics, 2015,32(2):317-322,358.
[25]" YANG W L, YIN H J, ZHONG H Y, et al. Well test analysis of viscoelastic polymer solution[J]. Journal of Hydrodynamics, 2010,22(1):366-369.
[26]" 董長銀,甘凌云,賽福拉·地力木拉提,等.深層碳酸鹽巖儲層泥砂產(chǎn)出與固體控制優(yōu)化[J].中國石油大學學報(自然科學版),2022,46(5):90-97.
DONG Changyin, GAN Lingyun, DILIMULATI·Saifula, et al. Sand production and solid control optimization in deep carbonate reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):90-97.
[27]" 楊宏偉,張銳堯,李軍,等.深水多梯度鉆井過濾分離器結(jié)構(gòu)設(shè)計與關(guān)鍵參數(shù)計算[J].中國石油大學學報(自然科學版),2021,45(6):72-78.
YANG Hongwei, ZHANG Ruiyao, LI Jun, et al. Structural design and calculation analysis of key parameters of filter separator during multi-gradient drilling in deep water[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(6):72-78.
[28]" 王雪瑞,孫寶江,王志遠,等.考慮溫度壓力耦合效應的控壓固井全過程水力參數(shù)計算方法[J].中國石油大學學報(自然科學版),2022,46(2):103-112.
WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum(Edition of Natural Science),2022,46(2):103-112.
[29]" LIU X S, LI B, YUE Y Q. Transmission behavior of mud-pressure pulse along wellbore[J]. Journal of Hydrodynamics, 2007,19(2):236-240.
(編輯" 李志芬)